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Abstract

Background: Quantifying changes in the levels of biological and cognitive markers prior to the clinical presentation
of Alzheimer’s disease (AD) will provide a template for understanding the underlying aetiology of the clinical
syndrome and, concomitantly, for improving early diagnosis, clinical trial recruitment and treatment assessment.
This study aims to characterise continuous changes of such markers and determine their rate of change and
temporal order throughout the AD continuum.

Methods: The methodology is founded on the development of stochastic models to estimate the expected time
to reach different clinical disease states, for different risk groups, and synchronise short-term individual biomarker
data onto a disease progression timeline. Twenty-seven markers are considered, including a range of cognitive
scores, cerebrospinal (CSF) and plasma fluid proteins, and brain structural and molecular imaging measures. Data
from 2014 participants in the Alzheimer’s Disease Neuroimaging Initiative database is utilised.

Results: The model suggests that detectable memory dysfunction could occur up to three decades prior to the
onset of dementia due to AD (ADem). This is closely followed by changes in amyloid-β CSF levels and the first
cognitive decline, as assessed by sensitive measures. Hippocampal atrophy could be observed as early as the initial
amyloid-β accumulation. Brain hypometabolism starts later, about 14 years before onset, along with changes in the
levels of total and phosphorylated tau proteins. Loss of functional abilities occurs rapidly around ADem onset.
Neurofilament light is the only protein with notable early changes in plasma levels. The rate of change varies, with
CSF, memory, amyloid PET and brain structural measures exhibiting the highest rate before the onset of ADem,
followed by a decline. The probability of progressing to a more severe clinical state increases almost exponentially
with age. In accordance with previous studies, the presence of apolipoprotein E4 alleles and amyloid-β
accumulation can be associated with an increased risk of developing the disease, but their influence depends on
age and clinical state.

Conclusions: Despite the limited longitudinal data at the individual level and the high variability observed in such
data, the study elucidates the link between the long asynchronous pathophysiological processes and the preclinical
and clinical stages of AD.
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Background
Alzheimer’s disease (AD) is a neurodegenerative disorder
with long preclinical and prodromal stages [1, 2], where
pathophysiological changes, and potentially irreversible
brain damage, occur many years prior to clinical mani-
festation. Despite the problems and practicalities of col-
lecting frequent biomarker data over a long period of
time, research over the last two decades has improved
our understanding of the natural history of AD and
demonstrated the importance of considering the disease
as a multifaceted process moving along a biological and
clinical continuum [3].
To date, there is limited longitudinal data for individ-

uals with repeated biomarker measures throughout the
AD continuum. Hence, descriptions of the continuous,
temporal dynamics of potential biological and clinical
markers during the progression of individuals from
healthy stages to dementia due to AD (ADem) are
mainly based on highly heterogeneous data collected
over a relatively short period of time. Previous work has
mainly focused on the description of the dynamics
within different clinical states [4, 5]. In studies of auto-
somal dominant AD, early pathologic changes can be de-
scribed as a function of the expected time to symptoms
onset. This time is predicted based on the age of the in-
dividual and a retrospective estimate of the age at which
the parent developed AD symptoms [6]. Estimates in
these studies have also been produced based on the
mean age at onset of all other individuals with the same
autosomal dominant AD mutation type [7]. In the com-
mon form of sporadic AD, estimating the time required
to reach a disease state is more challenging [8]. Tech-
niques that have been employed for the prediction of the
dynamics of biomarkers include the synchronisation of
individual data based on a disease progression score,
which can be a function of the individual’s age [9, 10],
and the optimal alignment of individuals’ biomarker tra-
jectories with the estimated long-term population-level
trajectory [11, 12]. Time-dependent changes of potential
biomarkers have also been characterised on different
scales of disease progression based on the individual bio-
marker rate of change as estimated from the short-term
longitudinal observations [2, 13–15]. Other data-driven
progression models have recently emerged for the de-
scription of disease progression without the need of a
priori staging of individuals [13].
Although the description of the evolution of potential

biomarkers without relying on pre-defined clinical stages
has its own merits, the diagnosis of AD based exclusively
on the presence of abnormal levels of specific bio-
markers is still under research [16]. On the other hand,
categorising individuals using clinical syndromic criteria
is useful in clinical practice [17]. Despite the challenges
and limitations, this categorisation has been helpful in

