
Introduction

Alzheimer’s disease (AD) is a progressive and irreversible 

debilitating form of dementia. It is characterized by 

progressive memory impairment and diminished cog-

nitive performance. Non-cognitive neurological co-

morbidities often include depression, aggression, and/or 

psychosis. Histological alterations of the brain tissue 

include an early degeneration of the cholinergic network, 

nicotinic neurons in particular, that progressively extends 

to other types of neurotransmission, neuroinfl ammation, 

amyloid plaque deposition, neurofi brillary tangles, and 

loss of white matter. AD has become a major healthcare 

concern. It is expected that the number of patients 

suff ering from AD in the United States and European 

Union, currently between 5 and 6 million, will double by 

2040. Th e picture is even darker if we consider that this 

evaluation only includes the patients who have been or 

could be diagnosed, not those for whom the disease is 

still clinically silent, and does not include China and 

India, where information concerning AD is limited. Th e 

human cost goes well beyond the patients; it also includes 

the caregivers, with a ratio of three caregivers per patient. 

Th e fi nancial cost for society is also exorbitant: US$200 

billion for the United States in 2012. Current projections 

estimate an increase to US$1.1  trillion in 2050. In 

comparison, the fi nancial stimulus package passed by the 

Obama administration in 2011 was $800 billion.

Th e history of drug development for AD is not a 

success story. For years, drug developers focused on com-

pensating for the loss of cholinergic neurotrans mission. 

Th is led to the development of acetylcholinesterase 

inhibitors, with tacrine as the class leader. Th is strategy 

was based on the hypothesis that inhibiting the enzyme 

that degrades acetylcholine (Ach) would restore physio-

logical concentrations of Ach in the synaptic cleft and the 

functionality of cholinergic neurotransmission, resulting 

in therapeutic benefi t. Tacrine, which was released to the 

market in the early 1990s, showed some modest activity 

in clinical trials; however, its therapeutic use was 

hampered by dramatic liver toxicity, which required close 

monitoring of patient liver function [1]. Tacrine was 

progressively replaced by a new generation of acetyl-

cholinesterase inhibitors, namely galantamine, donepezil, 

and rivastigmine, which were devoid of liver toxicity but 

produced questionable therapeutic benefi ts [2]. In 2004, 

the non-competitive N-methyl-D-aspartate (NMDA) 

antagonist memantine was released to the market. 

Although the toxicological profi le of memantine was 

excellent, the therapeutic benefi ts in AD were modest [3]. 

Since then, the AD pipeline has suff ered numerous 
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setbacks due to failed clinical trials of the vaccine 

AN1792, amyloid peptide ligand/plaque formation inhi-

bitor tramiprozate, γ-secretase modulator taren fl urbil, γ-

secretase inhibitor LY540139, anti-histamine latrepir-

dine, and more recently, humanized monoclonal anti-

bodies bapineuzumab and solanezumab. Interest ingly, all 

of these compounds demonstrated signifi cant effi  cacy in 

transgenic animal models of AD.

Animal models of disease are a cornerstone of the drug 

development process. Th eir function is to closely mimic 

the disease or an aspect of the disease in humans and 

translate the results obtained in vitro to clinical appli-

cations. Th e need for animal models of pathologies 

aff ect ing the central nervous system has been recognized 

since 1980 [4]. An attempt to establish criteria for such 

animal models was made the same year [5]. Th e fi rst tools 

described as animal models of AD were based on 

etiological considerations of the disease, whether chronic 

aluminum intoxication [6] or excitotoxic lesions of choli-

nergic neurotransmission [7] was thought to be at the 

origin of the neurodegeneration. Th e early 1990s saw the 

appearance of the fi rst transgenic mouse models of AD, 

nearly a decade after the discovery of the fi rst mutation 

in the gene encoding the amyloid precursor protein 

(APP) and its central role in the familial form of AD. 

Th ese models, which carried a mutated form of the 

human APP gene, were found to be unsatisfactory, and 

double transgenic mice carrying two human mutated 

transgenes, APP/PS1 [8] or APP/tau, were developed [9]. 

