
Introduction

Alzheimer’s disease (AD) is a clinico-pathological diag-

nosis in which progressive neurodegenerative disease is 

associated with the dementia syndrome. Neuro patho-

logically, AD is generally characterised as including 

deposits of amyloid beta protein (Aβ) in senile and 

neuritic plaques [1] and neurofi brillary tangles of paired 

helical fi laments of hyperphosphorylated tau [2,3]. 

Currently, AD is classifi ed as familial AD, which has an 

early age of onset and is associated with mutations in 

either the amyloid precursor protein (APP) or the 

presenilins (PSs), and sporadic AD, which has a later age 

of onset and a less clear aetiology [4,5]. Down’s syndrome, 

with an extra copy of APP on chromosome 21, also leads 

to a form of AD with increasing age. Th e genetic data 

associated with familial AD [6] strongly suggest that PS, 

APP and its proteolytic fragment Aβ are involved in AD 

disease progression but exactly how they contribute to 

both normal cognition and dementia is the focus of much 

debate.

Many non-genetic factors also appear to aff ect disease 

initiation and progression, including diet, exercise and 

education, and many models have been proposed to 

account for their roles in AD. Population studies (for 

example, the Medical Research Council Cognitive 

Function and Aging Study [7]) demonstrate that vascular 

and AD-associated pathologies are common in people 

with and without any clinical manifestation of dementia. 

Coupled with data suggesting that the relationship 

between amyloid pathology and dementia attenuates 

with age [8], this suggests that sporadic AD especially has 

a complex disease aetiology [9].

Many models of disease progression have been proposed 

to account for the accumulating data on AD. Th ese models 

form the basis of experimental design and aff ect how 

fi ndings are interpreted. Data relevant to disease 

progression in AD are accumulating from many diverse 

fi elds, including neuropsychology, brain imaging, 

molecular biology and genetics. Integrating these data is 

becoming harder as expertise is required in so many areas.

Th e pre-eminent model of the last few decades has 

been the amyloid cascade hypothesis [10-12], based on 

genetic data and the role of PS in the proteolysis of APP 

to release the 39 to 43 residue Aβ. Th is model proposes 

that overproduction of Aβ, or an increase in Aβ
(1-42)

relative to Aβ
(1-40)

, is causal in the disease process. In this 

model, Aβ, perhaps in a specifi c aggregation state, is 

proposed as neurotoxic. An alternative interpretation of 

data relating to APP, PS and Aβ is the presenilin 

hypothesis [13], where loss or altered function of PS is 

proposed as the causal factor in disease progression. 
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Other models suggest diff erent initiating factors, such as 

cholesterol [14], mitochondria and apoptosis [15], insulin 

signalling and energy metabolism [16,17], cholinergic 

insuffi  ciency [18], Ca2+ deregulation [19,20], signalling 

decoherence [21] or a combination of multiple factors 

(for example, [22,23]). No single model adequately explains 

how APP, PS, cholesterol and other factors interact with 

synaptic plasticity, learning and memory in normal and 

disease states. Th is suggests that models currently in use 

in AD research require re-evaluation.

Recent approaches to integrating the data relevant to 

AD have involved the use of text mining, bioinformatic 

databases and network analysis for gene co-expression 

and protein-protein interactions [24-33]. Studies using 

automated interrogation of genomic and proteomic 

databases, such as UNIPROTKB [34], NCBI Entrez Gene 

[35], and IntAct [36], and text mining in literature data-

bases such as Pubmed [37] have confi rmed the 

involvement of many previously highlighted neurological 

processes, extended the connectivity between known 

molecular targets and revealed new targets for investi-

gation (summarised in Table 1).

Understanding how APP contributes to synaptic 

plasticity is important in understanding normal cognition 

and disease progression in AD. Here, we approach the 

process of integrating the available data relating to the 

relationships between APP and its proteolytic fragments 

and neuronal processes based on a systems biology 

approach and build a map of relationships. We are not 

aiming to defi ne protein interactions nor fi nd new targets 

for investigation, but to highlight relationships in the 

existing literature that illustrate the complexity involved 

and how this relates to our current understanding of the 

role of APP in AD. We highlight areas where data are 

missing and predict relationships that may confound 

current disease models.

Building the map

Relationships involving APP and each of its proteolytic 

fragments were identifi ed from literature searches using 

relevant key words. Each interaction identifi ed was 

manually entered into a non-hierarchical network using 

the mapping software Compendium [38]. Th is software 

allowed each molecule or neuronal system to be 

represented as a node within the map. Each node in the 

map could contain further networks of nodes, leading to 

a multi-dimensional organisation of information. Th ese 

further nodes represented information relevant to the 

molecule of the parent node and could include notes 

describing possible relevance, questions raised and links 

to relevant entries on various bioinformatic databases. 

Th e map is not meant to be read as a protein-protein 

interaction network (PPI), but rather was designed to 

summarise and collate information relevant to the APP 

system in a more general way. Physiological outcomes, 

such as changes in signalling, were included, even though 

the precise molecular interactions are not clear. Any 

additional details, such as new biological relationships or 

new molecular interactions, can be added as they arise. 

Relationships between molecules are represented by 

connectors, with annotation if required. Figure 1 shows a 

limited map built in this way from references cited in the 

text, with additional references listed in Table 2.

