
RESEARCH Open Access

The gut microbiota-derived metabolite
trimethylamine N-oxide is elevated in
Alzheimer’s disease
Nicholas M. Vogt1 , Kymberleigh A. Romano2,9, Burcu F. Darst3, Corinne D. Engelman3, Sterling C. Johnson1,4,
Cynthia M. Carlsson1,4, Sanjay Asthana1,4, Kaj Blennow5,6, Henrik Zetterberg5,6,7,8, Barbara B. Bendlin1*

and Federico E. Rey2*

Abstract

Background: Trimethylamine N-oxide (TMAO), a small molecule produced by the metaorganismal metabolism of
dietary choline, has been implicated in human disease pathogenesis, including known risk factors for Alzheimer’s
disease (AD), such as metabolic, cardiovascular, and cerebrovascular disease.

Methods: In this study, we tested whether TMAO is linked to AD by examining TMAO levels in cerebrospinal fluid
(CSF) collected from a large sample (n = 410) of individuals with Alzheimer’s clinical syndrome (n = 40), individuals
with mild cognitive impairment (MCI) (n = 35), and cognitively-unimpaired individuals (n = 335). Linear regression
analyses were used to determine differences in CSF TMAO between groups (controlling for age, sex, and APOE ε4
genotype), as well as to determine relationships between CSF TMAO and CSF biomarkers of AD (phosphorylated
tau and beta-amyloid) and neuronal degeneration (total tau, neurogranin, and neurofilament light chain protein).

Results: CSF TMAO is higher in individuals with MCI and AD dementia compared to cognitively-unimpaired
individuals, and elevated CSF TMAO is associated with biomarkers of AD pathology (phosphorylated tau and
phosphorylated tau/Aβ42) and neuronal degeneration (total tau and neurofilament light chain protein).

Conclusions: These findings provide additional insight into gut microbial involvement in AD and add to the
growing understanding of the gut–brain axis.

Keywords: Alzheimer’s disease, Cerebrospinal fluid, Biomarkers, Trimethylamine N-oxide, Microbiota, Gut bacteria,
Amyloid, Tau, Neurofilament light

Background
The human gut is home to trillions of microbes, includ-
ing bacteria, eukaryotes, and viruses, that participate in a
lifelong symbiotic relationship with their human hosts.
Resident gut microbes perform essential functions for
human health ranging from regulating nutrition and
metabolism to influencing immune system development
and function [1]. Gut microbes impact human health
and disease at least in part by metabolizing dietary and
host-derived substrates, and generating biologically active

compounds including signaling compounds (e.g., agonists
of G-protein coupled receptors), biological precursors,
and toxins [2–4]. The microbial-derived metabolite
trimethylamine N-oxide (TMAO) has been implicated
in metabolic [5], cardiovascular [6, 7], and cerebrovas-
cular [8] disease. The production of TMAO occurs via
a two-step process. First, gut microbes enzymatically
generate trimethylamine (TMA) from dietary constituents
such as choline or L-carnitine [9]. TMA then enters the
circulation and is oxidized to TMAO in the liver by
flavin-containing monooxygenase 1 and 3 (FMO1 and
FMO3) [6]. A recent study [10] demonstrated that TMAO
is measurable in cerebrospinal fluid (CSF), suggesting that
this microbial-derived metabolite reaches the central
nervous system (CNS), and may therefore be relevant to
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neurological function or disorders. Indeed, mice treated
with dietary TMAO show increased brain aging and cog-
nitive impairment, likely due to increased oxidative stress,
mitochondrial dysfunction, and inhibition of mammalian
target of rapamycin (mTOR) signaling in the brain [11].
Alzheimer’s disease (AD) pathology is characterized by

extracellular beta-amyloid (Aβ) plaques and intracellular
neurofibrillary tangles composed of hyperphosphorylated
tau protein [12]. The underlying etiology of AD is highly
complex and multifactorial. A variety of genetic and
environmental factors have been implicated in AD etio-
pathogenesis, including contributions from gut micro-
biota [13–15]. While it has been hypothesized that
TMAO could be associated with AD pathology [16],
this relationship has not yet been fully investigated in
humans with Alzheimer’s clinical syndrome (AD demen-
tia) [17]. In this study, we examined levels of TMAO in a
large sample of CSF collected from individuals with AD
dementia, individuals with mild cognitive impairment
(MCI), and cognitively-unimpaired individuals. We also
investigated the relationships between CSF TMAO, AD
biomarkers (Aβ and phosphorylated tau), and biomarkers
of neuronal and synaptic degeneration (total tau, neurofil-
ament light chain protein, and neurogranin). We found
that CSF TMAO levels are elevated in individuals with
AD dementia, and that elevated CSF TMAO is associated
with elevated AD pathology and neuronal degeneration as
measured in CSF.