Th is was soon followed by the APP/PS1/tau triple trans-

genic mouse model [10]. Th e strategy behind the 

develop ment of these models was to reproduce patho-

logical features observed in AD, including the sporadic 

form, rather than tackle the etiology of AD. Th is con-

sideration justifi ed the use of the transgene tauP301L, a 

mutation of the gene encoding the tau protein that is not 

encountered in AD but pertains to the frontotemporal 

dementia with Parkinsonism linked to chromosome 17.

Although the rat has been the animal of choice for drug 

development and fundamental research for decades, it 

progressively faded away in favor of mice, a species in 

which genetic manipulation is much easier and for which 

there is a greater variety of research reagents available. 

Th ese transgenic models contributed tremendously to 

our understanding of the molecular mechanisms in-

volved in the onset and progression of the disease. 

Transgenic mouse models of AD helped decipher the 

secretory pathway of APP and the production of Aβ
42

 

through APP cleavage by β- and γ-secretases [11], thus 

improving our understanding of AD pathogenesis. In 

addition, these animal models provided evidence about 

the physiological role played by APP, APP fragments and 

α-secretase in processes like neurogenesis [12,13] and the 

mechanism underlying memory consolidation [14].

It is undeniable that transgenic mouse models of AD 

led the way of the fundamental research so far conducted 

on understanding the disease. Moreover, it is critical to 

mention the primordial role played by the transgenic 

mouse models in the development of tracers for magnetic 

resonance imaging (MRI) and positron emission tomo-

graphy (PET) imaging and in the characterization of new 

biomarkers [15,16]. However, transgenic mouse models 

have some limitations [17,18]. First, unlike the human 

neuropathology, which displays massive neurodegenera-

tion, only very few models show neuronal death and on a 

scale that does not compare to what is seen on 

postmortem human brains. Second, the way the genetic 

manipulation translates into the histological and clinical 

recapitulation of the disease highly depends on the 

promoter used to insert the transgene and on the genetic 

background of the recipient animal. Th is actually makes 

any comparison between transgenic mouse models 

diffi  cult. And last, but certainly not the least, due to their 

nature, these models only relate to the familial early-

onset form of AD (FAD), which represents a mere 5% of 

AD diagnoses. Th e remaining 95% are sporadic late-onset 

forms (SAD), the causes of which remain elusive.

Although SAD and FAD clinical phenotypes are very 

similar, SAD does not involve mutations and the cause 

for amyloid accumulation and aggregation remains to be 

established. In that sense, transgenic mouse models are 

unfi tted for unveiling SAD etiopathogenesis. In addition, 

the only true validation of an animal model used for drug 

development purposes is whether it led to successful 

testing in human trials and thus to the subsequent release 

of a drug to the market. From discovery to Food and 

Drug Administration (FDA) approval for release, it takes 

an average of 15  years to complete a drug development 

program. Th e fi rst transgenic mouse model of AD was 

developed 22 years ago. Based on the current condition 

of the AD drug pipeline, the limitations of these trans-

genic models of AD in drug development are apparent. 

Th e obstacles to drug development require creation of 

novel animal models focusing on the etiology rather than 

symptomatology of the disease using a pharmacological 

approach rather than a genetic approach.

In this review, we will discuss the historical genesis of 

various non-transgenic rat models of AD that have been 

established, the re-appearance of the rat as a potential 

tool for drug development for AD, and how pharma co-

logically induced rat models may help overcome the 

challenges of AD research and drug development.

The genesis and the evolution of AD rat models

In 1980, WJ Hadlow wrote ‘Even though fi nding an 

animal model embodying the total picture of senile brain 

disease with dementia is unlikely, eff orts should be made 

to identify in some animal each of the several aspects of 
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the aging process and dementia’ [5]. In the early 1980s, 

the progressive degeneration of cholinergic neuro-

transmission was thought to be the pathological pathway, 

if not the origin of AD, and at least a major contributor to 

the disease. During this decade, consistent with the 

cholinergic hypothesis and WJ Hadlow’s statement, the 

fi rst animal models of AD were developed based on 

impairing central cholinergic function to reproduce the 

alterations of cognitive performance seen in clinics. A 

prominent strategy was the use of the choline mustard 

aziridium AF64A in many cases. AF64A is a chemical 

that preferentially triggers degeneration of cholinergic 

neurotransmission. AF64A was used in various protocols, 

including in situ injection into the dorsal hippocampus 

[19], the frontal cortex [20], or the nucleus basalis 

magnocellularis [21] or administration through an intra-

cerebroventricular route [22]. Th ese procedures were 

primarily aimed at inducing degeneration of the choli-

nergic neurons in the nucleus basalis magnocellularis. 

