
Ng et al. Alzheimer's Research & Therapy 2014, 6:10
http://alzres.com/content/6/1/10
REVIEW
Neuroimaging in repetitive brain trauma
Thomas SC Ng1,2†, Alexander P Lin1,3*†, Inga K Koerte3,4, Ofer Pasternak3, Huijun Liao1, Sai Merugumala1,
Sylvain Bouix3 and Martha E Shenton3,5
Abstract

Sports-related concussions are one of the major causes of mild traumatic brain injury. Although most patients
recover completely within days to weeks, those who experience repetitive brain trauma (RBT) may be at risk for
developing a condition known as chronic traumatic encephalopathy (CTE). While this condition is most commonly
observed in athletes who experience repetitive concussive and/or subconcussive blows to the head, such as boxers,
football players, or hockey players, CTE may also affect soldiers on active duty. Currently, the only means by which
to diagnose CTE is by the presence of phosphorylated tau aggregations post-mortem. Non-invasive neuroimaging,
however, may allow early diagnosis as well as improve our understanding of the underlying pathophysiology of
RBT. The purpose of this article is to review advanced neuroimaging methods used to investigate RBT, including
diffusion tensor imaging, magnetic resonance spectroscopy, functional magnetic resonance imaging, susceptibility
weighted imaging, and positron emission tomography. While there is a considerable literature using these methods
in brain injury in general, the focus of this review is on RBT and those subject populations currently known to be
susceptible to RBT, namely athletes and soldiers. Further, while direct detection of CTE in vivo has not yet been
achieved, all of the methods described in this review provide insight into RBT and will likely lead to a better
characterization (diagnosis), in vivo, of CTE than measures of self-report.
Introduction
Between the years 2000 and 2012, over 266,810 service
members sustained at least one concussion [1]. Further-
more, 1.6 to 3.8 million individuals in the United States
experience a sports-related concussion [2] every year,
with a growing number of these events in youth sports
participants [3]. The incidence of repetitive subconcus-
sive blows (that is, hits to the head with enough force to
hamper neuronal integrity, but without associated symp-
toms) is thought to be much greater [4]. For example,
Broglio and colleagues [5] have found that high school
football players receive an average of 652 hits to the
head per season that exceed 15 Gs of force.
The pathological effects of repetitive brain trauma

(RBT) are thus a growing concern, especially with the
discovery of chronic traumatic encephalopathy (CTE), a
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neurodegenerative disease marked by widespread accu-
mulation of hyperphosphorylated tau, predominantly
present as neurofibrillary and astrocytic tangles as wit-
nessed in post-mortem brains [6,7]. CTE has been found
most often in professional athletes involved in contact
sports (for example, boxing, American football) who
have been subjected to RBT, including mild traumatic
brain injury (mTBI; or concussion) or even asymptom-
atic, subconcussive trauma. Neuropathologically con-
firmed CTE has been reported in individuals aged as
young as 17 years and in contact sport athletes who
played competitive sports only through high school or
college. Moreover, CTE has been found in non-athletes
who have experienced RBT, including individuals with
epilepsy, developmentally disabled individuals with head
banging, and victims of physical abuse [6,8]. Recently,
CTE has been neuropathologically diagnosed in soldiers
with histories of RBT deployed in Iraq and Afghanistan
[6,9]. All cases of neuropathologically confirmed CTE
reported to date have had a history of RBT, indicating
that RBT may be a necessary variable for the initiation
of the pathogenetic cascade that eventually leads to
neurodegeneration.
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Symptoms of neurodegeneration begin years or de-
cades after RBT exposure and include changes in cogni-
tion, mood, and behavior [10]. As the disease progresses,
it can lead to dementia. The incidence and prevalence of
CTE are unknown, though the number of those affected
is potentially quite large. With over one million US high
school students playing football each year, the public
health impact of RBT, in general, and the development
of CTE, in particular, is quite significant.
It is important to note that, while RBT may be a neces-

sary condition for developing CTE, the mechanism by
which RBT may lead to CTE is unknown. Further research
about the pathophysiological pathway that leads to CTE
from RBT events is needed. Currently, CTE can only be di-
agnosed post-mortem. Non-invasive, longitudinal neuro-
imaging studies may thus allow clinicians to visualize the
underlying morphological, pathophysiological, and bio-
chemical changes that occur in the acute stages of mTBI
and chronic stages of RBT. Monitoring the progression of
imaging signatures of RBT may provide insight into the
underlying mechanisms of head trauma and provide im-
aging biomarkers to evaluate potential therapies.
Of further note, the distinction among different types of

brain trauma informs the choice of the imaging modality
to use to probe RBT. For example, in severe head trauma,
where the structural damage is obvious, the most widely
used neuroimaging techniques are computed tomography
(CT) and conventional magnetic resonance imaging (MRI).
On the other hand, findings on conventional neuroimaging
are often insensitive to mild injury [11]; they are often
non-specific to RBT or are only observable at late disease
stages; that is, CTE. Further, imaging methods beyond
morphological CT/MRI may be more sensitive to the
pathological changes in RBT, such as shearing effects from
blast injuries [12]. Such methods are being explored today
and include advanced MRI techniques such as diffusion
tensor imaging (DTI), susceptibility-weighted imaging
(SWI), functional MRI (fMRI), magnetic resonance spec-
troscopy (MRS), and positron emission tomography (PET).
The purpose of this article is to provide an overview of

current neuroimaging methods used to study RBT.
While numerous reviews exist describing the use of neu-
roimaging in mTBI [11,13,14], few focus strictly on RBT.
Therefore, a comprehensive literature review is provided
here that focuses on RBT in human subjects. Studies
were selected if: a) RBT was explicitly stated and it was
clear that subjects had sustained more than one concus-
sion; or b) subjects of the study were athletes and/or sol-
diers who are likely to experience RBT; or c) they were
on subconcussive brain injury.