clinical and epidemiological studies, including the evalu-
ation and standardisation of individuals’ clinical state
and the assessment of the public health impact and cost
of care.
In this study, we aim to describe the pathophysio-

logical changes that may be observed during the clinical
progression from cognitively healthy stages to Alzhei-
mer’s clinical syndrome [16] and provide further insights
into their temporal relation. Based on the clinical diag-
nosis and a set of demographic and genetic factors, we
develop a stochastic model to estimate the expected time
required for an individual at a specific clinical state to
reach any of the more severe states. Three commonly
accepted clinical states are considered: the cognitively
normal state (CN), the mild cognitive impairment state
(MCI) and the ADem state [16, 18]. Two established
major risk factors for sporadic Alzheimer’s are taken
into account: the presence of the apolipoprotein E ɛ4
genotype (APOE ɛ4) [19] and age. We also extend the
model to consider the effect of educational attainment
[20]. Individual data from a range of cognitive and
pathologically relevant disease markers are aligned based
on their temporal distance from a disease state. Assum-
ing that similar biological and cognitive changes occur
in all individuals within a defined risk group, the
population-level dynamics of markers and a temporal
order of changes are estimated. The focus is on the link
between dynamic pathophysiological changes and the
clinical presentation of various clinical stages of AD.

Methods
Clinical progression
The model
We developed a Markov model to estimate the expected
time needed for different risk groups to reach a given
clinical state, provided individuals will eventually de-
velop ADem, i.e. that death is not a competing event
and ADem is the only absorbing state.
Let aI{S} denote the group of individuals at age a that

have a set of time-invariant characteristics {S}. Individ-
uals aI{S} that have been clinically classified in state A
can transition to state B within the next year with prob-

ability apfSgA;B . The possible transitions between the three

clinical states, CN, MCI and ADem, are as shown in the
schematic diagram in Fig. 1 [21, 22].

Transition probabilities
Generalised linear mixed models (GLMMs) with a logit
link function were developed and fitted, and then the
probability of transitioning from state A to state B was
estimated conditional on the covariates [23]. The main
model incorporated four covariates, namely, age (age-
squared) at the point of transition to a clinical state
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(continuous, centred at 50 years and scaled by a factor of
100 to normalise), APOE ε4 status (binary, presence/ab-
sence of APOE ε4 alleles), time between clinic visits in
years (centred at 12 months) and the current diagnostic
state (CN, MCI, ADem). An interaction term between
age-squared and diagnostic state was also included. We
also explored the significance of an interaction term be-
tween APOE ε4 status and age in the model. While sev-
eral studies have reported that APOE ε4-related risk for
developing ADem may vary significantly with age [24,
25], in the sample dataset we considered it has been
shown that this term is not significant (p > 0.7, checked
at the 5% level of significance) and the model without
the interaction term provides better fits to the data.
When the educational level was incorporated into the
model, this was defined dichotomously based on the
number of years of education; ≤16 or >16. The choice of
16 years as the cut-off point in education has been made
based on the median (= 16) and mean (= 16.04) of the
years of education in the sample. Details of the GLMM
are provided in Additional file 1: Section S1.

Expected time to MCI and ADem
Given the demographic and genetic characteristics of in-
dividuals at the time point of each measurement, and
the respective transition probabilities from that point,
the expected time required to reach a more severe state

was estimated using the formulae derived from the sto-
chastic model, presented in Additional file 1: Section S2.

Marker trajectories
Development
We assumed that during the development and progres-
sion of the disease, all individuals in a defined risk group
(see the ‘Dataset: the Alzheimer’s Disease Neuroimaging
Initiative’ section) present similar cognitive and bio-
logical dynamic changes. First, the measurements from
individuals that have developed ADem during the study
were aligned on a disease progression timeline, where
time 0 is the time of ADem onset (visit at which ADem
was first diagnosed). In order to provide insight into the
behaviour of the markers after ADem onset, measure-
ments of individuals that were diagnosed with ADem at
their first visit have also been included by using the best
estimate of the year of onset of ADem symptoms as re-
ported in the data (years from ADem onset ≈ exam
date – estimated date of onset, available in ADNI-1 and
ADNI-GO). Following the calculation of the expected
time to ADem from each measurement of CN and MCI
individuals that have not developed ADem during the
study, all their biomarker data were also aligned on the
same disease timeline (see Fig. 1). Based on conceptual
models and current evidence in the literature [9, 26], it
was assumed that markers are monotonically decreasing