Another strategy consisted of using a glutamatergic 

agonist to induce the excitotoxic degeneration [23] of a 

subpopulation of cholinergic neurons. Th us, ibotenic 

acid [24], an agonist of the NMDA receptor, and kainic 

acid [25], a kainate receptor agonist, were both used by 

local injection into the nucleus basalis magnocellularis or 

in the cortex to induce a defi cit in cholinergic neuro-

transmission. More anecdotic were the injection of 

diphtheria toxin into the nucleus basalis magnocellularis 

[26] or the grafting of AD patient brain tissue into the rat 

occipital cortex [27]. In addition to histological traits 

similar to those described in AD patients, these choli-

nergic-based rat models commonly displayed memory 

defi cits and learning impairment.

Th e 1990s saw a downturn in the development of rat 

models, as they became progressively overshadowed by 

the emerging transgenic mouse models of AD. Th ese 

transgenic mice became the dominant animal models for 

fundamental research and drug discovery in the fi eld of 

AD. However, the emphasis on the nicotinic receptor as a 

target for AD [28] encouraged the use of the well-

characterized cholinergic-based rat models for nicotine 

and nicotine derivative drug development programs [29]. 

Although the transgenic models were taking over the 

fi eld of in vivo experimentation in AD, rats were still 

considered a useful model organism for development of 

AD models. Th e 1990s saw the beginning of a shift 

toward animal models refl ecting the hypothesis that 

amyloidogenesis underlies the disease. As previously 

mentioned, the deposition of amyloid plaques in brain 

parenchyma is a hallmark of AD. An attempt to 

reproduce this histological alteration was conducted in 

rats for the fi rst time by Frautschy and colleagues in 1992 

by injecting purifi ed amyloid plaques extracted from 

human AD brains into the cortex and hippocampus of 

adult rats [30]. Th is resulted in plaque formation and 

vascular amyloidogenesis in the rat brain. Th is fi rst 

attempt paved the way for a new generation of rat models 

of AD. Two years later, Ingram and colleagues [31], who 

clearly identifi ed the need to go beyond the cholinergic 

hypothesis to establish other animal models that would 

help answer questions pertaining to AD not strictly 

related to cholinergic neurotransmission, advocated the 

use of such models. In the meantime, eff orts were still 

made to refi ne cholinergic-based rat models using 192 

IgG-saporin, a toxin linked to an immunoglobulin that 

selectively targets cholinergic neurons [32].

Th e shift initiated in the 1990s took full shape during 

the next decade, when most of the rat models developed 

refl ected the attempt to reproduce the amyloidogenic 

cascade and related amyloid peptide pathological path-

ways. Th e general principle was to inject a form of 

amyloid peptide into the rat brain so the animal would 

develop one or several of the pathological features 

documented in clinics. Various forms of the amyloid 

peptide (Aβ) were used in acute injection or chronic infu-

sion. Aβ
1-40

 [33,34] and Aβ
1-42

 [35,36] were most commonly 

used either by intracerebroventricular infusion or by 

intrahippocampal injection. Th ese peptides were used as 

the sole disease-triggering agents, with the exception of 

the ferrous amyloid buthionine (FAB) rat [35], a rat 

model in which the AD phenotype is induced by the 

infusion of a solution containing the amyloid peptide 

Aβ
1-42

, the inhibitor of glutathione synthesis buthionine 

sulfoximine, and ferrous sulfate over 4  weeks. We will 

discuss the FAB rat in more detail below.