Methods
Participants
We identified 414 individuals in the Wisconsin Alzheimer’s
Disease Research Center (ADRC) clinical core (n = 277)
and the Wisconsin Registry for Alzheimer’s Prevention
(WRAP) study (n = 137) who had undergone lumbar punc-
ture with CSF collection, as well as TMAO and biomarker
quantification. The ADRC clinical core study consists
of participants who fall along the clinical continuum of
cognitive function, including AD dementia, MCI, and
cognitively-unimpaired controls. The WRAP study is a
large (> 1500 subjects), ongoing (> 15 years), prospective
longitudinal investigation of the genetic, biological, and
lifestyle factors that contribute to the development of AD
dementia and cognitive decline [18]. Individuals in the
WRAP study were recruited as cognitively-unimpaired,
asymptomatic middle-aged adults and undergo biannual
comprehensive medical and cognitive evaluation. Because
both the WRAP study and the ADRC clinical core are
enriched for risk of late-onset AD (~ 70% of WRAP sub-
jects have a parental family history of AD, and ~ 50% of
participants 45–65 years old in the ADRC study have a
parental history of AD), the APOE ε4 genotype is more
prevalent. General exclusion criteria for the ADRC and
WRAP studies include any significant neurologic disease

(other than AD dementia), history of alcohol/substance
dependence, major psychiatric disorders (including un-
treated major depression), or other significant medical
illness. APOE ε4 genotyping procedures have been de-
scribed previously [19], and participants were categorized
as noncarriers (zero ε4 alleles) or APOE ε4 carriers (one
or two ε4 alleles). The University of Wisconsin Health
Science Institutional Review Board approved all study
procedures, and all experiments were performed in
accordance with relevant guidelines and regulations. All
participants provided written informed consent to be
involved in this study.

Diagnostic classification
Participants underwent a comprehensive neuropsycho-
logical battery to determine their cognitive status. Partici-
pants with MCI and AD dementia were diagnosed using
available clinical and cognitive information in accordance
with the updated 2011 National Institute on Aging–
Alzheimer’s Association workgroup diagnostic criteria
[20, 21]. All participants in the ADRC clinical core are
discussed at a consensus review committee consisting
of physicians, neuropsychologists, and nurse practi-
tioners. Biomarker data are not used in determining
clinical diagnosis. Participants in the WRAP study are
reviewed selectively when flagged after cognitive abnor-
malities are detected by algorithm on neuropsycho-
logical tests, at which point cases are discussed at a
consensus review committee meeting [18]. Of the 414
identified participants, four individuals with a diagnosis
of nonneurodegenerative cognitive impairment at the
time of CSF collection were excluded from the present
analyses, resulting in a total of 410 participants: n = 335
cognitively-unimpaired participants (Control group), n = 35
MCI (MCI group), and n = 40AD dementia (AD group).

Lumbar puncture and CSF collection
Lumbar puncture and CSF collection procedures have
been described previously [22]. Briefly, CSF was collected
via lumbar puncture in the morning after a 12-h fast with
a Sprotte 25 or 24-gauge spinal needle at the L3/4 or L4/5
interspace using gentle extraction into propylene syringes.
CSF (~ 22ml) was then combined, gently mixed, and
centrifuged at 2000 × g for 10 min. Supernatants were
frozen in 0.5 ml aliquots in polypropylene tubes and
stored at − 80 °C.

