
Introduction

DNA, the hereditary material of all living organisms, is 

sensitive to damages from oxidation, hydrolysis, and 

methylation. Th e living cells are equipped with the ability 

for effi  cient DNA repair systems, such as repair base 

damage (base excision repair, or BER), nucleotide damage 

(nucleotide excision repair, or NER), single-strand breaks 

(single-strand break repair), and double-strand breaks 

(double-strand break repair). Double-strand DNA (DSB) 

breaks are considered the most lethal form of DNA 

damage. In eukaryotes, there are two major DSB repair 

pathways: non-homologous end joining (NHEJ) and 

homolo gous recombination (HR). NHEJ is the predomi-

nant pathway in higher eukaryotes and is active through-

out the cell cycle [1-3], whereas HR is generally limited to 

S and G
2
 when a sister chromatid is available as a repair 

template [4]. Th e primary role of NHEJ is to resolve DNA 

double-strand breaks, and data implicate DNA-dependent 

protein kinase (DNA-PK) as a central regulator of DNA 

end access [5].

Alzheimer’s disease (AD) is a central nervous system 

neurodegenerative disease. Th e pathological presentation 

of AD, the leading cause of senile dementia, involves 

regionalized neuronal death and an accumulation of 

neuronal and extracellular lesions termed neurofi brillary 

tangles and senile plaques, respectively (reviewed in [6]). 

Several independent hypotheses have been proposed to 

link the pathological lesions and neuronal cytopathology 

wit h, among others, apolipoprotein E genotype [7,8], 

hyperphosphorylation of cytoskeletal proteins (neurofi la-

ments and Tau) [9], and amyloid-β metabolism [10]. 

How ever, not one of these theories alone is suffi  cient to 

explain the diversity of biochemical and pathological 

abnormalities of AD. Th ere is limited evidence for 

neuronal loss in most amyloid precursor protein (APP) 

models, and when neuronal loss was noted, it was modest 

[11-13].

Cellular damage by oxidative stress has been proposed 

as a causative factor in pathophysiology of AD and 

normal aging. Elevated levels of oxidative damage in both 

nuclear DNA and mitochondrial DNA have been reported 

in brains of patients with AD [14], and BER defi ciency 

has been found in post-mortem brains of sporadic 

patients with AD [15]. However, impaired BER activity 

found in neuropathological brain regions and in the 

cerebellum where there is no neuronal death indicates 

that BER defi ciency is not specifi c to human AD brains 

[16]. Th e lack of a diff erence in BER activity between 

wild-type and AD model mice brains in any age group 

[17] indicates that species-specifi c mecha nisms may be 
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then recruits DNA-PK
cs

 during NHEJ. However, in AD 

brains, reduced NHEJ activity has been reported along 

with reduced levels of DNA-PK
cs

 and the Ku proteins, 

indicating a potential link between AD and dsDNA 

damage. Since age-matched control brains also show 

a reduction in these protein levels, whether there is 

a direct link between NHEJ ability and AD remains 

unknown. Possible mechanisms involving the role of 

DNA-PK in neurodegeneration, a benchmark of AD, are 

the focus of this review.

© 2010 BioMed Central Ltd

DNA-dependent protein kinase and DNA repair: 
relevance to Alzheimer’s disease
Jyotshna Kanungo*

R E V I E W

*Correspondence: jyotshnabala.kanungo@fda.hhs.gov

Division of Neurotoxicology, National Center for Toxicological Research, US Food 

and Drug Administration, 3900 NCTR Road, Jeff erson, AR 72079, USA

Kanungo Alzheimer’s Research & Therapy 2013, 5:13 
http://alzres.com/content/5/2/13

© 2013 BioMed Central Ltd



involved in AD progression. Nonetheless, progres sive 

neuronal loss due to cumulative damage to DNA and lack 

of DNA repair has been hypothesized to contribute to 

AD and stroke [18,19]. Moreover, human hereditary 

syndromes with genetic defects in the DNA repair pro-

cess manifest in early-onset developmental and progres-

sive neurodegeneration, indicating that defects in DNA 

damage repair are neuropathological [20,21].