Diffusion tensor magnetic resonance imaging
Animal and histological studies implicate microstruc-
tural injury as an early manifestation of traumatic brain
injury (TBI) [7]. In particular, white matter (WM) tract
injury is frequently observed in TBI often prior to
macroscopic changes to brain tissue and before chronic
manifestations of injury such as phosphorylated tau or
amyloid deposition [15].
DTI is an analysis technique of non-invasive diffusion

MRI that is sensitive to the diffusion of water within tis-
sues. It has been mainly used to monitor WM tracts in
the brain [16], since the microstructure of fiber tracts in
WM presents a directional dependence to water diffu-
sion within their vicinity, where the diffusion of water
parallel to axons is (normally) faster than that in the per-
pendicular directions. Scalar measures, such as fractional
anisotropy (FA), typically scaled between 0 and 1 are
used to indicate the degree of directional dependence.
Low values indicate isotropic diffusion; that is, equal in
all directions, as would be observed in cerebrospinal
fluid or gray matter (GM). High values indicate aniso-
tropic diffusion; that is, diffusion that has a preferred
orientation, as would be observed in WM where water
displaces faster parallel to the fiber, bi-directionally [17].
Specialized diffusion MRI acquisitions that measure
water diffusion in multiple directions combined with ad-
vanced processing methods convert the acquired signal
into diffusion tensor maps and into various other scalar
maps that provide additional information about the WM
tracts in the brain. Common scalar metrics derived from
the DTI analysis are shown in Table 1.

Diffusion tensor imaging changes in repetitive brain
trauma
DTI has been extensively studied in severe TBI and mTBI.
The reader is referred to recent excellent reviews that pro-
vide extensive coverage of these studies [11,18,19]. Here,
we focus on studies that have explored DTI in the context
of RBT.
Early DTI studies of patients with likely RBT focused

on boxers. For example, Zhang and colleagues [20] per-
formed anatomic MRI and DTI in boxers and matched
controls. They found that both the mean diffusivity
(MD) averaged over the whole brain (MDav) and its dis-
tribution width (σ) were significantly increased com-
pared to controls. Increased MDav was related to the
frequency of hospitalizations for the boxers and may be
present without any obvious anatomic anomalies. Chap-
pell and colleagues [21] explored spatial heterogeneity of
the diffusion signal in a cohort of boxers. Compared to
controls, increases in MD and decreases in FA were
identified in the WM, while decreases in MD were ob-
served in GM. Interestingly, the authors found MD in-
creases in the cerebellum, where defects in glucose
metabolism in RBT patients have been seen with PET
[22]. In a subsequent study, the authors found that a
multivariate, linear discrimination approach was able to
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Table 1 Common scalar metrics for diffusion tensor imaging analysis

Metric Description

Fractional anisotropy (FA) Describes the anisotropy of water diffusion. Measured as a unitless scalar value between 0 and 1 with 0 being
completely isotropic. Thought to be related to WM integrity. Changes in FA have been associated with TBI

Relative anisotropy (RA) Represents the ratio of the anisotropic part of the diffusion tensor to its isotropic part. An alternative measure for FA

Axial diffusivity (AD) Describes the magnitude of diffusion along its principal orientation. In WM this will measure diffusion along the axon.
May be more specific to axonal degeneration

Radial diffusivity (RD) Describes the magnitude of the diffusion in the plane perpendicular to the principal orientation.
In WM, radial diffusivity is perpendicular to the fiber orientation. May be modulated by myelin in the WM

Mean diffusivity (MD) Describes the magnitude of diffusion regardless of direction. Proportional to the trace of the diffusion tensor,
with units of m2/s. Also known as the apparent diffusion coefficient (ADC). Increased MD has been associated with TBI

TBI, traumatic brain injury; WM, white matter.
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reveal more diffuse microstructure changes in the sub-
cortical regions of the brain such as the thalamus and
internal capsules in a cohort of boxers compared to
traditional means of DTI analysis [23].
Recent studies have focused on RBT in athletes and war

veterans. For example, MacDonald and colleagues [24]
demonstrated decreased relative anisotropy in the cingu-
lum, middle cerebellar peduncle, and right orbitofrontal
WM in war veterans who had experienced blast injury. In-
creased radial diffusivity and MD were also observed, which
could be indicative of axonal injury or edema or cellular in-
flammation. Follow-up scans 6 to 12 months later showed
normalization of radial diffusivity and MD compared to
controls, but decreased axial diffusivity and relative anisot-
ropy. This is consistent with persistent injury with reso-
lution of edema. However, such changes have not been
consistent among studies. Specifically, Levin and colleagues
[25] did not find FA and MD differences between veterans
with blast injuries compared to controls, whereas a most
recent study by Petri and colleagues [26] showed reduced
FA in the corpus collosum, although it is of interest to note
that they also do not show an effect of comorbid post-
traumatic stress. With regards to sports-related RBT,
Lipton and colleagues [27] found that the amount of ball
heading in amateur soccer players was associated with
lower FA in temporo-occipital WM, while Bazarian and
colleagues [28] showed significantly increased FA and MD
in high school athletes experiencing concussion throughout
a sports season. Of note, Strain and colleagues [29] showed
that frontal lobe FA is negatively correlated with measures
of depression, highlighting the use of DTI as a biomarker of
behavioral disturbance in RBT.
Koerte and colleagues [30] recently examined WM al-

terations in active professional soccer players without a
history of symptomatic concussion. Twelve male athletes
trained for a career as professional soccer players since
childhood at an elite level soccer club in Germany were
compared to competitive swimmers. Tract-based spatial
statistics revealed widespread differences between the
two groups, with increased radial diffusivity in soccer
players. Axial diffusivity was higher in the corpus callo-
sum in the soccer players, as shown in Figure 1. Wide-
spread diffusivity changes in soccer players compared
with swimmers are similar to those observed in trau-
matic axonal injury following mTBI, suggesting that fre-
quent subconcussive brain trauma even in the absence
of a symptomatic concussion may affect WM micro-
structure. This first link between frequent subconcussive
brain trauma and WM alterations was supported by a
study on ice hockey players who showed increased diffu-
sivity measures over the course of one play season [31].
Three of the investigated athletes sustained a concussion
during the play season and were later found to have the
most pronounced changes. Although there is evidence for
WM alterations following repetitive subconcussive brain
trauma, it is unknown if these findings represent initial
evidence of neurodegeneration in CTE or are the direct,
chronic effects of injury (for example, axonopathy).
Several factors need to be considered when interpret-