Other amyloid species used included Aβ
25-35

 [37], a 

neurotoxic non-amyloidogenic fragment, and Aβ
1-43

 

[34]. Th ese various amyloid fragments did not induce 

similar pathological phenotypes. While histological 

alterations similar to those seen in AD patients were 

consistently found in most of the models (although the 

exact histo pathology varied from one to another), 

reproducing the decline of cognitive performance was 

highly dependent on the experimental protocol. Th e 

amyloid peptide infu sion site and regimen used were of 

particular importance. Another strategy developed 

during this decade was based on the hypothesis that AD 

may be a type 3 diabetes [38]. Th is hypothesis was based 

on post-mortem histological observations of the brains 

of AD patients, which showed a consistent decrease in 

expression of insulin, insulin-like growth factor, and 

their corresponding receptors [38]. It was then assumed 

that injecting streptozotocin, a glucosaminenitrosourea 

toxic to pancreatic β cells, into rat brain would result in 

the same pattern. Streptozotocin administration 

induced the phosphorylation of the tau protein, amyloid 

deposits, cognitive impairment, insulin desensitization, 

and neuronal death [39,40].
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Th e beginning of the current decade saw an increasing 

number of preclinical studies using AD rat models 

charac terized during the 2000s to implement drug 

development programs. In particular, rat models faith-

fully reproducing amyloid pathogenesis were used to 

assess the effi  cacy of drug candidates as diverse as steroid 

analogs [41-43], fatty acids [44], polyphenols [45], non-

steroidal anti-infl ammatory drugs [44], plant extracts 

[46,47], γ-secretase inhibitor [48], stem cell proliferative 

agents [49], naturally occurring compounds [43,50,51], 

and plaque formation inhibitors [52]. Other than the type 

of amyloid peptide used in these models, a major 

diff erence was the injection regimen into the brain. Th e 

solution containing the amyloid peptide was adminis-

tered either by chronic infusion or locally in a very 

specifi c part of the brain, mainly the hippocampus 

[41,42,47,49]. Intra-amygdala injection [52] or acute 

intra cerebroventricular injection [46,50,52] have also 

been reported. Chronic infusion was achieved through 

intra cerebroventricular administration using an Alzet® 

type of osmotic micropump, generally over a 2- to 4-week 

period of time [43-45,48]. Th e resurgence of interest in 

the rat as an animal model of AD led other investigators 

to use various other types of rat models to investigate the 

eff ect of molecules of potential therapeutic interest. 

Th ese models included, but were not restricted to, 

specifi c cholinergic defi cits [53], streptozotocin injections 

[54,55], okadaic acid-induced tau protein hyperphos-

phory lation [56], and aluminum salt administration [57].

Th is combination of circumstances during the past 

decade, including the failure of transgenic models to 

fulfi ll expectations and an increased diversity of experi-

mental reagents, redefi ned the rat as a very useful tool to 

develop new models of AD. In the next section, we will 

focus on a particular AD rat model we developed in our 

laboratory that is used by us and others in drug 

development programs.

The ferrous amyloid buthionine (FAB) rat model

Th e FAB rat was developed in response to our need to 

have available an animal model of AD that corresponds 

to the sporadic form of the disease. Th e choice of the rat 

strain was made carefully so that it would contribute to 

the development of the model. Long-Evans rats were 

selected for these studies because of their high sus-

ceptibility to neurodegenerative diseases. Indeed, the 

Long-Evans strain carries a mutation of the Cblb gene 

that has been demonstrated to render the encoded 

protein inactive, and Cblb-defi cient mouse strains are 

highly sensitive to experimental encephalomyelitis after 

immunization with myelin basic protein [58]. Because 

the rodent protein is 96% homologous with the human 

protein, fi ndings from this rat strain are extremely 

pertinent to human neurodegenerative diseases [59]. Th e 

Long-Evans strain also possessed another advantage: 

they are not albino rats and therefore do not have the 

impaired sight of albino strains. Indeed, impaired sight 

was a factor that we identifi ed as a potential problem 

when animals would be involved in cue recognition-

related experiments (for example, a water maze) in which 

the distance between the animal and the cues may exceed 

vision capacity.