In the four major DNA repair pathways (double-strand 

DNA (dsDNA) break repair (HR and NHEJ), NER, BER, 

and mismatch repair), key proteins, including some with 

dual functions, participate in DNA damage sensing/

repair and apoptosis (Table  1) [16]. Th e focus of this 

review is on how DNA-PK activity may be linked to AD 

and whether a ‘cause and eff ect’ scenario emerges from 

the reported studies.

DNA-dependent protein kinase, a multi-subunit 

enzyme

DNA-PK is a PI3 kinase family member, and like targets 

of other members (ATR and ATM) of this family, its 

preferential targets of phosphorylation are the serines 

and threonines followed by a glutamine (S-T/Q sites), 

although other S-T/hydrophobic residues are also phos-

phorylated [22]. DNA-PK enzyme activity is essential for 

NHEJ [5]. Although DNA-PK is implicated in a variety of 

functions from activation of innate immunity [23] to 

regulation of gene expression [24], its primary cellular 

function is to initiate NHEJ. A multi-subunit enzyme, 

DNA-PK consists of a catalytic subunit (DNA-PK
cs

), 

p460, and a regulatory subunit called Ku. Th e Ku protein 

is a heterodim er compo sed of 70-kDa (Ku70) and 80-kDa 

(Ku80) subunits and has the capability of binding 

selectively to specifi c forms of DNA [25,26]. In this 

capacity, it functions as the regulator of DNA-PK that is 

active in transcription, DNA recombination, and DNA 

repair [27-29]. Its role in DNA repair was not formally 

proven until the emergence of studies impli cating Ku as 

the defective factor in cells hypersensitive to DNA-

damaging agents [30].

DNA-dependent protein kinase activators

Ku bin ds DNA ends in a sequence-independent manner, 

and in the absence of DNA-PK
cs

, the extreme DNA 

terminus is bound i n an accessible channel [31]. Ku has 

strong avidity for DNA with a variety of end structures, 

such as blunt, over-hanged, hair-pinned, and damaged. 

Ku can also recognize gaps and nicks in dsDNA, indicat-

ing possible roles of DNA-PK in the repair of damage 

other than DSBs [32], and is particularly suited to do this 

since DNA-PK
cs

 as sembles onto Ku-bound DNA regard-

less of end structure [33]. Although DNA- PK
cs

 has inn ate 

affi  nity (itself ) for DNA ends (in low salt conditions), Ku 

is required for targeting DNA-PK
cs

 to damaged DNA in 

physiologic conditions and in living cells [34]. Although 

any DSB discontinuity can activate DNA-PK, its 

activation varie s considerably depending on the end 

structure, and studies show kinase activation in trans 

(achieved by kinase autophosphrylation) or cis (achieved 

by specifi c DNA strand orientation and sequence bias) 

[35]. Activation by these dual processes represents a 

potentially powe rf   ul mechanism by which DNA-PK 

protects DNA ends to maintain genome integrity. After 

the DSB repair, Ku likely remains trapped on the DNA 

[36]. How Ku gets removed from the DNA is not clear, 

although a protease-mediated degradation of Ku80 has 

been speculated [36].

Cellular and molecular targets    of DNA-dependent 

protein kinase in non-homologous end joining

Many p roteins have been listed as excellent in vitro and 

in vivo DNA-PK targets, but the functional relevance of 

their phosphorylation by DNA-PK remains mostly un-

clear. Most of the proteins involved in NHEJ (XRCC4, 

Ku70, Ku80, Artemis, DNA-PK
cs

, and XLF) are excellent 

in vitro and in vivo targets of DNA-PK [2,37-40]. When a 

D SB occurs, the Ku heterodimer (Ku80/Ku70) fi rst binds 

to the broken ends by using Ku80 and then recruits the 

DNA-PK
cs

, which is activated upon binding to Artemis 

nuclease, and the repair process is completed by XRCC4-

DNA ligase IV [39,41] (Figure 1). Physical association of 

DNA-PK
cs

 and its enzymatic activity are required for 

Artemis’s endonucleolytic activity [39]. In the absence of 

DNA damage, Artemis is co mplexed with DNA-PK
cs

. It 

has been shown that DNA-PK
cs

 is targeted to Ku-bound 

DNA; Artemis is released from DNA-PK
cs

 and is rebound 

again only when the kinase is activated [34]. Artemis 

itself has both endo- and exonuclease activities [39]. 