Fig. 1 Example illustrating the procedure for the development of biomarker trajectories. In the first step, the observed data is collected and the
characteristics of individuals are considered. In the second step, those individuals that have transitioned to ADem during the study are aligned on
a disease progression timeline, where time 0 is the time of the first ADem diagnosis. In the third step, for every individual that has not developed
ADem symptoms during the study, the Markov model is used to estimate the expected time (number of years) until ADem; given their
demographic and genetic characteristics (here, their age and APOE ε4 status), the expected time to ADem diagnosis is estimated using the
formulae derived analytically (Additional file 1: Section S2). The distributions of the 1-year transition probabilities used in the Markov model have
been estimated from a generalised linear mixed model (see the ‘Transition probabilities’ section and Additional file 1: Section S1) using the Gibbs
sampler (the ‘Statistical analysis’ section). In the last step, a sigmoid function (linear for Aβ1–40, Aβ1–42 and t-tau markers in plasma) is fitted to
each biomarker data using non-linear least square estimation. The time point at which the first significant biomarker change occurs (green) is
defined as the first point at which the 95% CI of the mean biomarker level does not overlap with the 95% CI of the initial mean biomarker level.
The 95% CI of the best fit was estimated using the delta method. The inflection point (purple) is the point at which the maximum biomarker rate
of change is reached, that is, the point at which the second derivative of the best fit is equal to 0
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or increasing during the disease progression following a
non-linear temporal course, and in particular, a sig-
moidal type pattern. This excludes the Aβ1–40, Aβ1–42
and total tau (t-tau) markers in plasma which, due to
small changes during the clinical progression, were de-
scribed by a linear model of the form B(tADem) = r1 +
r2tADem, where tADem (independent variable) is the time
from ADem, and tADem = 0 corresponds to the time of
the first ADem diagnosis. A sigmoid function of the fol-
lowing form was fitted to each dataset for each other
marker B:

B tADemð Þ ¼ r1 þ r2−r1
1þ exp r3 tADem−r4ð Þð Þ : ð1Þ

We restricted r3 < 0, so r1 is the value that B(tADem)
approaches to as tADem→ − ∞, and r2 is the value that
B(tADem) approaches to as tADem→∞.

Normalisation
Changes in the potential AD markers have been consid-
ered collectively on the same scale by using the min-
max normalisation method, so that the normalised form,
Bnorm, of the mean trajectory B is given by:

Bnorm tADemð Þ ¼
B tADemð Þ− lim

tADem→−∞
B tADemð Þ

lim
tADem→−∞

B tADemð Þ− lim
tADem→þ∞

B tADemð Þ
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:

ð2Þ

lim
tADem→−∞

BnormðtADemÞ ¼ 0 is thus the healthiest level

(normal), and lim
tADem→þ∞

BnormðtADemÞ ¼ 1 is the most se-

vere level (abnormal). The limits of B(tADem), lim
tADem→−∞

Bð
tADemÞ and lim

tADem→þ∞
BðtADemÞ are fixed to the respect-

ive limits of the best fit of B(tADem).

First biomarker change, rate of change and inflection
point
We considered the time of the first significant biomarker
change to be the first time point at which the 95% confi-
dence interval (CI) of the predicted mean biomarker
level does not overlap with the 95% CI of the predicted
mean value before any change (the lowest or the highest
mean value, depending on whether the biomarker
monotonically increases or decreases). For each normal-
ised marker trajectory, the instantaneous rate of change,
which represents the change in the marker level at each
instant in time, and the inflection point, which is the
point at which the maximum rate is observed before
start declining, have also been considered. These were
derived by calculating the first and the second derivative,
respectively, of the equation describing the trajectory.

Markers considered
We focused our study on a number of markers that,
alone or with other markers, could serve as indicators of
AD progression and/or endpoints in clinical trials.
Twenty-seven markers have been considered in total.
The markers can be classified into four main categories:
markers of cognitive performance, biological markers
that can be measured in cerebrospinal (CSF) and plasma
fluid, and neuroimaging markers.