Unlike more automated network studies such as that by 

Perreau and colleagues [25] where nodes were included 

in the network only if there was direct evidence of 

molecular interaction, or various studies [30-33] where 

co-expression criteria were applied, no specifi c criteria 

were imposed and any relationship found was included. 

Known diff erences in peptide behaviour (for example, 

[39,40]) necessitated separate nodes for Aβ
(1-40)

 and 

Aβ
(1-42)

. Th is was extended systematically to include all 

the peptide fragments, including P3
(17-40)

, P3
(17-42)

, secreted 

APP (sAPP)α and sAPPβ (the extracellular amino-

terminal fragments following α- and β-cleavage, 

respectively), C31, and so on to take account of any 

potential behavioural diff erences. Th is is in contrast to 

various network constructions where the various 

proteolytic fragments are collapsed into an APP parental 

node, possibly refl ecting the UNIPROTKB identifi er 

(P05067) being the same for each peptide. Additionally, 

diff erent aggregation states of each of the peptides 

(monomers, dimers, oligomers or fi brils) were considered 

separately. Th ese additional details have been omitted 

from Figure  1 for clarity. Since there was little or no 

evidence for many of the Aβ-type peptides [41], these 

were collapsed into a separate node (not shown).

Th e relationships in Figure  1 were analysed manually 

by identifying feedback loops. Direct feedback loops were 

defi ned as relationships between APP, any of its proteo-

lytic fragments and any other molecule or functional 

change that was represented at more than one point in 

the map. Possible indirect feedback loops between any 

neural system, such as neurotransmitter signalling, Ca2+ 

homeostasis or the infl ammation cascade, were also 

investi gated by looking for molecules or functional change 

in these systems that interact with APP or any of its 

proteolytic fragments at more than one point in the map.

Following a brief summary of APP cleavage, two 

examples of the relationships between APP pathways and 

neuronal processes, looking at the extracellular matrix 

(ECM) and endocytosis, serve to illustrate the implica-

tions of the complexity involved.

The amyloid precursor protein

Overview

APP is a type I transmembrane protein [42] with a large 

extracellular amino-terminal domain, a transmembrane 
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domain and an intracellular carboxy-terminal domain 

that resembles a cell surface receptor [43]. It is expressed 

in several isoforms, with APP
695

 the main isoform ex-

pressed by neurons. APP has a high turnover, with a half 

life ranging from approximately 1  hour [44-46] to 

approximately 4  hours [47-49]. In addition to its func-

tions at the cell surface, full length mature APP is also 

processed via competing pathways that release proteo-

lytic fragments [5,43,50] (recently reviewed in [51]). In 

eff ect there are four possible routes: APP may remain 

functionally active at the cell surface; it may be 

internalised and recycled or degraded; it may be cleaved 

via the α-pathway, releasing the sAPPα fragment, leaving 

the membrane bound C83 carboxy-terminal fragment 

that is further processed to the P3 fragment; or it may be 

cleaved via the β-pathway releasing sAPPβ, leaving the 

membrane bound C99 carboxy-terminal fragment that is 

further processed to the Aβ fragment.

As can be seen in Figure 1, α- and β-cleavage pathways 

(numbered  1 and 2, respectively) converge on a further 

intramembrane γ-cleavage (numbered  3) by the PS-

containing γ-secretase complex to release the variable 

length Aβ and P3 peptides and the variable length APP 

intracellular domain (AICD). Additional cleavages, in-

clud ing caspase cleavage of the carboxyl terminus at 

residue D664 of APP
695

, producing the alternative length 

carboxy-terminal fragment C31 [51], and cleavage by 

BACE2 (beta-site amyloid precursor protein cleaving 

enzyme 2) within the Aβ sequence [52], have been omitted 

for clarity.

Unprocessed APP is degraded or recycled via the 

endosomal or lysosomal pathways and may be recycled 

back to the membrane and processed within approxi-

mately 30  minutes [46], with perhaps a third to a half 

being processed via the cleavage pathways as measured 

by secreted sAPPα/β [46]. Regulatory relationships 

Table 1. Overview of protein-protein interaction network studies

Reference Selection criteria Exclusion criteria Main focus

[25] Evidence of direct interaction 

between molecules from literature 

searches

Metals, non-protein molecules, 

poorly characterised proteins, specifi c 

peptides are included as parent 

genes

Direct PPI involving APP and associated fragments by domain 

with reference to APP770 isoform but with application to all 

isoforms; molecular networks with reference to biological 

processes

[33] Twelve causative or susceptibility 

‘seed’ genes previously associated 

with AD; candidate genes were 

selected due to close proximity to 

GWAS-identifi ed gene loci associated 

with AD

Proteins lacking open reading 

frames; transcription factors, highly 

glycosylated proteins, extracellular 

proteins, proteins containing several 

transmembrane regions; co-

expression data were used as a fi lter

Identifi cation of genes in AD with reference to direct PPI and 

biological processes

[31] Co-expressed genes that diff er 

between controls and AD 

Probe-sets not mapping to any gene 

or mapping to hypothetical proteins 

were removed

Variations in transcriptomes of AD suggest similarities with 

molecular networks associated with CVD and diabetes. 