Table 1. Key proteins involved in various types of DNA 

repair

DNA repair type Key proteins involved

BER Ref-1/Ape, PARP-1, and p53

NER XPB, XPD, p53, and p33 (ING1b)

MMR MSH2, MSH6, MLH1, and PMS2

HR BRCA1, ATM, ATR, WRN, BLM, Tip60, and p53

NHEJ DNA-PK

ATM, Ataxia telangiectasia mutated protein; ATR, Ataxia telangiectasia and Rad3-
related protein; BER, base excision repair; BLM, Bloom’s syndrome gene product; 
BRCA1, breast cancer 1, early onset gene product; DNA-PK, DNA-dependent 
protein kinase; HR, homologous recombination; ING1b, inhibitor of growth 
protein 1 gene product; MLH1, MutL homolog 1, colon cancer, non-polyposis 
type 2 (Escherichia coli); MMR, mismatch repair; MSH2, MutS homolog, colon 
cancer, non-polyposis type 1 gene product; MSH6, MutS homolog 6 gene 
product; NER, nucleotide excision repair; NHEJ, non-homologous end joining; 
NFT, neurofi brillary tangle; PARP-1, poly (ADP-ribose) polymerase 1; PMS2, post-
meiotic segregation increased 2 gene product; Ref-1/Ape, DNA-(apurinic or 
apyrimidinic site) lyase; Tip60, Tat interactive protein; WRN, Werner syndrome 
gene product; XPB, Xeroderma pigmentosum B gene product; XPD, Xeroderma 
pigmentosum factor D.
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DNA-PK
cs

 strongly suppresses the exonuclease activity of 

Artemis but allows limited endonucleolytic trimming, 

likely at regions of transition from single-strand to 

double-strand [39,42].

Non-homologous end joining and DNA-dependent 

protein kinase in neurons

Mature neurons are essentially post-mitotic and do no     t 

proliferate, whereas some glial cells can undergo replica-

tion especially as a response to stress or damage [43,44]. 

Neurons are also among the most metabolically and 

transcriptionally active cells (reviewed in [45]), thus 

making these cells vulnerable to risks that involve DNA 

damage.

DNA repair pathways in brain have been studied 

extensively over the last two decades (reviewed in 

[45,46]). In mammals, DSB repair uses two mechanisms: 

HR and NHEJ. NHEJ is the predominant dsDNA repair 

pathway in mammalian cells [47]. Compared with the 

HR, NHEJ is considered error-prone and imprecise as it 

acts at the DNA break sites to restore the chromosomal 

structural integrity which could come at the expense of 

one or a few nucleotides. Since most of the higher 

eukaryote genome is non-coding, error-prone rejoining 

of DSBs by NHEJ generally has minimal deleterious 

conse quences. However, DSB repair in coding regions 

can potentially introduce functionally important coding 

changes. Over time, as in aging, these small errors can 

accumulate, resulting in genome instability that leads to 

cellular dysfunction or death. Accordingly, it has been 

reported that 10% of p53 mutations in human cancers 

could be attributed to deletions arising from NHEJ sites 

[48]. NHEJ is also the predominant form of dsDNA repair 

pathway in post-mitotic neurons [49] and is critical in the 

nervous system development since mice defi cient in 

DNA ligase IV, XRCC4, Ku70, and Ku 80, which are 

participants in the NHEJ event, show massive apoptosis 

of post-mitotic neurons [46,50]. Loss of NHEJ activity in 

the developing brain can be prenatally lethal and, in 

adults, can lead to neurodegenerative diseases [46,51,52]. 

Mice with defective NHEJ show accelerated aging [53,54].