ing DTI results. The sample sizes, especially controls,
are often small. There is also often a wide inter- and
intra-group variability in the RBT subjects and controls
studied; that is, the severity of trauma in patients studied
to date range from subconcussive episodes, to concus-
sions, to mTBI and severe TBI, all of which can affect
DTI results differently. MacDonald and colleagues [24]
note that their subject recruitment method may have
been biased towards the more severely injured. Cubon
and colleagues [32] observed that MD may be more sen-
sitive to mild injury while FA may be more sensitive to
severe TBI. On the other hand, Lipton and colleagues
[33] have reported increased FA early post-injury, which
tends to predict good outcome. Additionally, latency be-
tween traumatic episodes and imaging may also affect
results. This is especially highlighted in animal models
of RBT, where the presence of significant findings on
DTI has been found to be different at different time points
after injury, thus showing a difference between acute and
chronic injury [34,35]. Finally, the heterogeneity of DTI
indices presenting in both control and RBT subjects needs
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Figure 1 Results of the Tract-based spatial statistics analysis and diffusivity measures for individual swimmers and soccer players. Top:
the diffusion tensor for each voxel was estimated by the multivariate linear fitting algorithm, and the tensor matrix was diagonalized to obtain
three pairs of eigenvalues and eigenvectors. Voxelwise summary parameters included radial diffusivity and axial diffusivity. Group analyses were
performed using whole-brain threshold-free cluster enhancement to obtain significant differences between groups at P < 0.05. After accounting
for multiple comparisons using the family-wise error rate, the voxels highlighted in red demonstrate significantly increased radial diffusivity (A)
and axial diffusivity (B) values for the soccer group compared with swimmers. Bottom: voxels with a significant group difference as revealed by
Tract-based spatial statistics (top) were merged to a single cluster. Circles indicate individual values, squares indicate mean values, and error bars
indicate 95% confidence intervals. Diffusivity measures were obtained for each individual and plotted for the two study groups. Linear regression
showed no significant association of age or years of training with (A) radial diffusivity (P = 0.13 and P = 0.12, respectively) or (B) for axial diffusivity
values (P = 0.22 and P = 0.54, respectively). Used with permission from [30].
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to be considered. One solution is to build a normative
atlas representing the reference ranges of DTI indices
across the brain in a healthy population. A test subject’s
diffusion measures are compared to the atlas and regions
with a signal out of the normal range are flagged as abnor-
mal (most commonly through z-scores). The resulting
subject-specific profiles of injury can be summarized with
location-independent measures such as ‘load’ (number of
abnormal regions) or ‘severity’ (largest absolute z-score)
and used for performing group comparisons [36].

Summary
Studies to date have shown that DTI is sensitive to WM
changes in both acute TBI and RBT. Future studies that
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delineate the time dependence of DTI changes due to RBT
and the relationship between the frequency and magnitude
of the trauma to DTI changes will provide more insight
into conditions such as CTE [13]. Additionally, advanced
diffusion MRI techniques may be more sensitive to micro-
structural changes than DTI [37,38]. Such advanced tech-
niques typically require either high angular resolution
(HARDI) or high radial resolution, or both. The HARDI
acquisition measures multiple diffusion directions, and ra-
dial resolution can be obtained by acquiring the data in
multiple diffusion sensitivities (b-values). In addition to
greater sensitivity to microstructural changes, these add-
itional measures also provide a better characterization of
crossing fibers for tractography. As a result, these methods
require longer acquisition schemes, which are less feasible
in clinical setups. Nevertheless, with current advancement
of hardware and acceleration methods, such acquisition
schemes are expected to become clinically feasible in the
foreseeable future [39]. Of special notice is the free-water
imaging method, which can be applied retroactively on
DTI data, and therefore does not require specialized acqui-
sition [40]. The free-water method eliminates partial vol-
ume with water molecules that are free to diffuse in the
extracellular space, providing better estimates of diffusivities
within the tissue [41]. The output measures are the same as
those provided by DTI but corrected for the partial volume
effect and are thus more specific to changes in the tissue.
In addition, the method provides an estimate of the volume
of the extracellular free water, which appears to be indica-
tive of pathologies such as atrophy and neuroinflammation
[42]. Preliminary results on TBI patients show promise,
since the method is able to distinguish between alterations
that affect tissue versus those that affect the extracellular
space [43]. These distinctions might be important to iden-
tify early stages of CTE in RBT patients. Finally, combining
DTI results with other imaging information will likely also
be most helpful in future studies [44].
Table 2 Typical metabolites examined in neurological 1H mag

Metabolite Chemical shift resonance
peak (ppm)

Comment

Lipid 0.9-1.5 Not usually visible in MRS un

Lactate 1.3 End product of anaerobic gl

N-acetyl aspartate
(NAA)

2.0 Synthesized in neurons. Mar

Glutamate/
glutamine (Glx)

2.2-2.5 Glutamate is the primary exc
Glx may be predictive of ou
secondary dysfunction

Choline (Cho) 3.2 Membrane marker. Elevated

Myo-inositol (mI) 3.5 Astrocyte marker and osmol
phospholipid) - expected to

Creatine (Cr) 3.0 Found in metabolic active ti
for other metabolites (for ex

MRS, magnetic resonance spectroscopy; TBI, traumatic brain injury.
Magnetic resonance spectroscopy
MRS is a non-invasive technique that examines physio-
logical metabolism in vivo. Using standard magnetic
resonance scanners, chemical metabolites from tissue re-
gions of interest are detected and shown as a spectrum
depicting the type and concentration of the metabolites
present. Localization of the signal can be from a single
cubic volume (single voxel spectroscopy) or may utilize
additional excitation pulses and scan time to provide in-
formation regarding spatial variations of these metabo-
lites within a large region of interest (chemical shift
imaging) [45]. The choice of echo time can influence which
metabolites are detected based on their relaxation properties.
Some MRS methods take advantage of this property to pro-
vide greater chemical specificity, such as spectral editing
methods [46] or two-dimensional correlated spectroscopy
(2D COSY), which obtains spectra at multiple echo times
that, upon Fourier transform, provide spectral information in
two dimensions (as opposed to spatial information in chem-
ical shift imaging) [47]. Furthermore, MRS can detect the
presence of metabolites via a variety of isotopes, such as 1H,
phosphorus (32P), sodium (23Na) and carbon (13C). MRS has
been demonstrated to be useful in multiple body systems,
but its greatest application has been in the study of neuro-
logical disorders, including neuroinflammatory diseases, de-
mentia and brain cancers. Typical metabolites relevant to
brain studies using 1H MRS are summarized in Table 2.
The majority of MRS studies have examined metabolic