Cis-regulatory elements identifi ed in several diseases known to 

co-occur with AD

[30] Genes with variable expression 

between an AD and an aging 

microarray study

Arrays that signifi cantly varied 

between subjects in each study 

group; outlier removal, unreliable 

probe sets defi ned as being present 

in three or fewer arrays; control probe 

sets and probes not associated with 

known genes

Transcriptional changes between AD and aging highlight 

possible contributors to disease pathways. Many biological 

processes are shared between AD and aging. Many novel 

associations found, including MAPK pathways and unknown 

proteins. New functional and disease related association for 

PSEN1 with glial/neuronal interactions; confi rms and highlights 

gamma14.3.3 signalling in AD 

[32] Genes with variable expression 

between human and mouse from 

brain sample microarray gene 

expression data sets

Outlier removal, fi ltered (method 

not specifi ed) to remove datasets 

with low interspecies expression or 

low connectivity correlations; only 

top 5,000 Human and 3,000 Mouse 

connected genes included, rest 

removed to reduce ‘noise’

Mouse and human networks are highly similar with expression 

levels more preserved than connectivity. Signifi cant 

species diff erence in: i) co-expression arrays from astroglia 

and microglia but not neurons; ii) the role of PSEN1 in 

oligodendrocytes and myelination; and iii) further evidence 

of species diff erence in glial cells linked to neuroinfl ammation 

in human AD. Neuronal death is a small part of the biological 

changes associated with AD in this dataset; new transcription 

factors associated with AD

[27] All AD and related pathways in KEGG 

database with co-expression data

Genes without corresponding data 

in the assembled PPI network and 

proteins with no corresponding 

genes in the co-expression data

Crosstalk between pathways involved in AD; close relationships 

between APP and apoptosis, Notch, Wnt pathways and 

cytokine-cytokine interactions in this dataset, brain areas vary 

in specifi c pathway relationships and order of signifi cance

AD, Alzheimer’s disease; APP, amyloid precursor protein; CVD, cardiovascular disease; GWAS, genome-wide association study; KEGG, Kyoto Encyclopedia of Genes and 
Genomes; MAPK, mitogen-activated protein kinase; PPI, protein-protein interaction; PSEN, presenilin.
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promoting expression or cleavage have been collapsed 

into summary boxes in Figure 1 for simplicity.

Complex feedback pathways involving APP and its 

proteolytic fragments; the extracellular matrix and 

endocytosis

The extracellular matrix
APP interacts with itself and its own proteolytic frag-

ments at many points in the network with various 

functional consequences. At the cell surface, the large 

amino-terminal domain of full length APP interacts with 

many components of the ECM, including heparins and 

heparin sulphate proteoglycans [42], laminin, collagen 

[53,54] and β-1-integrin [43,55,56], and contributes to 

early neuronal development, axon and neurite growth, 

cell adhesion and synaptic plasticity [43,57]. Many of 

these interactions are now represented in MatrixDB [58], 

an ECM interaction database.

Th e amino-terminal domain of APP binds heparin in a 

pH- and zinc-dependant manner and this binding pro-

motes the formation of APP homodimers [42,59-61]. 

Depending on various factors, including cell compart-

ment and pH, this dimerisation may infl uence APP 

proteolysis via α- or β-cleavages due to confor mational 

changes [59], though this requires further investigation.

Th e large amino-terminal fragment released by α-

cleavage, sAPPα, is a soluble monomer. It retains two 

heparin binding sites and has been shown to bind heparin 

as a dimer [60]. Th e ability of sAPPα to disrupt APP 

dimerisation at the cell surface is thought to contribute to 

Figure 1. A limited map of amyloid precursor protein relationships showing molecules/neuronal systems as nodes and interactions 

between them as arrows. Evidence for each relationship is summarised in Table 2. Numbers are referred to in the text. Aβ, amyloid beta protein; 

Abl, tyrosine-protein kinase ABL1; AChR, acetylcholine receptor; ADAM, a disintegrin and metalloproteinase domain-containing protein; AICD, 

APP intracellular domain; Akt, RAC-alpha serine/threonine-protein kinase; AMPAR, AMPA receptor; ApoE, apolipoprotein E; APP, amyloid precursor 

protein; BACE, beta-site amyloid precursor protein cleaving enzyme; CD74, HLA class II histocompatibility antigen gamma chain; ECM, extracellular 

matrix; IDE, insulin degrading enzyme; JIP1, C-Jun-amino-terminal kinase-interacting protein 1; JNK, C-Jun amino-terminal kinase; Lyn, tyrosine-

protein kinase Lyn; PKA, protein kinase A; PKC, protein kinase C; LRP, low-density lipoprotein receptor; LTP, long-term potentiation; mAChR, 

muscarinic acetylcholine receptor; mGluR, metabotropic glutamate receptor; nAChR, nicotinic acetylcholine receptor; NMDAR, NMDA receptor; 

P2Y2, P2Y purinoceptor 2; PI3K, phosphoinositide 3-kinase; sAPP, secreted amyloid precursor protein; Src, proto-oncogene tyrosine-protein kinase 

Src; TIMP, tissue inhibitor of metalloproteinases; TNF, tumour necrosis factor.
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Table 2. Additional references supporting the network diagram in Figure 1