DNA-dependent protein kinase and cell-cycle 

re-entry in neurodegeneration

One of the factors contributing to neurodegeneration is 

the re-entry of terminally diff erentiated post-mitot   ic 

neurons into the cell cycle because of chronic or acute 

insults associated with DNA damage and oxidative stress 

that result in apoptosis [55,56]. DSB repair capability is 

critical for neurogenesis during development, and 

damaged neurons demonstrate this by escaping apop-

tosis, re-entering the cell cycle, and incorporating into 

the developing brain, leading to neurodegeneration in 

mice with low or no ATM activity [57]. While ATM 

defi ciency suppresses the re-entry of post-mitotic 

neurons into S-phase and protects against apoptosis [56], 

it also increases the yield of unrepaired DNA that even-

tually may be lethal. Neuronal DNA damage is linked to 

the re-entry of neurons into the cell cycle [56,58]. When 

post-mitotic neurons try to re-enter the cell cycle, the 

very attempt to transcribe a subset of cell cycle-related 

genes that have not been transcribed for years in the 

lifetime of a mature neuron may accumulate damaged 

DNA, which could trigger neuronal apoptosis [59].

Furthermore, it has been suggested that DNA replica-

tion resulted when cell-cycle re-entry preceded neuro-

degeneration in AD brains [60]. Reactive oxygen/nitrogen 

species are reported to cause unscheduled and 

incomplete DNA replication known as ‘replication stress’ 

[61]. Th us, ineffi  cient DNA replication posing ‘replication 

stress’ in AD pathogenesis leading to genomic instability 

potentially links Aβ accumulation and erroneous cell-

cycle pathways [62]. Obviously, incomplete DNA repli-

cation due to DSBs or defective DNA repair systems (or 

Figure 1. The DNA repair process by non-homologous end 

joining (NHEJ) and the role of DNA-dependent protein kinase 

(DNA-PK) subunits. Upon induction of double-strand break (DSB), 

DNA-PK
cs

 and Ku80/Ku70 are rapidly recruited to DNA ends and DNA 

repair occurs in the presence of Artemis, DNA polymerase (XLF), 

XRCC4, and DNA ligase IV. DNA-PK
cs

, DNA-dependent protein kinase 

catalytic subunit; XRCC4, x-ray repair cross-complementing protein 4.
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both) would be highly probable in post-mitotic neurons, 

causing replication stress and subsequently leading to 

accelerated accumu lation of further DNA damages and 

genomic instabilities [63,64]. Stalled replication forks 

collapse to yield one-ended DSBs, or ‘double-strand ends’, 

and abnormal DNA replication in post-mitotic neurons 

may be the source of intracellular increase in DNA 

content observed in AD brains [60,65]. It has been shown 

that DNA-PK
cs

 mutant cells fail to arrest replication 

following stress [66]. Additionally, studies show that, in 

response to replication stress-induced DNA damage, 

DNA-PK phosphorylates replication protein A (RPA) and 

dissociates RPA:DNA-PK complex [67,68], thereby 

inhibiting HR [69]. Th us, reduced DNA-PK activity in a 

cell could potentially induce replication stress and 

genome instability.

DNA-dependent protein kinase in Alzheimer’s 

disease and aging

It has also been shown that cells from old mice contain 

more DSBs than cells from young mice and that the 

fi delity and effi  ciency decline signifi cantly during cellular 

senescence [70]. Th is event may contribute to age-related 

genomic instability and aging. DNA-PK plays critical 

roles in, fi rst, detecting DNA damage and, then, 

trigger ing signaling pathways, including programmed cell 

death [53]. Ku80−/− mice are defective in the NHEJ and 

telomere maintenance and show premature aging, but 

surprisingly no human disorder caused by Ku80 

defi ciency or mutation has been reported [54,71]. 

Interestingly, Ku80 and DNA-PK
cs

 protein levels as well 

as the DNA-binding ability of Ku80 are reduced following 

severe ischemic injury, which causes extensive neuronal 

death in rabbits [72]. Furthermore, though not 

signifi cantly diff erent from that of the age-matched 

controls, Ku-DNA binding is reduced in extracts of post-

mortem AD mid-frontal cortex, and this could be 

attributed to reduced levels of Ku subunits and DNA-

PK
cs 

[73]. However, a report from the same laboratory 

demonstrated that NHEJ is reduced in cortical extracts 

from brains of AD versus normal subjects and that DNA-

PK
cs

 level was signifi cantly lower in the AD brain extracts 

[74]. Whether other DNA repair systems, especially HR, 

are altered in the AD brains is not known (Figure 2).