changes after acute TBI events [48]. The following charac-
teristic metabolic patterns have emerged from these stud-
ies to date as described in a recent review [14]. First,
decreased N-acetyl aspartate (NAA (and NAA/creatine
(Cr), NAA/choline (Cho)) levels are almost always ob-
served after TBI in both WM and GM. This decrease can
be present whether the injury is severe or mild and has
been associated with diffuse axonal injury and neuronal
loss. Second, increased Cho levels are also generally seen
netic resonance spectroscopy [13]

less released by pathological process such as trauma

ycolysis. Indicator of hypoxia and impairment of perfusion

ker of neuronal viability

itatory neurotransmitter in the brain. Glutamine is found in astrocytes.
tcome after severe TBI and associated with immunoexcitotoxicity or

in cases of high membrane turnover. May indicate diffuse axonal injury

yte. Involved in the metabolism of phosphatidyl inositol (a membrane
increase after TBI due to membrane damage. May also be a glial marker

ssues, used in energy storage and transfer. Used as an internal standard
ample, NAA/Cr, Cho/Cr)
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after injury. Third, elevated myo-inositol (mI), glutamine/
glutamate (Glx) and lactate have also been observed.
However, other studies have not shown these metabolic
changes. The often high inter- and intra-variability be-
tween studies with regards to the characteristics of both
patient and control cohorts, the mechanism of injury, the
imaging time point post-injury, the MRS technique, and
the location within the brain in which MRS was per-
formed have made comparisons between studies difficult
and further highlight the heterogeneity of the brain’s re-
sponse to TBI. For example, Maugans and colleagues [49]
demonstrated no differences in NAA between children
aged 11 to 15 years after a single concussion compared to
controls, suggesting that the pediatric brain may have neu-
roprotective mechanisms not present in adults. Chamard
and colleagues [44] showed decreased mI/Cr in the motor
cortex compared to controls in female athletes participat-
ing in multiple sports more than 7 months after a concus-
sion. Female hockey players have also been observed to
have a greater decrease in NAA/Cr compared to their
male counterparts throughout the course of a season [50],
suggesting that the impact of TBI on brain metabolism
may be sex-dependent. Spatial heterogeneity of metabo-
lites has also been noted. Yeo and colleagues [51] showed
that Glx was increased in WM but decreased in GM com-
pared to controls, while Govindaraju and colleagues [52]
showed that NAA/Cho can differ significantly between
different anatomical brain regions. Further studies are
needed to explore the influence of these variables on brain
metabolism in TBI.
Longitudinal studies have been performed to account

for some of the confounding factors mentioned above
and to understand the evolution of the brain’s response
to TBI [49,51,53-55]. However, results from different
studies remain mixed. Garnett and colleagues, for ex-
ample, showed a decrease in NAA/Cr and NAA/Cho
and increases in both Cho/Cr and mI/Cr in frontal WM
within 1 week post-TBI compared to controls [56].
These changes were still present approximately 6 months
later. NAA/Cr changes also correlated with clinical mea-
sures of outcome. Similarly, Henry and colleagues [53]
observed decreased NAA/Cr in the prefrontal and motor
cortices compared to controls in athletes 5 days after a
concussive event. This decrease persisted 6 months later.
An elevated mI/Cr was also seen in the motor cortex at
the 6 month time point, suggesting the presence of in-
creased numbers of glial cells. By comparison, Vagnozzi
and colleagues [54] demonstrated a significant NAA/Cr
and NAA/Cho decrease within frontal lobe WM in ath-
letes within 3 days after a concussive event compared to
controls, but no increase in Cho/Cr. NAA/Cr and NAA/
Cho recovered by day 30 after injury [54]. Yeo and col-
leagues [51] observed increases in Cr and Glx in the
WM and decreased Glx in the GM within 1 month of
injury in patients compared to controls, with subsequent
normalization to control values 3 to 5 months later. No
changes in NAA values were seen. Overall, the temporal
pattern of brain injury shows an initial decrease in NAA,
reflective of neuronal injury that appears to be more evi-
dent in cortical GM brain regions, which generally re-
cover to normal levels within 1 month. Changes in Glx
and mI, tied to excitoxicity and glial cell proliferation,
respectively, appear to be more long-standing. It is im-
portant to note that both Glx and mI are only observed
using short-echo spectroscopy, which is the reason why
other studies utilizing long-echo methods did not detect
these changes. Changes in Cho levels appear to be more
variable. This may be dependent on the type and extent
of brain injury as Cho is related to membrane turnover
or diffuse axonal injury.

Magnetic resonance spectroscopy changes in repetitive
brain trauma
Several studies have examined brain metabolism using
MRS in subjects with likely RBT. Tremblay and col-
leagues [57] used MRS to examine former ice hockey
and football players aged 51 to 75 years with multiple
concussions. Along with ventricular enlargement and
cortical thinning, they found elevated mI in the left med-
ial temporal lobe along with increased Cho in the pre-
frontal cortex. The mI changes correlated with episodic
memory decline. In another study, Davie and colleagues
[58] examined three ex-professional boxers with parkin-
sonian syndrome. NAA was found to be significantly de-
creased in the lentiform nucleus in these subjects
compared to matched controls and idiopathic Parkin-
son’s disease patients. This study implicated neuronal
loss due to post-traumatic encephalopathy for the
boxers’ clinical symptoms, but NAA changes due to par-
kinsonism cannot be ruled out [59]. A recent study by
Hetherington and colleagues [60] demonstrated de-
creased hippocampal NAA/Cr and NAA/Cho in Iraq
and Afghanistan war veterans who experienced multiple
blast injuries with memory impairment compared to
controls. This study is unique in demonstrating the
feasibility of acquiring MRS data on a 7 T MRI system.
Vagnozzi and colleagues [55] demonstrated that RBT
can prolong the recovery of NAA after a TBI event. Ath-
letes who experienced repeated concussion within
2 weeks of the original TBI continued to have depressed
NAA/Cr 30 days after the initial trauma whereas singly
concussed subjects returned to control levels of NAA/Cr
by that time. A study by the same group in an animal
model of RBT demonstrated that multiple mild traumatic
episodes experienced over short time intervals can depress
brain NAA levels (measured using high-performance li-
quid chromatography of brain extracts) to levels lower
than a single severe TBI event. These results corresponded
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with lower ATP and ADP in the brain [61] and are con-
cordant with glucose metabolism changes observed in a
RBT model [62]. Taken together, these results suggest that
TBI may result in a prolonged period of brain vulnerabil-
ity to further injury. RBT within this vulnerable period,
however mild, may result in injury comparable to that
seen in severe TBI.
Many metabolites are measureable in the human brain