Cognitive markers
Two AD Assessment Scale-Cognitive Subscale tests
which serve as AD and dementia indicators: the ADAS-
Cog 11 (ranged from 0 to 70, with the first number be-
ing the least severe and the last the most severe [27])
and the ADAS-Cog 13 (0 to 85) [28]; the Mini-Mental
State Examination (MMSE) test (30 to 0) [29] which is
an indicator of mental status; the Clinical Dementia Rat-
ing Scale-Sum of Boxes (CDR-SB) (0 to 18) [30, 31]; the
Montreal Cognitive Assessment (MoCA) (30 to 0) [32];
and the Functional Activities Questionnaire (FAQ), con-
cerned with performing daily tasks necessary for inde-
pendent living (0 to 30, with higher scores reflecting
greater dependency) [33]. Two efficient neuropsycho-
logical instruments for evaluating different aspects of
episodic memory have also been considered: the Rey’s
Auditory Verbal Learning Test (RAVLT) [34] (here, we
focused on RAVLT-Immediate recall scores (RAVLT_
Immediate, 75 to 0)), and the Logical Memory-Delayed
recall scores (LM_Delayed, 25 to 0) [35]. Additionally,
we investigated the change in two composite scores,
each of which is a weighted combination of components
of well-validated neuropsychological tests. The first is
the Preclinical Alzheimer Cognitive Composite [36]
(PACC, the modified version of [37] to include the Trail
Making Test B), which has been designed to serve as the
primary outcome measure for trials conducted at the
asymptomatic phase of the disease (lower scores indicate
more severe impairment). The second is the AD Com-
posite Score (ADCOMS) (0 to 1.97) [38], which has been
developed to detect a related clinical decline in amnestic
MCI due to AD, and prodromal and mild AD.

CSF markers
The 42-amino acid form of amyloid β protein, Aβ1–42,
which indicates brain amyloid pathology [39]; the neuro-
filament light (NfL), a biomarker of neuroaxonal injury
or neurodegeneration [40]; the total tau (t-tau) and
phosphorylated tau (p-tau) proteins [39], which can be
considered as potential biomarkers of Alzheimer-type
axonal degeneration and neurofibrillary tangle forma-
tion, respectively; and neurogranin (Ng), which has also
recently emerged as a potential synaptic biomarker [41].
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Plasma fluid markers
Aβ1–40; Aβ1–42; NfL; t-tau.

Neuroimaging markers
The MRI volumetric measurements of the following
brain regions have been considered: hippocampus, whole
brain, entorhinal cortex, fusiform gyrus and middle tem-
poral gyrus [42]. To account for the inter-individual
variation in head size, all volumes of interest have been
normalised for total intracranial volume (ICV) [43], pro-
ducing a unitless value between 0 and 1. We also consid-
ered 18F-fluorodeoxyglucose (FDG) positron emission
tomography (PET) which is used to visualise changes in
the cerebral glucose metabolism [44], and standardised
uptake value ratio (SUVr) for Pittsburgh compound B
(PiB)-PET [45] and florbetapir (F18-AV-45) PET [46],
which both allow in vivo assessment of cerebral amyloid
load.

Dataset: the Alzheimer’s Disease Neuroimaging Initiative
The dataset used was obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (adni.
loni.usc.edu, last downloaded on September 1, 2018).
ADNI is a multisite (63 ADNI clinical trial sites are lo-
cated across the USA and Canada) longitudinal study of
normal cognitive ageing, MCI and early AD individuals.
It has four phases: ADNI-1, ADNI-GO, ADNI-2 and
ADNI-3. ADNI is not a population-based study; its
population represents a primarily amnestic clinical
population that can be used in treatment trials. Partici-
pants were recruited following specific recruitment
methods. The procedure of ADem clinical diagnosis fol-
lows the standardised clinical criteria as outlined by the
NINCDS-ADRDA guidelines [18]. For a detailed list of
all diagnostic, and inclusion and exclusion criteria,
readers are referred to the Procedures Manual (http://
adni.loni.usc.edu/methods/documents).
The original dataset obtained from ADNI consists of