To explain the complexity of AD, a ‘two-hit hypothesis’ 

for AD development has been reported; the fi rst hit 

makes neurons vulnerable and the second hit triggers the 

neurodegenerative process [75]. Th e fi rst hit may consti-

tute abnormalities when neurons try to re-enter the cell 

cycle or oxidative stress, which, if persistent, can create a 

Figure 2. The potential role of the amyloid beta (Aβ)-induced loss of DNA-dependent protein kinase (DNA-PK)-mediated non-

homologous end joining (NHEJ) or homologous recombination (HR) (or both) in the development of Alzheimer’s disease (AD). ATM, 

Ataxia telangiectasia mutated protein; DSB, double-strand break.
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pro-oxidant environment as encountered in pre-AD and 

AD cases. In this environment, proteins highly sensitive 

to redox modulation, including p53, can be compromised 

[76]. A number of post-mortem studies suggest an 

involve ment of p53 in AD, and high levels of p53 in 

certain neurons in post-mortem samples from patients 

with AD have been reported (reviewed in [77]). DNA-PK 

activates p53 by phosphorylating the amino-terminal site 

[78], and p53 can induce Bax, a pro-apoptotic protein 

that translocates to the mitochondria and initiates the 

intrinsic death pathway [79]. Regulation of Bax-mediated 

neuronal death also reportedly involves Ku70 phosphory-

lation by DNA-PK [80]. In this regard, reduction in 

DNA-PK
cs

 levels in AD brains does not seem to be 

consistent with the role of DNA-PK
cs

 as the trigger for 

p53-mediated neurodegeneration (Figure 3).

DNA-PK is believed to have little or no eff ect on p53-

dependent cell-cycle arrest. In contrast, there are reports 

linking p53 phosphorylation by DNA-PK to cellular 

death machinery (reviewed in [81]). DNA-PK is also 

involved in regulating the activities of RNA polymerase I 

and II via phosphorylation (reviewed in [81]). Given 

these important substrates of DNA-PK that are critical 

players in cell death and gene transcription, it is diffi  cult 

to pinpoint the exact role(s) of DNA-PK
cs

 and its cofactor 

(Ku80/Ku70) in AD. Likewise, it would be simplistic to 

directly link reduced levels of DNA-PK subunits and 

consequently less profi cient NHEJ in AD brains to 

neurodegeneration. On the other hand, it is attractive to 

speculate that DNA damage (for example, induced by 

reactive oxygen species (ROS) downstream of Aβ) in 

neurons with reduced NHEJ activity, triggering them to 

re-enter the cell cycle unsuccessfully, could lead to the 

accumulation of excessive genomic damage and eventu-

ally cause neuron death (Figure 3). In either pathway, 

given that NHEJ is the process involved, the importance 

of the DNA-PK
cs

/Ku complex in the development of 

neurodegenerative pathology may be considerable. Th e 

reduced levels of DNA-PK
cs

 and Ku80/Ku70 subunits in 

post-mortem AD brains may be perceived as upstream 

events of neuron loss in AD, although further studies to 

diff er entiate between cause and consequence are 

warranted.

DNA-dependent prote  in kinase and amyloid beta

In a recent study, sublethal levels of aggregated Aβ(25-

35) have been shown to inhibit DNA-PK activity in nerve 

growth factor (NGF)-diff erentiated PC12 cells [82]. In 

this study, one of the potential mechanisms appears to be 

Aβ-induced ROS-mediated degradation of DNA-PK
cs

. 

Aβ also induces DNA-PK
cs

 carbonylation, an irreversible 

oxidative protein modifi cation that may trigger its 

degradation by proteasomes [83,84]. DNA-PK activity is 

also inhibited by H
2
O

2
 in cell-free assays, indicating that 

ROS may directly inhibit DNA-PK activity [82]. On the 

other hand, Aβ(1-42), which can enter the nucleus of 

PC12 cells, also downregulates DNA-PK activity, possibly 

by a mechanism other than the involvement of oxidative 

stress. In AD cases, a decrease in DNA-PK
cs

 expression in 

neurons and astro cytes, though not signifi cant, has been 

reported [85]. Although it is tempting to link AD 

development to Aβ-induced attenuation of DNA-PK 

activity and hence to reduced NHEJ activity, it may be 

argued that this event is a consequence rather than the 

prime cause, a simul taneous event that could occur 

independently of Aβ-triggered neurotoxic pathways.