by MRS, but in conventional MRS many of the resonances
overlap, even at 3T, making it difficult to differentiate indi-
vidual metabolites. Using 2D COSY, J-coupling between
protons in molecules results in cross-peaks that allow for
unambiguous identification of up to 35 different metabo-
lites [63,64]. In a pilot study (Lin AP, Ramadan S, Box H,
Stanwell P, Stern R, unpublished data), 2D COSY showed
additional neurochemical changes in this athlete cohort
not previously observed by MRS in brain injury or neuro-
degenerative disease, such as changes in aspartate, threo-
nine, and glutathione. A representative 2D COSY from a
former NFL player is shown in Figure 2. In addition,
results also show increased Cho and Glx in athletes com-
pared with controls, which were statistically significant
despite the small sample size. Increased Cho and Glx are
consistent with diffuse axonal injury and excitotoxic in-
jury. Of particular interest is an observed increase in mI in
professional football players with RBT. mI has been re-
ported by others as an early diagnostic marker for mild
cognitive impairment [65], is also increased in those with
axial diffusivity [66,67], and has been shown in mouse
models to be directly related to the presence of phosphor-
ylated tau [68,69].
Figure 2 L-COSY spectra from healthy control (left) and athlete with a
performed at 3T using a 32 channel head coil and voxel size of 3 × 3 × 3 cm
increments with 8 averages resulting in an acquisition time of 12.8 minute
in F2 2,000 Hz and spectral width in F1 1,250 Hz. For presentation the spec
aspartate; Cho, choline; Cr, creatine; Fuc, fucose; GABA, gamma-aminobutyr
myo-insitol; NAA, N-acetyl aspartate; Thr, threonine.
Summary
MRS studies to date demonstrate that brain metabolic
derangements are present in both acute TBI and RBT.
MRS has been shown to be sensitive to these changes.
Improvement in MRS techniques that can increase sig-
nal to noise, provide robust, high quality spectra [60],
and that resolve closely associated metabolite peaks [70]
may allow improved quantification of the metabolites
currently being studied as well as the discovery of other
metabolites relevant to RBT. Further studies with iso-
topes other than 1H are also warranted [71]. It is import-
ant to note that most studies discussed here measure
metabolite ratios, most often in relation to Cr. Although
Cr is assumed to be generally unchanged in the normal
brain, this may not be the case after TBI [51]. Changes
in NAA/Cho may be a useful clinical biomarker of RBT
prognosis and treatment response, but its ability to ex-
plain the mechanism behind the changes, given that
both NAA and Cho are hypothesized to change after a
TBI, is also unclear.
As discussed above, carefully planned future clinical

studies to minimize confounding factors are needed to
clarify the significance of each metabolite biomarker
during the course of RBT. In particular, careful choice of
MRS acquisition parameters is essential. Also, matched
controls to RBT subjects are important for comparison
in RBT and sports-related injuries. Chamard and col-
leagues [44] noted female athletes ‘not clinically identi-
fied as sustaining a concussion’ showed decreases in
NAA/Cr. Thus, subconcussive blows experienced during
the regular course of play or training may need to be
history of repetitive brain trauma (RBT; right). Spectroscopy was
3 in the posterior cingulated gyrus; increment size 0.8 ms; 64

s; acquired vector 1,024 points; acquisition time 512 ms; spectral width
tra were calibrated to the lysine cross peak at 3.00 to 1.67 ppm. Asp,
ic acid; Glx, glutamate/glutamine; Lys, lysine; m1, macromolecule; mI,
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considered as a factor in future analyses of sports-
related RBT. Correlation of clinical MRS results with
animal studies of RBT as well as with studies using other
modalities such as nuclear imaging, structural MRI [57],
fMRI [72] and DTI will also aid in interpreting future
MRS findings.

Functional magnetic resonance imaging
Since first demonstrated in humans in 1992, fMRI has
revolutionized neuroscience. It is used as a research tool
in brain mapping and connectivity studies, as well as in
the clinic for surgical planning and treatment response.
The specific contrast in fMRI is based on the blood oxy-
gen level dependent (BOLD) contrast mechanism that
stems from the presence of deoxyhemoglobin. The as-
sumption made in BOLD-fMRI is that there is a coup-
ling between neuronal activity within a brain region and
a local increase in cerebral blood flow. Thus, BOLD-
fMRI is likely reflective of the hemodynamic response to
neuronal firing [73].
Few studies have been performed to examine mTBI

using fMRI, the majority of them since 2009. McDonald
and colleagues [74] provide a comprehensive review of
existing fMRI studies, noting that most have focused on
executive function, working memory and episodic mem-
ory performance. Resting state fMRI, which can probe
intrinsic connectivity of different brain regions without
task performance, has also been applied to mTBI [75].
To date, most studies demonstrate differences in BOLD-
activation between mTBI patients and controls. En-
hanced BOLD signal has been observed in the prefrontal
and dorsolateral prefrontal cortex while performing cog-
nitive tasks in mTBI patients [73]. However, hypoactiva-
tion after injury has also been observed in both clinical
[76] and preclinical [77] studies. The majority of studies
focus on the subacute stage of injury and in relatively
young populations. Inconsistencies may result from indi-
vidual differences and methodologies (in both tasks and
post-processing). Future studies examining longitudinal
changes and in factors such as aging and comorbid con-
ditions are necessary to help establish the value of this
method.