Factor Details Reference

Akt Aβ increases Akt phosphorylation in the short term via a mechanism involving α7-nAChR and NMDARs, with  [99]

 phosphorylation levels returning to baseline over the long term

AMPA receptors AMPA glutamate receptor density is reduced by Aβ oligomers via reduction of CamKII [100,101]

ApoE Decreased levels of ApoE lead to increased β-cleavage [102]

 ApoE promotes polymerisation of Aβ into fi brils and enhances fi brillar Aβ deposition in neuritic plaques.  [103-105]

 The high affi  nity binding of Aβ to ApoE reduces ability of ApoE to bind lipids

Ca2+ sAPPα modulates Ca2+ signalling by activating high conductance K+ channels via a mechanism dependent on cGMP [106]

CD74 Interacts with APP and reduces expression of Aβ [107]

Cholesterol Interactions of cholesterol and APP may allow APP to react to cholesterol status of the cell [108]

 Membrane cholesterol correlates with β-secretase activity and inhibition of β-secretase activity leads to  [109,110]

 increased membrane cholesterol levels. Moderate reductions in cholesterol enhance the co-expression of APP 

 and BACE1 and promote the production of Aβ

 Aβ binds lipids and has high affi  nity for cholesterol. Aggregated Aβ
(1-40)

 may aff ect lipid transport.  [111,112]

 Aβ binds 24-hydroxycholesterol and aff ects membrane choline carriers

Complement cascade Aβ activates neuronal complement cascade to induce the membrane attack complex and reduces  [113]

 complement regulatory proteins, increasing complement-mediated cytotoxicity

Dishevelled Dvl-1 increases sAPPα production mediated via JNK and PKC/MAPK but not via p38 MAPK [114]

Electrophysiology Hippocampal and cortical electrophysiological processes are modulated by sAPPα [115]

 Aβ
(1-40)

 suppresses epileptiform activity in hippocampal neurons [116]

Fe65 APP binds Fe65 at the YENPTY sequence with eff ects on gene transcription, cytoskeleton and cell motility.  [117-121]

 Binding of Fe65 to APP is dependent on phosphorylation state of Y
682

; phosphorylation of T
668

 reduces the 

 binding of Fe65 to YENPTY. Binding of Fe65 reduces Aβ

Furin Furin enhances cleavage to active forms of ADAM10 and ADAM17, leading to enhanced α-cleavage [122]

Glucose/glutamate  sAPPα enhances transport of glucose and glutamate in synapses and protects from oxidative stress via a [123]

transport mechanism involving cGMP

Glutamate signalling sAPPα suppresses NMDA currents rapidly and reversibly at concentrations of approximately 0.011 nM, possibly  [124,125]

 involving cGMP and a protein phosphatase. Reductions in sAPPα lead to reduced tetanically induced NMDA 

 currents while increased sAPPα increased these currents and enhanced LTP

G-protein signalling Aβ directly increases TNF-α at high levels and at low levels increases TNF-α release by altering GPCR signalling  [126]

 at early stages of disease progression by indirect eff ects on GPCR kinase 2/5

 Full length and processed APP can potentially interact with G proteins via the cytoplasmic tail and this can be  [127-129]

 altered by APP mutations around the G protein binding site. This interaction has the potential to alter G-protein 

 signalling with wide ranging eff ects, including Ca2+ regulation and cell cycle pathways

HDL Aβ binds ApoA-I, ApoA-II, ApoE and ApoJ; binding modulates Aβ solubility [130]

Heparins Proteolysis of immature BACE1 to its mature active form is promoted by low concentrations of heparin and  [70,131,132]

 inhibited at higher concentrations. Certain heparin derivatives may act as inhibitors of BACE1 and have 

 therapeutic potential

IL-1β Enhanced α-cleavage by ADAM10/17 via up-regulation of P2Y2 receptors and may increase levels of  [133,134]

 ADAM10/17 by approximately threefold

 Increases expression of APP and β-cleavage in astrocytes [135]

Insulin degrading  Aβ competes with insulin for IDE and reduced IDE availability may contribute to dementia [136]

enzyme

Integrins sAPPα competes with APP for binding sites on integrin-β-1 and promotes neurite outgrowth [137]

 Aβ binds focal adhesion molecules and integrins and modulates integrin/FA signalling pathways involved in  [138,139]

 cell cycle activation and cell death. The αv integrin subunit is required for Aβ-associated suppression of LTP

Lipids Binding of Aβ to acidic lipid molecules promotes Aβ aggregation. Aβ binds membrane gangliosides,  [140-142]

 sphingolipids and cholesterol, which enhance Aβ aggregation

 Association of APP and BACE1 with lipid rafts increases Aβ [143]

 Aβ endocytosis may also involve lipid rafts [144]

 Sphingolipids enhance α-cleavage via MAPK/ERK signalling [145]

Continued overleaf
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its neuroprotective actions [62-64] and may partly 

explain why sAPPα is approximately 100 times more 

neuroprotective against excitotoxicity, glucose depriva-

tion and the addition of Aβ in hippocampal cultures than 

sAPPβ, which lacks the second carboxy-terminal heparin 

binding site [63]. Dementia status has been associated 

with both reduced sAPPα levels in cerebrospinal fl uid 

[65] and an increased half life of sAPPα [49].