Conclusions

In contrast to other NHEJ and HR factors, all three 

components of the DNA-PK complex (DNA-PK
cs

, Ku80, 

and Ku70) are exceptionally abundant proteins, especially 

in human cells [86]. Given the com plexity of AD, a clear 

distinction is lacking as to whether the expression of 

DNA-PK subunits may have been transcriptionally 

impaired in AD brains because of a hitherto unknown 

upstream event that is too generic to have a specifi cally 

targeted eff ect on DNA-PK. As for the reduced level of 

DNA-PK
cs

, Aβ-induced proteasome-mediated degrada-

tion of DNA-PK
cs

 has been proposed [83,84]. With regard 

to other NHEJ components as essential as DNA-PK (for 

example, Artemis), their status in AD remains un ex-

plored. In AD, it is possible that with already-declining 

NHEJ activity due to the defects in some other 

components associated with the process, a reduced 

DNA-PK activity may be consequential or a secondary 

Figure 3. The potential link of reduced DNA-dependent protein 

kinase (DNA-PK), phosphorylation status of replication protein 

A (RPA) and p53 to neuronal apoptosis, and genomic instability 

that may lead to Alzheimer’s disease (AD). Aβ, amyloid beta; HR, 

homologous recombination; NHEJ, non-homologous end joining; 

RNA Pol I, RNA polymerase I; ROS, reactive oxygen species.
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eff ect. Th erefore, a decline in DNA-PK subunit levels and 

its kinase activity may, for the time being, serve as 

biomarkers until future studies, especially in vivo studies, 

add to substantiate a direct link of DNA-PK to AD. 

Furthermore, increased HR of sub strates in cells that lack 

DNA-PK [87,88], co-localization of NHEJ and HR factors 

at the same DNA lesion [89], partial rescue of the severe 

phenotypes associated with defi ciency of XRCC4 o r 

ligase IV, by deletion of DNA-PK [90,91], indicate that, in 

the absence of DNA-PK and NHEJ, the cells may tend to 

acquire an alternate path (for example, HR) to repairing 

DSBs. Interestingly, in cell culture studies, crosstalk 

between HR repair and NHEJ has be  en shown to involve 

ATM, DNA-PK, and ATR, indicating that DNA-PK may 

participate in HR by co-regulating p53 and RPA [92]. 

Should such alternate pathway(s) be adversely aff ected by 

factors causing AD onset, the neurons devoid of any 

ability to repair DSBs may be vulnerable to degeneration. 

Since DNA-PK
cs

 and Ku mutations in humans are not 

existent [54,71] and aging brains also exhibit reduced 

levels of Ku80 and NHEJ activity [73,74], it remains to be 

seen whether reduced levels of DNA-PK complex and the 

enzyme activity do bear any direct relationship to AD 

(Figure  2). Discerning between normal aging-related 

attenuation of DNA-PK activity/expression and that in 

AD cases warrants careful assessment.

Lately, linking genomic lesions during neurodegenera-

tion to transcriptional insuffi  ciency is fast emerging [93]. 

Nucleolar insensitivity to DSBs has been implicated in 

neurodegeneration [93]. Nucleolus is the site of ribo-

somal RNA (rRNA) biogenesis [94]. Th e RNA polymerase 

I (Pol I) drives the transcription of rRNA, and continuous 

Pol I activity is required for nucleolar maintenance. Th e 

DNA-PK component Ku has been shown to suppress 

RNA Pol I transcription in vitro and in P19 stem cells 

[95-97]. In this context, a reduction in DNA-PK activity 

and level of expression of its components in AD brains 

[73,74] should act as a relief factor for Pol I transcription. 

Interestingly, while hippo campal neurons have been 

shown to have AD-associated reduction in nucleolar 

volume [98], in subjects with moderate AD pathology 

without cognitive impairment, nucleolar hypertrophy has 

been reported in both cortical and hippocampal neurons 

[98]. Although the latter scenario appears consistent with 

reduced DNA-PK and Ku levels in AD brains [73,74], the 

link remains unclear and needs further research.
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