2066 individuals. The study duration up to the time the
current analysis was performed is about 12 years. Re-
peated assessments took place every 6 months for the
first 2 years and yearly afterwards. Two hundred fifty-
five participants (from ADNI-2) were categorised as ‘sig-
nificant memory concern’ (SMC) at baseline, and in the
current analysis, were combined with individuals diag-
nosed as CN; the key inclusion criteria that distinguish
SMC are a self-report significant memory concern from
the participant, although participants in this class scored
within the normal range for cognition (or CDR = 0).
However, this is not equated as progressive memory im-
pairment or as consistent forgetfulness. In addition, in
ADNI-2, MCI is divided further into ‘early MCI’ (EMCI)
and ‘late MCI’ (LMCI), and in this analysis, the MCI
subtypes were combined. Thirty-two individuals that

had only a screening visit/diagnosis (preceding the base-
line visit/diagnosis) were excluded from the analysis.
Out of the 698 individuals that developed dementia, 20
developed non-Alzheimer’s dementias and were also
removed.
For the prediction of clinical progression and calcu-

lation of the transition probabilities, we used only
those individuals that had at least two visits with clin-
ical diagnosis. For the development of a marker tra-
jectory in a specific risk group (e.g. those that
reached abnormal amyloid levels), all available
individual-level measurements in that group were uti-
lised, given that all information for the calculation of
the expected time to ADem from the point of meas-
urement was available. The trajectory of each marker
was first estimated independently for the entire sam-
ple (Additional file 1: Section S3, Fig. S1); the ADNI
dataset consists of a highly selective clinical popula-
tion that can be considered as a good representation
of a population that will most likely be affected by
AD. The same method was then applied for only
those individuals that have shown some evidence of
substantial Aβ in their brain (amyloid-positive individ-
uals), and so have an increased chance of being in
the Alzheimer’s continuum [12, 16]. In particular, in-
dividuals that have ever crossed one of the following
thresholds have been considered as amyloid-positive
individuals: CSF Aβ1–42 = 880 pg/mL [47] or/and glo-
bal PET florbetapir SUVr = 1.11, normalised to the
whole cerebellum [48], or/and PiB-PET SUVr (stan-
dardised in the region relative to cerebellar grey mat-
ter) = 1.5 [2, 49, 50]. For the development of the
trajectories in the subset of amyloid-positive individ-
uals, the transition probabilities were re-calculated in
this group.
To make a comparison of the times at which the first

significant changes and the inflection points of bio-
markers occur, the analysis was performed on a reduced
dataset. The complete data for all biomarkers was not
sufficient to support the model and provide good esti-
mations for all biomarkers. As a compromise, we have
chosen only the measurements at the visits where CSF
Aβ1–42 was available; CSF Aβ1–42 is one of the markers
with the lowest number of measurements, and many of
the other markers have also been measured when CSF
Aβ1–42 was measured (see Additional file 1: Section S3,
Table S1). Data of CSF NfL and Ng, the plasma markers
and PiB-PET could not always support the sigmoid func-
tion and have been excluded from the comparison with
other markers of disease progression.

Statistical analysis
The transition probabilities of the model were estimated
using the Gibbs sampler, which is a Markov chain
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Monte Carlo (MCMC) algorithm. It was assumed that
all parameters had improper uniform prior distributions,
and convergence of the MCMC algorithms was assessed
visually from the traces of each parameter. A number of
GLMMs consisting of different combinations of variables
have been considered. The model selection procedure
was based on the deviance information criterion (DIC).
The MCMC algorithms and goodness of fit statistics
were implemented within the runMLwiN function from
the R2MLwiN package in R [51].
The models of biomarker dynamics were fitted using it-

erative non-linear least square estimation, by initiating
each step using the best parameter estimates of the previ-
ous step until the parameter estimates are optimised.
When fitting the model, we took into account any known
lower and upper limits of the markers, and we restricted
r1, r2 and the prediction intervals accordingly so that the
estimated values fall within these limits. For markers for
which these limits are unknown, the lowest and highest
values observed in the original dataset were used. The bio-
marker trajectories and all figures in the study were pro-
duced using MATLAB R2019a.
The 95% CI of all quantities have been computed