Diff ering by only 16 carboxy-terminal residues, sAPPα 

and sAPPβ share a high degree of sequence homology 

and have the potential to compete with each other for 

binding sites. Since both sAPPβ and sAPPα are constantly 

present in the ECM in dynamically changing ratios, we 

predict that sAPPβ could act as an antagonist of sAPPα/

APP (shown in Figure 2 as competitive inhibition (line 1)), 

with the potential to modulate various interactions 

between APP and sAPPα and the ECM. We predict, 

therefore, that any functional outcome from the 

interactions of the APP pathway will depend on the 

synergy between APP and its amino-terminal fragments.

Table 2. Continued

Factor Details Reference

LTP Aβ suppresses LTP in hippocampal neurons via a mechanism involving α4β2 nAChRs; Aβ aff ects cascades  [146,147]

 downstream of NMDA GluR signalling

Muscarinic ACh  Increases in mAChR-M1 and -M3 activation upregulate α-cleavage via PKC activation. Muscarinic upregulation [75,148-151]

signalling of sAPPα secretion may involve the activation of a Src tyrosine kinase, leading to activation of PKCα and ERK1/2. 

 Increased M2 activation decreases sAPPα secretion

 Inhibition of muscarinic signalling promotes APP processing via β-pathway. Increased M1/M3 signalling  [152,153]

 promoted β-cleavage via PKC; MEK/ERK and increased expression of BACE1; M2 activation suppressed 

 BACE expression

MAPK/ERK signalling MAPK cascade may mediate the independent eff ects of PKC and tyrosine kinase in human astrocytes [154]

Neurite outgrowth APP enhances neurite outgrowth independently from sAPPα [155]

NF-κB May reduce expression of BACE1 [156]

 NF-κB upregulation by capacitive Ca2+ entry enhances sAPPα release  via mAChR signalling [157]

Nicotinic ACh signalling  Aβ
(1-40)

 and Aβ
(1-42)

 reduced Α4β2 nAChR and α7 nAChR currents. Aβ
(1-40)

 but not Aβ
(1-42)

 increased glutamatergic  [40,158]

 AMPA. Signalling via Α4β2 nAChR is associated with reduced Aβ

 Aβ has high affi  nity for the α7 nAChR and this may be associated with increased Aβ accumulation. Diff erential  [39,159,160]

 eff ects of Aβ
(1-40)

 and Aβ
(1-42)

 on α7 nAChR as seen by diff erent eff ects on ACh release and Ca2+ infl ux. Disruption 

 of signalling by α7 nAChR may be associated with Aβ-mediated increases in pre-synaptic Ca2+

 Aβ
(1-42)

 has approximately 5,000-fold greater affi  nity for α7 nAChR than for Α4β2 nAChR [161]

NMDA GluR Aβ promotes endocytosis of NMDARs in cortical neurons with the involvement of protein phosphatase 2B  [162]

 and the tyrosine phosphatase STEP

Nucleotide signalling  G-protein-coupled purine receptor, P2Y2 enhanced the release of sAPPα in a time- and dose-dependent [163]

via P2Y2 receptors manner; probably mediated via ADAM10 and ADAM17

numb APP binds numb when Y
682

 is unphosphorylated and inhibits Notch signalling [164]

PKA/CREB Aβ inhibits PKA via increased persistence of its regulatory subunit PKAIIα, resulting in reduced CREB  [73]

 phosphorylation in response to glutamate

PKC PKC activators enhance α-cleavage [165,166]

 Aβ inhibits PKC [167]

Reelin Reelin interacts with APP and Α3/β1-integrins and promotes neurite extension; APP endocytosis is reduced.  [56,168]

 Reelin signalling opposes the actions of Aβ

Src, Abl, Lyn, JNK/JIP1 These tyrosine kinases bind to APP when phosphorylated at Y
682

 with affi  nity increased by phosphorylation of  [169,170]

 T
668

. JNK phosphorylation of APP at T
668

 modulated by JIP1

TIMP-3 Increases in TIMP-3 led to decreased surface expression of ADAM10 and APP. The production of Aβ and CTF  [171]

 is increased. TIMP-3 appears to promote endocytosis and β-secretase cleavage

Transthyretin Neuroprotection in transgenic mice over-expressing mutant APP is associated with elevated levels of  [172,173]