Th e AD phenotype was induced by administering a 

solution containing the human form of the 42-residue 

amyloid peptide (Aβ
1-42

), ferrous sulfate, and buthionine 

sulfoximine via the intracerebroventricular route over a 

period of 4 weeks [35]. Aβ
1-42

 was chosen because of its 

superior aggregating properties and because, at that time, 

it was thought to constitute the nucleus of any amyloid 

plaque formation. Ferrous sulfate was added to the 

solution as a pro-oxidative agent known to trigger oxida-

tive stress through the Fenton reaction and induce the 

oxidation of various components of the cell membrane 

and subcellular compartments. In addition, the presence 

of iron deposits was described in amyloid plaques 

observed post-mortem in patients’ brain tissue. Buthionine 

sulfoximine, an inhibitor of glutathione synthesis, was 

used to reduce the natural antioxidant defense of the 

brain and facilitate oxidative stress. Oxidative stress is a 

deleterious process that, since the late 1980s to early 

1990s [61-63], has been unanimously recognized to play 

a role in AD pathogenesis [60]. It is generally admitted 

that oxidative species are generated either from, but not 

restricted to, neuroinfl ammation, mitochondria respira-

tory chain impairment [64,65] or from a direct eff ect of 

the amyloid peptide [66]. Many compounds are currently 

being developed aiming at the oxidative pathway as a 

potential treatment for the disease and oxidative profi ling 

has gained interest as a biomarker of disease progression 

and for diagnostics purposes [67], and in this regard, the 

FAB rat may constitute an interesting model to test these 

approaches in preclinical development.

Th e solution was infused in the left ventricle using an 

Alzet® 2ML4 osmotic micropump. Four weeks of infusion 

resulted in the appearance of an AD phenotype that 

included cognitive impairment and development of a 

related histopathology [35]. Th e animals displayed signifi -

cant impairment of spatial memory as measured in a 

Morris water maze task. Histological alterations included 

amyloid plaque deposits in the hippocampus and cortex, 

hyperphosphorylated tau protein, and formation of 

neurofi brillary tangles. Hyperphosphorylated tau protein 

was evidenced by positive immunoreactivity to 

Ser-199/202 and to Th r-181 epitopes [68,69] using AT-8 

and AT-270 monoclonal antibodies, respectively [43]. 

Phosphorylated Ser-199/202 and Th r-181 are biomarkers 

commonly used in the clinic to measure hyperphos-

phorylated tau levels in the cerebrospinal fl uid of AD 

Lecanu and Papadopoulos Alzheimer’s Research & Therapy 2013, 5:17 
http://alzres.com/content/5/3/17

Page 4 of 9



patients [69,70]. However, the exact subcellular locali za-

tion of the neuronal hyperphosphorylated tau protein 

has not yet been determined. Neurodegeneration occur-

ring in the cortex and hippocampus, neuroinfl ammation 

in the form of intense astrogliosis and microgliosis, and 

DNA oxidation were also reported. In addition, vascular 

amyloidosis was also observed. Th e AD phenotype 

developed only when the three components of the FAB 

solution were used together. No histopathological 

features or alterations of cognitive performance occurred 

when the amyloid peptide was used alone or in 

combination with only one of the other two compounds, 

highlighting the key role played by oxidative stress in 

amyloid peptide pathogenesis. Although others reported 

the occurrence of an AD-like phenotype after injection of 

amyloid as a sole pathological agent, this disparity may be 

explained by diff erences between rat strains. Th e 

neuronal phenotype vulnerability exhibited by these 

animals remains to be determined and at present this 

represents a limitation of this particular model.

Since then, the FAB model has been the centerpiece of 

our drug development programs. In particular, it success-

fully contributed to the characterization of the anti-AD 

properties of caprospinol, a naturally occurring steroid 

analog [43,71,72] for which an investigational new drug 

application has been submitted to the FDA. Th e FAB 

model has been reproduced by others and was recently 

commercialized by Taconic Farms, Inc. [73-76]. A 

summary of the experi mental protocol used to develop 

the FAB model, the phenotype obtained as well as the 

eff ect of caprospinol on the FAB phenotype are outlined 

in Figure 1.