CSF biomarker quantification
CSF AD biomarkers included the Aβ42/Aβ40 ratio, phos-
phorylated tau (p-tau), and the p-tau/Aβ42 ratio. CSF Aβ
is an indicator of amyloid burden, with greater amyloid
deposition in the brain being reflected by lower levels in
the CSF. The Aβ42/Aβ40 ratio (which normalizes CSF
Aβ42 for the total amount of Aβ peptides that are present
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in CSF) was used given that it shows better correspond-
ence with brain amyloid deposition as well as superior
diagnostic performance compared to CSF Aβ42 alone [23].
p-tau is a marker of tau phosphorylation believed to be
associated with neurofibrillary tangle pathology, with
higher levels reflecting a more intense tau phosphorylation
process; the ratio of p-tau/Aβ42 incorporates both facets
of pathology, with higher values indicating greater AD
pathology [24]. For the Aβ42/Aβ40 ratio, CSF Aβ42 and
CSF Aβ40 were quantified separately by electrochemilumi-
nescence (ECL) using an Aβ triplex assay (MSD Human
Aβ peptide Ultra-Sensitive Kit; Meso Scale Discovery,
Gaithersburg, MD, USA). For p-tau and the p-tau/Aβ42
ratio, CSF p-tau and Aβ42 were quantified using com-
mercially available sandwich ELISAs (INNOTEST β-
amyloid1–42 and Phospho-Tau[181 P], respectively;
Fujirebio Europe, Ghent, Belgium).
CSF biomarkers of neuronal degeneration included

total tau (t-tau), neurofilament light chain protein (NFL,
a marker of axonal degeneration), and neurogranin (a
marker of synaptic degeneration). CSF t-tau and NFL
were quantified using commercially available sandwich
ELISAs: t-tau, INNOTEST hTau Ag (Fujirebio Europe);
and NFL, NF-Light ELISA kit (Uman Diagnostics AB,

Umeå, Sweden). CSF neurogranin was quantified using a
sandwich ELISA as described previously [25]. All CSF
assays were performed in two batches (n = 192 samples
in batch 1, n = 218 samples in batch 2), and all statistical
analyses accounted for batch variation (see Statistical
analysis).

CSF TMAO quantification
CSF TMAO was quantified via an untargeted plasma
metabolomics analysis performed by Metabolon, Inc.
(Durham, NC, USA) using ultrahigh performance liquid
chromatography tandem mass spectrometry (UHPLC-MS)
as described previously [26] (details presented in Additional
file 1: Methods). All samples were sent to Metabolon in
one shipment. Raw data were extracted, peak identified,
and QC processed using Metabolon’s hardware and soft-
ware. TMAO levels were expressed as scaled intensity units
(SIU) using the QC-processed mass-to-charge ratio (m/z)
area-under-the-curve values for TMAO and scaled to a
median value of 1.

Statistical analysis
Our analysis approach first examined differences in CSF
TMAO levels between clinical diagnostic groups, and

Table 1 Participant characteristics

Sample characteristic All Control MCI AD dementia

N 410 335 35 40

Age (years) 63.8 ± 9.0 61.9 ± 7.9 73.2 ± 8.5 71.9 ± 8.6

Sex (% female) 63 (258/410) 69 (231/335) 31 (11/35) 40 (16/40)

APOE ε4 genotype, % positive (n) 43 (178/410) 39 (130/335) 54 (19/35) 73 (29/40)

AD parental history, % positive (n) 58 (236/410) 64 (214/335) 31 (11/35) 28 (11/40)

Ethnicity, % Caucasian (n) 97 (396/410) 96 (321/335) 100 (35/35) 100 (40/40)