 transthyretin and sAPPα and may be linked to increased proteolysis of Aβ

Aβ, amyloid beta protein; ACh, acetylcholine; ADAM, a disintegrin and metalloproteinase domain-containing protein; Akt, RAC-alpha serine/threonine-protein 
kinase; AMPA, 2-amino-3-(5-methyl-3-oxo-1,2- oxazol-4-yl)propanoic acid; ApoE, apolipoprotein E; APP, amyloid precursor protein; CamKII, calcium/calmodulin-
dependent protein kinase type II; CD74, HLA class II histocompatibility antigen gamma chain; CREB, cyclic adenosine monophosphate response element-binding; CTF, 
carboxy-terminal fragment; ERK, extracellular signal-regulated kinase; FA, fatty acids; GluR, glutamate receptor; GPCR, G-protein-coupled receptor; HDL, high-density 
lipoprotein; IDE, insulin degrading enzyme; JIP1, C-Jun-amino-terminal kinase-interacting protein 1; JNK, C-Jun amino-terminal kinase; LTD, long-term depression; 
LTP, long-term potentiation; Lyn, tyrosine-protein kinase Lyn; MAPK, mitogen-activated protein kinase; mAChR, muscarinic acetylcholine receptor; MEK, ERK activator 
kinase; nAChR, nicotinic acetylcholine receptor; NMDAR, NMDA receptor; P2Y2, P2Y purinoceptor 2; PKA, protein kinase A; PKC, protein kinase C; sAPP, secreted 
amyloid precursor protein; Src, proto-oncogene tyrosine-protein kinase Src; TIMP, tissue inhibitor of metalloproteinases.
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Aβ interacts with heparins in the ECM and at high 

levels may prevent the catabolism of proteoglycans and 

promote amyloid formation [66]. Reciprocally, heparins 

modulate many of the interactions involving Aβ. Heparins 

enhance both nucleation and elongation processes in the 

aggregation of Aβ [67] and modulate interactions of Aβ; 

for example, heparins can limit the neurotoxic and pro-

infl ammatory activity of Aβ in a dose-dependent manner 

[68]. Additionally, heparins contribute to the uptake of 

Aβ by a pathway shared with apolipoprotein E [69] and 

also contribute to the regulation of the β-secretase BACE 

in a dose-dependent manner, with low concentrations 

promoting and high concentrations inhibiting the 

activation of BACE1 [70].

In terms of direct feedback, Aβ may be part of a 

negative feedback loop involved in the regulation of APP 

expression and the promotion of α-cleavage. Fibrillar 

forms of various proteins, including Aβ, interact with 

amino-terminal APP and increase APP expression [71] 

(Figure 2, line 2) and Aβ
(1-40)

 may up-regulate expression 

of α-secretase via integrin receptors and matrix metallo-

proteinase-9 activity [72] (Figure 2, line 3). Additionally, 

Aβ has many indirect negative feedback relationships 

with α-cleavage - for example, Aβ inhibits protein kinase 

C [73] and insulin signalling [74], both involved in up-

regulation of α-cleavage [75] (Figure  2, line  5)  - and 

additionally may negatively feedback on APP expression 

and its own production via a pathway involving Fe65 and 

glycogen synthase kinase 3 [76]. Reciprocally, changes to 

gene expression by sAPPα via the activation of NF-κβ 

may attenuate the interactions of Aβ [77] and this can be 

understood as reciprocal indirect feedback from the α-

pathway on the β-pathway (Figure 2, line 4).

Th e data reviewed above suggest that Aβ may contri-

bute to both direct and indirect feedback loops in the 

ECM at multiple points, with consequences for the 

interactions of APP, sAPPα, Aβ and sAPPβ that may 

ultimately aff ect cell adhesion, neurite outgrowth and 

synaptic plasticity. Th ese eff ects will depend on the 

specifi c sequence length, concentration and aggregation 

state of the Aβ-type peptides, which may dynamically 

change in response to the neuronal environment.

Endocytosis
Increases in endocytosis, often associated with synaptic 

activity, lead to both an increase in Aβ [78] and a 

reduction in α-cleavage and lower secreted sAPPα levels 

[79]. Th is may refl ect the regulatory role of compart men-

tation in APP proteolysis, where α-cleavage occurs at the 

cell surface and Aβ production is associated with factors 

that promote endocytosis. No studies could be found 

investigating the role of endocytosis on P3 production, so 

this cannot be discussed specifi cally. Endocytosis allows a 

degree of dissociation between the α- and β-cleavages 

and γ-cleavage, resulting in levels of sAPPα and sAPPβ 

that may be independent of Aβ
(1-40/42)

 and P3 levels, 

respectively. Th is means that in terms of function, APP 

processing via the β-pathway has the potential to either: 

modulate actions of sAPPα via competition with sAPPβ; 

or modulate the actions of sAPPα and initiate actions 

mediated by Aβ.

P3 corresponds to Aβ
(17-40/42)

 and we predict that this 

shared sequence could allow P3 to modulate the inter-

actions of Aβ (shown in Figure  2 as competitive 

inhibition), especially where those interactions involve 

the carboxy-terminal amino acids. While no studies can 

be found that address this particular question directly, 

various amino-terminal truncated forms of Aβ have 

been associated with diff use plaques [80,81] and the 

Aβ
(17-40)

 fragment, corresponding to P3, has been 

studied in terms of aggregation [82]. It is clear that 

amino-truncated Aβ peptides, including P3, have 

potential for aggregation and can interact with Aβ, but 

how this aff ects the physiological behaviour of neuronal 

systems is not clear. In terms of functional fl ow through 

the APP pathway, processing via the α-pathway to 

release sAPPα and P3 could either: initiate actions of 

sAPPα; or initiate actions of sAPPα and modulate 

actions mediated by Aβ.

In terms of modelling these interactions in functional 

contexts, PPI networks may require a more detailed 

approach, where each sequence length and aggregation 

state is represented as an individual node.