The transgenic rat models of Alzheimer’s disease

Increasing knowledge in molecular biology allowed 

overcoming the complexity to undertake transgenesis 

studies in the rat. Th e concept applied was identical to 

the one used to develop transgenic mice and relied on the 

expression of one or several mutated human genes 

involved in the familial form of AD. One can argue that 

transgenic rats may not off er more interest than the 

trans genic mice available considering that they only 

repre sent another transgenic rodent model for the 

familial form of AD. In addition, the generated transgenic 

rats only refl ect the amyloidogenesis hypothesis of 

Alzheimer’s physiopathology. On the other hand, rats 

have always been regarded as a more robust tool for 

cognitive assessment, being capable, unlike mice but like 

primates, of higher order cognitive processes like meta-

cognition. In that sense, rats are capable of cognitive 

processes at a higher level compared to mice, closing 

further the gap with humans. Th e fi rst AD transgenic rat 

was produced in 2004 and carried the human APPswe 

mutated gene [77]. Th is model did not display any of the 

known AD histological alteration and, surprisingly, per-

formed better in cognitive tasks than the age-matched 

control animals. Transgenic rat models developed there-

after included McGill-R-Th y1-APP [78], UKUR25 [79], 

Tg6590 [80], Tg478 [81], Tg1116 [81], Tg11587 [82], 

APP21 [83] and APP31 [83]. Th ese models were built on 

various backgrounds, Sprague-Dawley, Wistar and 

Fisher-344, using various gene promoters like PDGF, 

murine Th y-1, synapsin-1 or ubiquitin-C. Th ey all carry 

one or several mutations of the human APP transgene. 

Not all the models display histological modifi cations or 

cognitive impairment, and as for most of the mice 

models, there is no correlation between reduced cogni-

tive performance and brain tissue histological alteration.

Similarly to mice, rats were used to mimic the tauo-

pathy seen in AD. A major diff erence is that instead of 

using a human mutated transgene that is not relevant to 

the disease, rats express a truncated form of the normal 

human tau protein. Th ese models displayed cognitive 

impairment associated to hyperphosphorylated tau 

protein and formation of tangles [84-86]. However, none 

of them show any sign of neuronal death [84,86].

Few rat models were developed using viral vectors. 

Adenoviral-associated viral vectors were locally injected 

in the hippocampus of Wistar rats to express a transgene 

encoding the fusion protein BRI-Aβ
42

 or BRI-Aβ
40

 [87,88]. 

Animals co-transfected with both BRI-Aβ
42

 and BRI-Aβ
40

 

displayed a mild cognitive impairment. In these animals 

plaque formation in the brain was observed only in rats 

expressing BRI-Aβ
42

 alone. In addition, no pathological 

alterations of the brain histology were reported. One 

possible explanation could be found in the nature of the 

transgene itself. Mutation of the BRI gene results in the 

expression of the amyloid protein ABri and is linked to 

familial British dementia [89]. ABri precursor is cleaved 

by furin and furin-like proteases in order to release the 

peptide. However, ABri is not a substrate for the carboxy-

peptidase secretases that process APP. Likewise, the 

fusion protein undergoes furin-controlled cleavage, and 

unlike APP, does not follow the carboxypeptidase 

secretory pathway to release Aβ
42

 [87]. Such a ‘hybrid’ 

metabolic pathway may lead to the mild pathological 

profi le described and raise questions about the capacity 

of the model to reproduce, at least in part, the AD 

phenotype. Another approach consisted in using a 

lentivirus-based vector to transfect the parkin-Aβ
42

 

transgene [90] in the motor cortex of Sprague-Dawley 

rats [91]. Th e treated animals exhibited intraneuronal 

amyloidosis, Tau protein hyperphosphorylation and 

neuronal death. However, a major limitation of this 

model is the lack of cognitive impairment due to the site 

chosen by the investigators to inject the lentiviral 

construct. Indeed, no alteration of the motor cortex, an 

area not primarily aff ected in AD, would aff ect cognitive 
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Figure 1. Experimental protocol used to assess the anti-Alzheimer’s disease properties of caprospinol. The procedure used to induce the 