Functional magnetic resonance imaging and repetitive
brain trauma
A subset of fMRI studies has examined populations with
likely RBT. For example, in a study by Scheibel and col-
leagues [78] brain activation was observed in 15 soldiers
with blast injuries (all male, 11 with multiple blasts ex-
posures, 6 with multiple blast-related TBIs, imaged on
average 2.6 years post-injury) who served in Iraq and
Afghanistan. Compared to controls, soldiers with TBI
showed increased activation in the anterior cingulate
gyrus, medial frontal cortex and posterior cerebral areas.
No differences in the fMRI task accuracy were seen be-
tween cohorts, although the blast group showed slower
response times. Activation was negatively correlated with
symptoms of post-traumatic stress disorder (PTSD).
Matthews and colleagues [79] examined soldiers with
loss of or altered consciousness after multiple blast-
related injuries with stop task fMRI. Although there
were no differences in task performance between the
groups, loss-of-consciousness patients showed decreased
activation in the left ventromedial prefrontal cortex dur-
ing easy trials, which positively correlated with somatic
symptom severity. Since the ventromedial prefrontal cor-
tex has been thought to be involved in self-awareness,
the authors interpreted the results as suggesting that
loss-of-consciousness patients were less self-aware, and
thus reported fewer somatic symptoms. This finding,
however, while intriguing, needs to be followed up in
future studies.
Talavage and colleagues [80,81] have used longitudinal

fMRI to study high school football players with RBT
during multiple football seasons. Along with players who
showed both clinical and fMRI alterations after concus-
sion (clinically observed impairment (COI)+/functionally
observed impairment (FOI)+), they identified a subset of
players who did not show clinical symptoms of head in-
jury but presented with alterations on fMRI compared
to baseline at the beginning of the season (COI-/FOI+).
COI+/FOI + subjects showed increased activations par-
ticularly in the posterior middle and superior temporal
gyri while COI-/FOI + subjects showed increased activa-
tions in the dorsolateral frontal cortex, cerebellum and
upper parietal and occipital regions. These findings were
consistent with deficits in neurocognitive testing, which
showed verbal working memory deficits in COI+/FOI +
individuals compared to impaired visual working mem-
ory in COI-/FOI + subjects. Interestingly, COI-/FOI + in-
dividuals experienced more high impact collision events
(>20 G) to the head compared to both COI-/FOI- and
COI+/FOI + cohorts. These studies support the assertion
that the pathophysiology due to acute TBI and RBT may
be quite different.

Summary
fMRI has demonstrated neural activation differences be-
tween individuals with TBI and controls. Unique fMRI
changes in subjects with subconcussive RBT have also
been observed. Further studies are needed to validate
these findings. The ability to acquire longitudinal func-
tional information in a single subject with fMRI, without
the need for ionizing radiation (for example, PET), will
also enable the monitoring of long-term effects of RBT
and potential treatments for TBI or CTE [77]. It is espe-
cially important for future studies to determine the
neurological mechanism of these fMRI alterations.
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Susceptibility-weighted imaging
SWI is a MRI technique explored for its sensitivity to micro-
hemorrhage [82]. The presence of blood breakdown products
such as hemosiderin and ferritin, and deoxyhemoglobin in
blood can distort the local magnetic field, causing changes in
local tissue susceptibility that are observable with gradient-
echo (GRE) MRI. SWI is based on the observation that the
phase component of GRE data contains substantial informa-
tion about such local tissue susceptibilities. In SWI, phase in-
formation from flow-compensated GRE data is processed,
filtered and combined with magnitude information to pro-
vide images with enhanced contrast information compared
to conventional MRI. SWI is more sensitive to micro-
bleeds than conventional GRE [83]. The technique has been
applied to multiple conditions, including stroke, vascular
disease and the visualization of micro-bleeds in TBI [84].
Scheid and colleagues [85] found a high frequency of

micro-bleeds in the frontal, parietal, and temporal lobes
using GRE sequences in patients with chronic (mean of
2 years post-injury) mTBI to severe TBI. The number of
micro-bleeds correlated with the presence of brain atrophy,
callosal lesions and Glasgow Coma Scale but not with the
Glasgow Outcome Scale [85]. SWI studies in pediatric pop-
ulations have demonstrated good correlation between TBI
severity and the number of hemorrhagic lesions visualized
[86,87]. High frequency lesion regions include the frontal
WM and the parieto-temporal-occipital regions. Increased
numbers of lesions may be associated with poor neuro-
psychological outcome [88]. However, Toth and colleagues
[89] did not observe micro-hemorrhages using SWI in adult
patients with acute and subacute mTBI compared to con-
trols, even though DTI demonstrated significant changes in
MD and FA. More studies are thus needed to determine
under what circumstances micro-hemorrhages are observed
and are associated with neurocognitive symptoms.

Susceptibility-weighted imaging and repetitive brain
trauma
Breakdown of the blood–brain barrier, changes in the
cerebral vasculature and perivascular deposition of tau
are also hypothesized to occur in CTE [13]. Thus, SWI
could potentially be a useful biomarker for RBT. How-
ever, very few studies have used SWI to detect micro-
bleeds in RBT, with the exception of two studies in
boxers. In the first study, Hahnel and colleagues [90]
found 3 out of 42 boxers showed micro-hemorrhages
with SWI, while in the second study Hasiloglu and col-
leagues [91] found micro-hemorrhages in 2 out of 21
boxers. While no hemorrhages were seen in controls in
either of these studies, the differences in prevalence of
lesions between boxers and controls were not significant.
Of note, these studies were conducted at 1.5 T, where
susceptibility is not as evident. Therefore, further studies
are necessary to assess the utility of SWI in RBT.
Summary
Studies using high-field MRI (>3.0 T) will enhance SWI
contrast [92] due to increased susceptibility at higher
field. However, standardization of SWI processing is ne-
cessary to compare results between studies. In addition,
biomarkers other than micro-hemorrhage, such as oxy-
gen saturation or venous changes, may also be examined
with SWI [93]. As with other modalities, the SWI signal
will be time course-dependent [94]. So far there have
been no longitudinal studies of RBT using SWI. As SWI
is an emerging technology, future studies will determine
the efficacy of this method for RBT.