The eff ects of concentration, sequence length aggregation 

state and affi  nity

Aβ is produced in a range of sequence lengths [41] and 

can form monomers, dimers, oligomers and fi brils. Th e 

amount of Aβ produced is regulated and can dynamically 

change in response to many factors, including increased 

cholesterol [83], increased synaptic activity [84], heparins 

via activation of BACE1 [70], reduced acetylcholine (Ach) 

signalling via muscarinic receptors [70], sustained 

increased cytosolic Ca2+ [85], and hypoxia [86]. Changes 

in concentration are a well recognised mechanism of 

regulation in cellular processes; for example, Aβ
(1-40)

 and 

Aβ
(1-42)

 both promote angiogenesis at nanomolar concen-

trations but inhibit it at higher micromolar concentra-

tions [87].

Diff erent sequence lengths show diff erent behaviours; 

for example, Aβ
(1-42)

 is more prone to aggregation than 

Aβ
(1-40)

 due to a more rigid carboxyl terminus [88]. Aβ 

monomers appear to have structured and unstructured 

regions, with diff erences in aqueous conformations 

between Aβ
(1-40)

 and Aβ
(1-42)

 [89]. While both Aβ
(1-40)

 and 

Aβ
(1-42)

 reduced currents via α7 and α4β2 ACh receptors 

(AChRs), only Aβ
(1-40)

 increased glutamatergic signalling 

via AMPA receptors [40]. Another study found that the 
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Figure 2. Feedback between amyloid precursor protein and its proteolytic fragments. Inhibition is shown in red, enhancement in green; 

numbers are referred to in the text. Functionally diff erent aggregation states for the Aβ-type peptides are collapsed into P3 and Aβ nodes for clarity. Aβ, 

amyloid beta protein; AICD, APP intracellular domain; APP, amyloid precursor protein; PKC, protein kinase C; sAPP, secreted amyloid precursor protein.
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eff ects of Aβ
(1-40)

 and Aβ
(1-42)

 on α7 AChRs, as measured 

by ACh release and Ca2+ infl ux, were diff erent [39]. 

Additionally, Aβ
(1-40)

 may protect neurons from the eff ects 

of Aβ
(1-42) 

by disrupting the aggregation of Aβ
(1-42)

 [90] and 

this raises the possibility that P3-type peptides may act in 

similar ways. Th e functional eff ects of sequence length 

are only just beginning to be elucidated and should be 

expanded to include all the Aβ-type peptides, including 

P3. In addition to diff erences in peptide sequence and 

concentration, aggregation state also modulates function. 

Aβ oligomers appear to be spherical [91,92] and Aβ fi brils 

appear as fi ne fi bres [92]. Aβ oligomers, but not mono-

mers or fi brils, enhance lipid release [93] and at low 

concentrations enhance neuronal diff erentiation [92] 

whereas Aβ fi brils, but not monomers or oligomers, may 

interact with APP and increase its expression [71]. While 

both soluble and aggregated forms of Aβ
(1-40)

 inhibit long-

term potentiation, the fi brillar forms may additionally 

aff ect neurotransmitter release [94].

Within a specifi c cellular compartment, whether one 

interaction is more likely to occur than another depends 

on the relative affi  nities of the reactants involved. While 

dissociation constants have been measured for some 

reactions in rodent models (for example, K(i) values of 

Aβ
(1-42)

 for α7 nicotinic AChRs from rat and guinea pig 

are 4.1 and 5.0  pM, respectively, and the K(i) of Aβ
(1-42)

 

with α4β2 AChRs is approximately 5,000-fold lower at 30 

and 23 nM, respectively [95]), we are missing dissociation 

constants for most interactions in humans.

Taken together, the data discussed above suggest that 

the interactions of APP and its proteolytic fragments 

with synaptic systems are complex and involve subtle 

changes in the relative ratios between APP and all its 

fragments. Given the complexity of the APP system, 

multiple neuronal systems have the potential to regulate 

the expression and proteolysis of APP and could also 

initiate imbalance within this system, leading to multiple 

possible disease pathways.

Th is complexity has the potential to confound purely 

empirical studies into the behaviour of the peptides in 

model systems. Over-expressing Aβ peptides in, for 

example, mouse models without knowing their concen-

trations, sequences and aggregation states and the 

background concentrations, sequences and aggregation 

states of the other relevant peptides in the experimental 

system that is being studied means that we do not know 

if the experimental results obtained are due to the 

properties of the Aβ peptides themselves or refl ect a 

disrupted balance in a complex system over time, or 

perhaps both. While this distinction may seem subtle, 

given the self-organising and self-referencing properties 

of the human brain, an approach based on the principles 

in systems biology may better represent the roles of the 

APP pathway in functional contexts.

Discussion

It is not possible to include the full extent of the known 

interaction of APP and its proteolytic fragments here and 

further interactions may yet be discovered. Data relating 

to the roles of APP and its proteolytic fragments in 

synaptic plasticity and AD have accumulated from many 

diverse fi elds and these need to be placed into context. 

One way of doing this is to investigate the relationships 

between APP, its proteolytic fragments and wider 

neuronal systems by mapping networks of interactions.