Alzheimer’s disease (AD) histopathological phenotype in rats has previously been described [35]. The phenotype was induced by administering a 

solution containing FeSO
4
 (1 mM), Aβ

1-42
 (15 μM), and buthionine sulfoximine (12 mM) at pH = 5.1 ± 0.1 into the left ventricle of male Long-Evans 

rats via an osmotic micropump (2ML4; Durect Corp., Cupertino, CA, USA) over 4 weeks. This solution was named ferrous amyloid buthionine 

(FAB). At the end of the 4 weeks, the pump was replaced with a new one that contained the same solution for an additional 4-week infusion. In a 

subset of animals, caprospinol was administered intraperitoneally (10 mg/kg/day) during the fi nal 4 weeks of FAB infusion, starting the treatment 

at a moment when the animals manifested the clinical phenotype. At the end of the 8-week period, cognitive processes were assessed using a 

Morris water maze task. (A) Histopathological features of the FAB rat at week 4. Hyperphosphorylated tau protein (clone AT-8) in the hippocampus. 

(B) Campbell-Switzer silver staining revealing vascular amyloidogenesis. (C) Campbell-Switzer silver staining revealing amyloid plaque containing 

neuritic debris in the cortex. (D) Cortical neurodegenerative processes revealed by De Olmos silver staining. (E) Amyloid deposits revealed in 

the hippocampus by Campbell-Switzer silver staining. (F,G) Histopathological features of the FAB rat at week 8 and the eff ect of caprospinol: 

Campbell-Switzer silver staining of amyloid deposits in the hippocampus of untreated (F) and caprospinol-treated (G) FAB rats. (H,I) Degenerating 

neurons labeled with FluoroJade C in the hippocampus of untreated (H) and caprospinol-treated (I) FAB rats. (J) Assessment of FAB rat cognitive 

performance in the Morris water maze task at week 8. FAB rats displayed dramatic cognitive impairment as shown by the much lower score 

obtained in the probe trial compared to the control rats (26.06 ± 1.49, n = 6, versus 36.81 ± 2.48, n = 6, P = 0.004). FAB-infused rats chronically 

treated with caprospinol at 10 mg/kg/day displayed cognitive performance equivalent to that observed in the control group (36.56 ± 2.09, n = 10, 

versus 36.81 ± 2.48, n = 6), demonstrating that chronic caprospinol treatment eliminated the cognitive impairment observed in the FAB-infused rats 

(36.56 ± 2.09, n = 10, versus 26.06 ± 1.49, n = 6, P = 0.002). (K) In addition, caprospinol-treated FAB rats crossed the platform more times than the 

untreated group. Parts of this fi gure were reprinted with permission from [49] and [63].
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performances, and this should be regarded as a major 

setback.

Conclusion

AD is a devastating disease that takes a tremendous toll 

on western societies and beyond. Unfortunately, despite 

decades of eff ort and billions of dollars spent, no real 

treatment has been brought to the market. However, all 

of the drug candidates that failed in clinical trials showed 

anti-AD activity in various transgenic animal models. 

Until recently, drug development research programs 

exclusively used transgenic mouse models to assess the 

properties of drug candidates. Transgenic models still 

represent the golden standard. However, if we consider 

contributions to drug development and release to the 

market the ultimate validation of an animal model, we 

must admit that there is room for diff erent types of 

animal models. It is especially crucial to stress that rat 

and mouse transgenic models of AD address only the 

familial form of the disease, which barely represents 5% 

of AD cases. We discussed the potential of pharmaco-

logically induced rat models of AD, which are more 

relevant to the sporadic form of AD, the FAB rat in 

particular, and the increasing role they may play in the 

current drug development for AD eff ort. Indeed, because 

these models represent the sporadic form of AD, they 

may, if successful, change the regulatory framework 

needed to proceed to AD trials and bring value to clinical 

trial design. Th e rat, despite been the most widely used 

animal model in pharmacological and toxicological 

studies, has long been neglected as a tool for drug 

discovery in the fi eld of AD. A better understanding of 

rat strains, an increasing variety of available reagents 

specifi c to the rat, and the understanding that there is an 

urgent need for a model relevant to the most frequent 

form of AD may lead to a new era of animal models that 

drive future successful drug development.
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