Positron emission tomography
PET is a nuclear imaging technique that has several ad-
vantages compared to other nuclear imaging techniques
such as single-photon emission computed tomography
[95]. It is highly sensitive, requiring tracer amounts of a
radio-nuclide for image formation. The high sensitivity
also allows for relatively short scan times, important for
dynamic PET studies and in the clinical setting. Moreover,
positron emitting isotopes include carbon, nitrogen, oxy-
gen and fluorine; these are found in many biological com-
pounds of interest and can be readily incorporated into
radiopharmaceutical analogs for imaging of physiological
function. Finally, in the context of RBT, PET is a quantita-
tive technique, enabling longitudinal studies on the same
subject to be performed. However, these benefits are tem-
pered by the relatively high cost of PET and concerns
about elevated ionizing radiation exposure to the patient.

Metabolic changes during brain injury with positron
emission tomography
Most studies of TBI involving PET seek to evaluate
changes to the brain’s glucose metabolism post-trauma
using 2-deoxy-2-(18F)-fluoro-D-glucose (FDG). FDG is
an analog of glucose that is taken up by cells with high
glucose metabolism such as in the brain, cancer and in
areas of inflammation. FDG is trapped within cells after
uptake and does not complete glycolysis, enabling it to
provide PET images depicting areas of high glycolytic
activity.
Most FDG-PET studies to date have evaluated brain

metabolism after acute TBI. These studies demonstrated
abnormal patterns of the cerebral metabolic rate of glucose
(CMRglc) months to years after the injury [96-98]. How-
ever, the small sample sizes and differences in the subject
population, type of injury experienced [99], PET acquisition
protocols and the time duration between the injury event
and imaging make it difficult to draw solid conclusions
from these studies. In general, FDG studies performed in a
resting state [97,98] or with performance stimuli [98,100]
all demonstrate regions of glucose hypometabolism. Hypo-
metabolism was observed in most studies within the frontal
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and temporal regions and correlated with neuropsycho-
logical testing, but not with structural defects seen with
MRI or CT. Regions of hypermetabolism have also been
observed in some studies [98,100]. Differences in the
spatio-temporal patterns of CMRglc observed in the FDG-
PET studies may be partially explained by individual rates
of metabolic recovery after the TBI event [101,102].
Recent FDG-PET studies have also examined glucose

metabolism in subjects with a high likelihood of RBT. Pro-
venzano and colleagues compared FDG uptake patterns
between professional and amateur boxers with controls
[103]. They showed an 8 to 15% decrease of FDG uptake
within the posterior cingulate cortex, parieto-occipito,
frontal lobes bilaterally and the cerebellum in the boxers
compared to controls, claiming that this represents a
unique pattern of hypometabolism associated with chronic
traumatic brain injury in boxers. However, the fact that
some of these regions of hypometabolism have been ob-
served in previous studies of single-event TBI in admittedly
heterogeneous patient cohorts makes this claim difficult to
validate at this time. In a study that examined FDG uptake
in Iraq war veterans with multiple (3 to 51) blast expo-
sures, Peskind and colleagues [22] reported hypometabo-
lism in the medial temporal lobes, cerebellum, vermis and
pons. Confounding factors in this study included the fact
that controls were not matched for age or occupation and
the presence of PTSD in 10 of the 12 subjects studied.
However, it is interesting to note that previous studies of
PTSD patients did not show hypometabolism in the cere-
bellum, as was observed by Bremner and colleagues [104]
and Petrie and colleagues [26] who reported that PTSD
was not associated with a comorbid effect in veterans with
blast injury but was associated with reduced cerebral glu-
cose metabolism in the parietal, somatosensory, and visual
cortices when comparing veterans with and without blast
or impact injury. To account for the latter confound,
Mendez and colleagues [105] studied war veterans in
whom PTSD had been excluded. Further, they examined
differences in FDG metabolism between those with repeti-
tive blast injuries compared to blunt injuries. Blast injuries
are hypothesized to be more severe due to the presence of
additional trauma secondary to the initial impact. Com-
pared to controls, hypometabolism was noted for both blast
and blunt injury groups in multiple regions, including the
left frontal and temporal regions as well as the thalamus,
while hypermetabolism was noted in the right caudate and
temporal regions. Interestingly, subjects with blast injury
demonstrated significant hypometabolism in the right su-
perior parietal region compared to those who experienced
blunt injury. Rather than a focal injury, the authors suggest
that this may be sequelae of diffuse structural damage.
While these studies demonstrate that abnormal devia-

tions of glucose metabolism are characteristic of both
TBI and RBT, the spatio-temporal patterns of these
deviations remain inconsistent between studies. Future
studies that reduce confounding between subjects, data
acquisition and analysis are warranted. Chen and col-
leagues [99] suggest that PET imaging during a working
memory task using H2[

15O] may be a more sensitive bio-
marker than FDG-PET for mTBI. Further, animal studies
may offer insight into the human results. For example,
Prins and colleagues [62] demonstrated in a rat model of
RBT that temporal latency between traumatic events can
significantly affect CMRglc.

Monitoring structural changes in repetitive brain trauma
with positron emission tomography
Recent neuropathological studies of subjects with a history
of RBT and CTE have identified aggregation and accumula-
tion of hyperphosphorylated tau and TDP-43 as pathogno-
monic for CTE [13]. The ability to evaluate these proteins
in vivo may offer a unique biomarker to diagnose CTE and
understand the evolution of the disease. In a preliminary
study, Small and colleagues [106] used 2-(1-(6-[(2-[18F]
fluoroethyl)(methyl)amino]-2-naphthyl) ethylidene) malo-
nonitrile (FDDNP) for PET imaging in five retired National
Football League players with a history of cognitive and
mood symptoms. FDDNP binds to both tau neurofibrillary
tangles and amyloid plaque in brain tissue [107]. Compared
to matched controls, the football players showed increased
FDDNP uptake in the caudate, putamen, thalamus, subtha-
lamus, midbrain, cerebellum and amygdala. Interestingly,
increased levels of uptake were associated with increased
number of concussions experienced.
While the study is interesting, it is based on a very

small sample, and it is not obvious that FDDNP binding
in regions of the brain that show tau deposition at aut-
opsy in NFL players necessarily implies tau deposition in
this study as FDDNP is not specific for tauopathies.
There is great interest in developing a tau-specific lig-
and, particularly to investigate in vivo tau in NFL players
in whom tau deposition, and not neuritic plaques, has
been observed at autopsy [7]. PET probes that are spe-
cific for tau will be important in the context of RBT and
CTE, and there are now several promising probes with
good tau specificity that have been developed [108-111]
and are being incorporated into in vivo imaging studies
as shown in Figure 3.