using the 2.5th and 97.5th percentiles of the distribution
obtained by performing the analysis on 500 bootstrap
samples (produced by random sampling with replace-
ment from the observations in the original sample used
in each case, so that the number of measurements at
each clinical state was equal to that of the original sam-
ple). For each bootstrap sample, probabilities of transi-
tioning to different states were drawn at random from
the respective probability distributions produced using
the MCMC algorithm. The expected times to ADem on-
set were calculated for every individual in the sample,
and the model of biomarker dynamics was fitted to it.
The delta method was used to estimate the 95% CI of
the best fit in each iteration of bootstrap resampling,
which in turn was used for the calculation of the first
significant biomarker change. For each marker, and each
time point, we also estimated the 95% prediction interval
for new observations (non-simultaneous bounds), which
indicates the confidence that the new observation will lie
within that interval given a single observation time point
(predictor value). In addition to quantifying model un-
certainty, further analysis has been performed to evalu-
ate the performance of the model, including a single
train-and-test experiment (holdout method), where the
dataset of individuals that were CN at baseline and de-
veloped MCI and ADem during the study serves as the
test set (Additional file 1: Section S7).

Results
Individuals were removed from the dataset subject to
the constraints described in the ‘Methods’ section, which

yielded data from 2014 individuals. The baseline com-
position and characteristics of the population included
in the analysis are presented in Table 1. Additional file 1:
Section S3, Fig. S2 shows the age distribution of carriers
and non-carriers of APOE ε4. During follow-up of these
individuals, 7460 subsequent visits with clinical diagnosis
following a previous diagnosis have been recorded
(Table 2). Here, we present and focus on the results de-
rived when utilising the entire sample independently of
amyloid status. The change in the transition probabilities
and expected time to ADem in amyloid-positive individ-
uals, and the estimated biomarker trajectories in this
group, are discussed in Additional file 1: Section S8. In
addition, although we considered the influence of educa-
tion and we present the results of its potential impact on
the transition probabilities and expected time to ADem
(see Additional file 1: Section S4, Fig. S3), due to the
minor and, as yet, unclear effect on the biomarker dy-
namics, all the biomarker trajectories presented in this
study have been developed based on the model that does
not incorporate education.
The transition probabilities and the expected times to

MCI and ADem onset as a function of age are illustrated
in Fig. 2 for carriers and non-carriers of APOE ε4. It is
observed that the probabilities increase almost exponen-
tially with age, yielding a decrease in the required time
to reach more severe clinical states. Depending on age
and disease stage, the presence of APOE ε4 increases the
likelihood and rate of progression. The time to ADem
from the CN and MCI states is decreased by more than
10 and 5 years, respectively, when individuals aged 80
years or less are carriers of the APOE ε4 genotype.

Biomarker trajectories
For all markers, it is observed that there is a great deal
of overlap in measurements across the different diagnos-
tic states, i.e. no single marker is able to accurately dis-
tinguish between clinical states (Fig. 3—the parameter
estimates of all the biomarker trajectory models are pro-
vided in Additional file 1: Table S2). Although it is diffi-
cult to draw any conclusions at the individual level, at
the population level, the overall biomarker changes oc-
curred during disease development are in agreement
with those reported in previous studies; CSF Aβ1–42
levels are reduced, p-tau and t-tau levels in CSF and
amyloid levels in the brain are elevated, and brain atro-
phy and hypometabolism, as well as cognitive and mem-
ory dysfunction, are observed.
Due to the high variability in measurements, a definite

sequence of biomarker changes is difficult to clearly de-
fine. However, our model suggests that on average, the
concentration of Aβ1–42 in CSF demonstrates slow
pathologic changes occurring about 23.2 (95% CI, 18.9–
28.6) years prior to the clinical presentation of ADem
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(Figs. 3, 4 and 5). The rate of change peaks much later,
approximately 3.6 (95% CI, 0.9–7.7) years before the
ADem clinical symptoms onset, and is followed by a
slower deposition which tends towards a plateau. Detect-
able changes in CSF t-tau and p-tau proteins occur later
displaying a similar dynamic, approximately 14 years
prior to the ADem onset. No significant difference in
the time of occurrence was observed (13.8 (95% CI,
11.1–17.8) years for p-tau and 14.2 (95% CI, 11.4, 18.2)
years for t-tau). On average, PET evidence of Aβ accu-
mulation (AV-45-PET) and brain hypometabolism on
FDG-PET are also observed around the same time
(Fig. 5).
The hippocampus tends to be the first brain structure