It is interesting that the networks generated in the 

various studies reviewed in Table 1 do not always overlap 

and diff erent studies highlight diff erent pathways or 

biological processes, for example, Fe2+ [28], apoptosis 

[96], or cardiovascular disease/diabetes [31]. Each study 

has diff erent starting points, inclusion/exclusion criteria 

and network construction methods, so this lack of 

agreement is no surprise. It is diffi  cult to assess the 

degree to which the various starting points, criteria and 

network construction methods bias results towards an 

outcome.

Th e study by Soler-Lopez and colleagues [33] may not 

model the interactions of full length APP in the 

membrane adequately, as many of the ECM proteins that 

might be expected to interact are excluded due to 

diffi  culties involved in expressing them in the experi-

mental microarray used. Th is may shift the focus of their 

network more towards intracellular interactions. Given 

the importance of the various interactions of APP with 

components of the ECM, any study excluding such 

proteins and proteoglycans could be seriously confounded.

While the study by Perreau and colleagues [25] maps 

PPIs to specifi c domains of full length APP, they do not 

distinguish between the diff erent proteolytic peptides. 

Additionally, transient interactions and biologically 

essential post-translational modifi cations, such as glyco-

sylation and phosphorylation, cannot yet be fully repre-

sented in PPI networks [27], severely limiting the 

modelling of regulation and control in these models.

Studies comparing mouse and human gene expression 

networks [32] or aging and AD pathways [30] have 

revealed interesting results. Perhaps most striking is the 

study revealing a human-specifi c network for PS function 

in oligodendrocytes and myelination, with the potential 

to confound the current approach to modelling AD in 

rodents [32]. Miller and colleagues [30,32] also show 

important contributions from both neuronal and glial 

pathways, perhaps refl ecting the contributions of glia to 

disease pathways found in humans [97,98]. Th e diff er-

ences found in networks between glia and neurons could 

be extended to diff erentiate between specifi c neuronal 

types and future network models may usefully investigate 

why cholinergic neurons in AD appear more susceptible 

to degeneration than others.
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We do not yet have totally inclusive, gene co-expression 

or PPI models of APP and related pathways to the level of 

detail required and this places limitations on their 

interpretation. Given the limitations, however, network 

studies do show the usefulness of the systems biology 

approach in integrating huge volumes of data and a 

simple search of patents in Google with the terms 

‘protein interaction network Alzheimer disease’ retrieves 

more than 700 applications based on this approach. 

Network studies highlight the idea that multiple pro-

cesses are involved in AD disease pathways, reveal new 

targets for further investigation and have generated new 

hypotheses. Network models have the potential to avoid 

biases inherent in other approaches, such as the emphasis 

on Aβ in animal models based on the more reductionist 

amyloid cascade hypothesis, and allow multiple disease 

pathways to be represented in a single model, perhaps 

better relating to the processes involved in human 

disease.

We have suggested that APP and its proteolytic 

fragments appear to dynamically modulate each other by 

multiple mechanisms with evidence for both direct and 

indirect feedback loops between Aβ, sAPPα, sAPPβ and 

full length APP. Additionally, the fragments derived from 

γ-cleavage, including the variable length fragments, P3 

and Aβ, have the potential to interact with each other 

and modulate multiple neuronal processes in subtle and 

dynamic ways. Unfortunately, evidence for the role(s) of 

P3 is almost entirely missing from the literature and that 

for sAPPβ is limited. Without this information, we 

cannot have a full picture of the contributions of the APP 

proteolytic system to normal neuronal processes and 

how these change during disease progression.

Given the number and range of reciprocal feedback 

relationships that APP and its proteolytic fragments are 

involved in, the eff ects of perturbing the APP proteolytic 

system may be better understood as dynamic, synergistic 

actions involving multiple players. A wide range of 

neuronal processes have the potential to interact with 

and regulate APP processing, allowing APP to monitor 

the current state of the cell. Th e multiple proteolytic 

pathways allow APP to assimilate signals from wide-

ranging cellular systems and pass these signals on via the 

ratios of APP fragments. Th e constant turnover of APP 

contributes to the ability of neurons to sense the current 

state of the cell and use this information to set in motion 

future responses. Th e potential for subtly diff erent signals 

both from the α- and β-pathways via alternative peptides 

and the complex feedback relationships between them 

described above fi ts well with the fi ne control required 

for integrating neuronal systems.

Th e predicted synergy between APP and all its 

proteolytic fragments implies that the ratios of full length 

APP and all the various fragments, not just Aβ
(1-40)

 and 

Aβ
(1-42)

, are more important than absolute levels in 

coordinating neuronal responses. Th e complexity of the 

relationships described here has the potential to con-

found purely empirical investigations into the activities of 

any one proteolytic fragment studied in isolation. To 

avoid these predicted confounding eff ects, experimental 

approaches should be extended to account for the 

diff erent concentrations, affi  nities and aggregation states 

of each peptide length, and experimental systems should 

be followed over time for each biological process in a 

systematic manner. With over 40 Aβ-type peptides [41], 

this presents a challenge.

Generating useful network models will require a more 

detailed and comprehensive approach to experimental 

design, involving a range of experimental controls to 

account for all the confounding factors. Th ese data will 

be essential for generating network models that are truly 

relevant to our understanding of normal and abnormal 

processes in the context of the human population.
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