Education (years) 15.9 ± 2.6 16.1 ± 2.5 16.3 ± 2.7 14.7 ± 2.8

Body mass index (BMI) 28.3 ± 5.5 28.5 ± 5.7 28.2 ± 4.4 26.6 ± 3.9

Systolic blood pressure (mmHg) 128 ± 17 125 ± 16 130 ± 18 134 ± 16

Diastolic blood pressure (mmHg) 74 ± 9 75 ± 9 76 ± 10 75 ± 9

Total cholesterol (mg/dl) 195 ± 37 199 ± 46 184 ± 44 190 ± 37

HDL cholesterol (mg/dl) 62 ± 18 64 ± 39 57 ± 19 56 ± 14

Fasting glucose (mg/dl) 97 ± 20 99 ± 51 99 ± 15 100 ± 18

CSF data

TMAO (SIU) 1.5 ± 1.7 1.3 ± 1.5 2.1 ± 1.4 2.8 ± 2.9

p-tau (pg/ml) 49.3 ± 22.0 45.1 ± 16.4 61.3 ± 36.2 74.7 ± 26.9

p-tau/Aβ42 0.09 ± 0.07 0.07 ± 0.04 0.14 ± 0.11 0.21 + 0.09

Aβ42/Aβ40 0.086 ± 0.024 0.090 ± 0.022 0.076 ± 0.028 0.062 ± 0.022

t-tau (pg/ml) 370 ± 228 310 ± 141 552 ± 338 722 ± 300

NFL (pg/ml) 841 ± 655 705 ± 489 1247 ± 863 1628 ± 935

Neurogranin (pg/ml) 352 ± 208 328 ± 182 430 ± 308 488 ± 244

All data presented as mean ± standard deviation unless otherwise indicated
MCI mild cognitive impairment, AD Alzheimer’s disease, APOE ε4 apolipoprotein E epsilon 4 allele, HDL high-density lipoprotein, CSF cerebrospinal fluid, TMAO
trimethylamine N-oxide, SIU scaled intensity units, p-tau phosphorylated tau, Aβ beta-amyloid, t-tau total tau, NFL neurofilament light chain protein
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then extended these analyses in order to characterize the
biological relationships between CSF TMAO and bio-
markers of both AD pathology and neurodegeneration.
To determine CSF TMAO differences between groups, a
multiple linear regression model was conducted in R
(v3.5.0) to test the effect of age, sex, APOE ε4 genotype,
and clinical diagnosis (Control, MCI, AD dementia)
on CSF TMAO levels. CSF TMAO was natural log
transformed to account for a nonnormal distribution.
Secondarily, linear regression models were used to
determine the relationship between CSF TMAO and
CSF biomarkers (Aβ42/Aβ40, p-tau, p-tau/Aβ42 ratio,
t-tau, NFL, and neurogranin). Separate models were
run for each CSF biomarker, and each model included
covariates of age, sex, and the nuisance covariate of
CSF analysis batch (to account for batch variation).
Given that TMAO has been implicated in cardiovascular
disease, and that vascular disease risk factors are associated
with AD and neurodegeneration, the same linear regres-
sion models were run for each CSF biomarker with the
addition of peripheral vascular disease measures as
covariates (BMI, blood pressure, total cholesterol, HDL
cholesterol, and fasting glucose). Nonnormally distrib-
uted variables were natural log transformed.

Results
Participant characteristics
Participant characteristics are reported in Table 1. The
Control group tended to be younger and had a higher
proportion of females compared to the MCI and AD
dementia groups. As expected, the APOE ε4 genotype
was more prevalent in the MCI and AD dementia
groups. There were no differences between groups with
respect to cardiovascular disease risk factors including
BMI, blood pressure, total cholesterol, HDL cholesterol,
and fasting glucose.

CSF TMAO is elevated in individuals with MCI and AD
dementia
CSF TMAO levels were elevated in individuals with AD
dementia (β = 0.50, p < 0.0001) and MCI (β = 0.29, p < 0.05)
compared to cognitively-unimpaired individuals (Fig. 1;
Table 2), controlling for age, sex, and APOE ε4 genotype.
Older age was associated with higher CSF TMAO (β =
0.02, p < 0.0001), but there were no main effects of sex or
APOE ε4 genotype, and CSF TMAO levels did not differ
between the MCI and AD groups.

CSF TMAO is associated with CSF biomarkers of AD and
neuronal degeneration
With respect to CSF AD biomarkers, there was a significant
positive relationship between CSF TMAO and p-tau (β =
0.09, p = 0.006; Fig. 2a) and p-tau/Aβ42 (β = 0.11, p = 0.013;
Fig. 2b). No significant relationship between CSF TMAO

and Aβ42/Aβ40 (β = − 0.003, p = 0.13; Fig. 2c) was observed.
Additionally, CSF TMAO was positively associated with
both CSF t-tau (β = 0.10, p = 0.01; Fig. 2d) and CSF NFL
(β = 0.085, p = 0.007; Fig. 2e), but there was no relation-
ship between CSF TMAO and CSF neurogranin (β = 0.004,
p = 0.92; Fig. 2f). Additional file 1: Figure S1 shows the rela-
tionships between CSF TMAO and biomarkers colored by
diagnostic group. Including peripheral cardiovascular dis-
ease risk factors as covariates did not change these associa-
tions (see Additional file 1: Table S1).