Neuroinflammation imaging with positron emission
tomography
An associated sequelae of TBI is the brain’s neuroinflam-
matory response to injury. Glial tangles and inclusions
have been noted in CTE. The peripheral benzodiazepine
receptor (PBR) is found on primary activated microglia
and phagocytic cells in the central nervous system [112].
Several groups have developed radiolabelled probes target-
ing the PBR as a means to evaluate neuroinflammation
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Figure 3 T807 tau tracer. Sagittal images from 80 to 100 minutes post-injection of a 56-year-old healthy subject (top left), mild cognitively
impaired (MCI) subject (top right), mild Alzheimer’s disease (AD) subject with mini-mental state exam (MMSE) 21 (bottom left), and severe AD
subject with MMSE 7 (bottom right). The intensity and extension of T807 uptake correlated to Braak and Braak stages of phosphorylated tau
deposition, except in the area where severe neuronal degeneration is expected, for which the mild AD subject had the highest cortical retention.
Reprinted from the Journal of Alzheimer's Disease, volume 34 (No 2) by Chien et al. Early Clinical PET Imaging Results with the Novel PHF-Tau
Radioligand [F-18]-T807, p465, Copyright 2013, with permission from IOS Press [111].
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response in TBI. Folkersma and colleagues [113] showed
increased binding of the PBR target (R)-11C-PK11195
across the whole brain in patients 6 months post-injury. A
concurrent animal study by the same group correlated
(R)-11C -PK11195 uptake with histological markers of
microglia and brain injury [114]. In another study, Ram-
lackhansingh and colleagues [115] demonstrated (R)-11C
-PK11195 binding up to 17 years post-TBI event, suggest-
ing that chronic neuroinflammation can persist in the
context of brain trauma. While (R)-11C -PK11195 is a
promising probe that can localize activated microglia, its
low binding specificity in vivo can reduce signal to noise
of the images and complicate quantification of its uptake
[116]. Novel methods are nonetheless being developed to
analyze such PET data [117]. Concurrently, alternative
probes with improved binding specificity are also being
developed [118].

Summary
The ability of PET to provide highly sensitive, quantita-
tive and non-invasive images makes it ideal for studying
RBT. Multiple PET studies have demonstrated changes
in glucose metabolism, tau protein build up and neuro-
inflammation in the context of brain trauma. Future
studies involving an increased number of subjects from
multiple time points relative to traumatic events will
validate the utility of the different PET biomarkers to
evaluate RBT. Further, correlation of PET biomarkers
with other imaging biomarkers, such as DTI [26] and
MRS, will be extremely useful towards gaining a more
comprehensive understanding of RBT.

Conclusion
Research into RBT and CTE is still very much in its in-
fancy, as many questions remain to be answered. Given
that currently CTE can only be diagnosed post-mortem,
it is imperative to identify in vivo biomarkers for CTE.
The availability of such biomarkers will provide a plat-
form on which treatments for this condition can be de-
veloped and evaluated.
As reviewed here, non-invasive neuroimaging studies

show great promise in providing key imaging biomarkers
to monitor CTE: DTI measures reveal WM changes that
are reflective of diffuse axonal injury and other processes
such as neurodegeneration. Similarly, MRS results are also
reflective of diffuse axonal injury and neurodegeneration as
well as providing insight into underlying pathophysio-
logical processes such as disturbances in glutamatergic
neurotransmission. fMRI methods also reveal insight into
the brain activity by demonstrating different activation
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patterns in subjects with RBT. Micro-hemorrhages on
SWI may provide additional morphological changes not
seen using conventional imaging methods. Finally, PET im-
aging, particularly using tau-specific ligands, promise the
most direct means of assessing CTE in RBT. While each of
these methods show promise in providing diagnostic and
potentially prognostic information, it is likely that a com-
bination of these different imaging methods will provide a
more complete picture of pathophysiological changes that
are associated with the long-term effects of RBT.
However, challenges remain before these biomarkers

can be translated to routine clinical use. The biggest
challenge is the identification of imaging signatures that
can parse the difference between acute brain injury,
chronic effects of RBT, and the development of CTE.
Imaging biomarkers that are specific to each of these
conditions will be important for diagnosis, treatment,
and hopefully prevention of progressive neurological
damage. A number of factors need to be considered in
the quest to identify these biomarkers. RBT by nature
can be very heterogeneous; trauma to different parts of
the brain via different mechanisms of trauma can result
in different clinical presentations of brain injury. These
different presentations may or may not share the same
underlying pathophysiology. Genetic and environmental
variations between individual patients likely also influ-
ence the imaging signatures. The studies cited above
have already highlighted imaging differences in the
neurological response to RBT between the sexes and be-
tween pediatric and adult populations. Apart from this,
comorbidity of different diseases such as Alzheimer’s
disease, PTSD, and/or depression may obfuscate the
presentation of TBI or CTE. Furthermore, few current
studies have characterized the longitudinal changes that
occur in each of the different modalities nor have they
determined whether or not neuroimaging biomarkers
will be effective for treatment monitoring. Finally, in
addition to examining the strength of multimodal im-
aging, the incorporation of neuroimaging results in over-
all metrics for RBT, including neuropsychological
evaluation, blood and/or cerebrospinal fluid biomarkers,
genetic tests (such as APOE), and clinical evaluation,
will likely provide the most complete picture of the
long-term effects of RBT.
Note: This article is part of a series on Traumatic brain injury,

edited by Robert Stern. Other articles in this series can be found

at http://alzres.com/series/traumaticbraininjury
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