Fig. 1 CSF TMAO levels are elevated in individuals with AD
dementia and MCI compared to cognitively-unimpaired individuals,
after controlling for age, sex, and APOE ε4 genotype. Data presented
as violin plots (displaying scaled distribution of data for each group)
with inset Tukey boxplots showing median, interquartile range (IQR),
and 1.5 × IQR. AD Alzheimer’s disease, CSF cerebrospinal fluid, MCI
mild cognitive impairment, TMAO trimethylamine N-oxide

Table 2 Summary of multiple linear regression of age, sex,
APOE ε4 genotype, and diagnosis on CSF TMAO level

Variable β (standard deviation) t p value

Age 0.022 (0.004) 6.1 5.6 × 10−8***

Sex −0.02 (0.06) −0.03 0.75

APOE ε4 genotype −0.02 (0.06) −0.3 0.77

Diagnosis

Control vs MCI 0.29 (0.11) 2.6 0.01*

Control vs AD 0.50 (0.11) 4.7 4.1 × 10− 6***

MCI vs AD 0.21 (0.13) 1.5 0.12

APOE ε4 apolipoprotein E epsilon 4 allele, MCI mild cognitive impairment, AD
Alzheimer’s disease
Overall model statistics: F5,404 = 23.1, adjusted R2 = 0.21, p < 2.2 × 10− 16

*p < 0.05
***p < 0.001
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Discussion
Understanding the contributions of the gut microbiota
to neurological function and disease is an expanding area
of research, particularly with respect to neurodegenerative
disorders. A recent study [16], which used publicly available
databases and a data-driven hypothesis-free computational
approach to address the links between gut microbiota and
AD, proposed that the gut microbial-derived metabolite
TMAO is highly associated with AD. In the present study,
we provide biochemical evidence revealing that CSF
TMAO is higher in individuals with MCI and AD
dementia, and elevated CSF TMAO is associated with
both increased AD pathology (as measured by CSF bio-
markers) as well as markers of neuronal degeneration.
Specifically, we found that CSF TMAO was associated

with CSF p-tau as well as p-tau/Aβ42, but not Aβ42/
Aβ40, potentially indicating that TMAO is more closely
related to tau pathology than amyloid deposition alone.
Additionally, we examined CSF biomarkers of neuronal
degeneration, including t-tau, NFL, and neurogranin. CSF
t-tau and NFL are thought to reflect axonal integrity [27]
(with higher levels indicating greater axonal degeneration),
while neurogranin is expressed in dendritic spines and
reflects synaptic integrity [24]. We found that CSF TMAO
was associated with increased CSF t-tau and NFL, but not
neurogranin, suggesting that TMAO is related to axonal
injury, but not dendritic degeneration. Taken together, our

results suggest that while TMAO may not be a primary
driver of amyloid production, it may impact vulnerable
neurons and contribute to neurodegeneration.
As a metaorganismal metabolite, the production and

accumulation of TMAO is dependent on both bacterial
and host metabolism. The gene cluster required for
bacterial enzymatic conversion of choline to TMA is
distributed widely and discontinuously among gut bacterial
taxa [9, 28, 29]. Thus, the presence of TMA-producing bac-
teria cannot be predicted from bacterial 16S rRNA gene se-
quencing studies. In the host, oxidation of TMA via FMO3
in the liver can also regulate TMAO levels [30]. Additionally,
while both vegetarians and omnivores are able to convert
choline to TMA [7, 31], long-term dietary habits can influ-
ence TMAO accumulation via changes in gut microbiota
composition, which modulates TMA production potential.
TMAO is thought to contribute to disease pathogenesis

through a variety of mechanisms including altering lipid
and hormonal homeostasis, promoting platelet hyperreac-
tivity [8], modulating cholesterol and sterol metabolism,
decreasing reverse cholesterol transport [7], and inducing
endothelial dysfunction through activation of the NLRP3
inflammasome [32]. In the brain, TMAO has been shown
to induce neuronal senescence, increase oxidative stress,
impair mitochondrial function, and inhibit mTOR signaling
[11], all of which contribute to brain aging and cognitive
impairment. Additionally, TMAO upregulates macrophage

A
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Fig. 2 Relationship between CSF TMAO and CSF AD biomarkers (a–c) and biomarkers of neuronal degeneration (d–f). CSF TMAO is significantly
positively correlated with phosphorylated tau (p-tau), p-tau/Aβ42, total tau (t-tau), and neurofilament light chain protein (NFL), after controlling for
age and sex. Scatterplots show individual data points (n = 410) colored by 2D kernel density estimation. Hotter colors represent higher density;
black line represents best linear fit between variables; shading represents 95% confidence interval of fit. CSF TMAO expressed as natural log-
transformed scaled intensity units (SIU). Aβ, beta-amyloid CSF cerebrospinal fluid, TMAO trimethylamine N-oxide
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scavenger receptors and induces CD68 expression [7, 33], a
cellular marker positively associated with dementia [34].
Vascular risk factors are increasingly recognized as

important contributors to AD dementia [35], and cerebro-
vascular pathology commonly coexists with AD pathology
at autopsy [36]. TMAO is causally linked with exacerba-
tion of atherosclerosis in a genetically modified mouse
model [6, 7], and the presence of intracranial atheroscler-
osis is an independent risk factor for dementia [37]. Thus,
one potential mechanism by which TMAO may play a
role in AD pathology is through the promotion of cere-
brovascular disease. Of note, in the present study,
cognitively-unimpaired, MCI, and AD individuals did not
differ with respect to cardiovascular disease risk factors
(BMI, blood pressure, cholesterol, and fasting glucose),
suggesting that differences observed in TMAO between
groups did not reflect underlying differences in cardiovas-
cular disease status. Moreover, controlling for peripheral
vascular disease risk factors did not change the associa-
tions between CSF TMAO and biomarkers of AD and
neurodegeneration, suggesting that TMAO may have an
impact independent of vascular effects. However, our
study did not examine direct measures of central vascular
disease, and future studies are needed to more fully exam-
ine the relationship between TMAO and cerebrovascular
health.
TMAO is elevated in individuals with diabetes [38]

and has been shown to promote insulin resistance in mice
fed a high-fat diet [5]. Given that diabetes and insulin
resistance are risk factors for developing AD [39, 40], ele-
vated TMAO in the CNS may exacerbate central insulin
resistance and AD pathogenesis. Finally, mitochondrial
dysfunction and increased oxidative stress are ubiquitous
features of AD pathology [41]; mice treated with dietary
TMAO show increased brain aging with similar features
[11], suggesting elevated TMAO may accelerate neurotox-
icity and neurodegeneration in the context of AD path-
ology. However, additional work is needed to determine
the potentially multifactorial pathways by which TMAO
impacts the brain. Given that our results indicate that
TMAO may be more relevant to neurodegenerative
changes rather than initiation of Alzheimer’s-specific
amyloid pathology, CSF TMAO levels should be investi-
gated in other neurodegenerative disorders (e.g., Parkinson’s
disease).

Conclusions
In this study, we demonstrate that the gut microbiota-
derived metabolite TMAO is elevated in the CSF of indi-
viduals with MCI and AD dementia, and that levels of
CSF TMAO are associated with CSF biomarkers of AD
pathology and neuronal degeneration. These results
provide additional evidence for an association between
TMAO and AD, and further inform the role of gut

microbiota in AD. Longitudinal studies are needed to
determine whether elevated TMAO during mid-life
predicts subsequent development or exacerbation of
AD pathology. In this scenario, pharmacological agents
designed to inhibit gut microbial TMAO production
may be useful in slowing AD pathology [42].

Additional file

Additional file 1: Methods. Additional details from Metabolon for
methodology of CSF TMAO quantification. Figure S1. Relationship
between CSF TMAO and CSF AD biomarkers (A–C) and biomarkers of
neuronal degeneration (D–F). Table S1. Summary of multiple linear
regressions testing relationships between CSF TMAO and CSF biomarkers
of AD pathology and neurodegeneration. (PDF 895 kb)
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