affected by the disease; we estimate that detectable hip-
pocampal atrophy could occur as early as the first signs
of amyloid deposition (18.8 (95% CI, 13.1–22.8) years
before the ADem onset). Changes in other structural
neuroimaging markers, including the whole brain vol-
ume (11.7 (95% CI, 7.1–17.3) years before the ADem

onset), are likely to occur much later in the course of
the disease (Fig. 5).
Cognitive scores may better reflect continuous changes

occurring during clinical progression, albeit with high
variability (Fig. 3), with notable changes being observed
closer to the onset of ADem. Memory dysfunction, indi-
cated by detectable changes in the LM_Delayed
and RAVLT_Immediate scores, could be observed even
earlier than changes in CSF Aβ1–42, 26.5 (95% CI, 24.1–
29.5) and 25.6 (95% CI, 21.9–28.3) years, respectively,
before the onset of ADem clinical symptoms (Fig. 5 and
Additional file 1: Section S6, Fig. S4). It is also observed
that these markers worsen almost in parallel with this
protein throughout the full progression period of the
disease (Fig. 4). Changes in sensitive scores of clinical
performance, such as PACC, could occur as early as 20.5
(95% CI, 15.9–24) years before ADem and could thus
serve as indicators of early cognitive decline in preclin-
ical AD populations. Global cognitive decline, as
assessed by CDR-SB and MMSE, and functional abilities,
as assessed by FAQ score, occur last, a few years before
the ADem onset (7.2 (95% CI, 3.9–13.6), 4.3 (2.8–7.6)
and 5 (3.2–7.74) years before ADem, respectively, see
also Additional file 1: Section S6, Fig. S4 on the whole
dataset). However, FAQ changes at a very high rate, with
the highest acceleration occurring within 1 year after the
ADem onset (0.16 (95% CI, 0.58–0.63) years after the
onset).
Variations in the levels of plasma markers are difficult

to discern. Changes in plasma NfL are more pronounced

Table 1 Dataset used. Number and characteristics of the 2014 individuals included in this analysis, by clinical diagnosis at baseline

Clinical state at baseline

CN MCI ADem

Number of individuals

Total 749 910 355

Chronological age at baseline (years) ≤ 70 241 308 85

70 < age < 80 402 423 170

> 80 106 179 100

Gender Women 413 370 157

Men 336 540 198

Years of education ≤ 16 385 537 247

> 16 364 373 108

Genetic background (APOE ε4) Non-carriers of ε4 allele 370 420 114

Carriers of 1 ε4 allele 135 337 159

Carriers of 2 ε4 alleles 12 92 65

Other characteristics (standard deviation of the mean in brackets)

Average age at baseline (years) 73.20 (6.17) 73.04 (7.62) 75.03 (7.88)

Average number of years of education 16.55 (2.57) 15.93 (2.82) 15.24 (2.99)

Average time between visits (years) 1.02 (0.58) 0.8 (0.38) 0.64 (0.27)

Average follow-up (years) 3.36 (3.43) 3.69 (2.62) 1.38 (0.85)

Table 2 Number of transitions from one clinical state to
another during follow-up

Subsequent clinical diagnosis

CN MCI ADem

Clinical diagnosis CN 2310 138 4

MCI 104 3112 351

ADem 0 26 1415
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compared to that of the other plasma markers, with the
NfL concentration rising at early stages in disease devel-
opment. Elevated levels of plasma t-tau are observed at
more severe clinical states [52].
Figure 5b illustrates the time between the inflection

point and the ADem onset. This is a good measure
in the sense that it can be used to order important
changes in the levels of the markers. On average, the
highest acceleration of decline in all functional and
cognitive abilities, as well as FDG-PET hypometabo-
lism, is expected to take place soon after the clinical
manifestation of ADem, following cerebral atrophy, as
assessed by the MRI brain volumetric measures. CSF
markers, memory impairment (as assessed by LM_De-
layed score) and AV-45 PET, which is one of the
most direct measures of Aβ accumulation in the
brain, could exhibit the highest rate of change much
before the ADem onset [6, 13] (Fig. 5 and
Additional file 1: Section S6, Fig. S4).

Discussion
In this study, we aimed to characterise the continuous
pathophysiological changes that may be observed across
the clinical spectrum of AD and facilitate the interpret-
ation of such changes in clinical settings. We first devel-
oped a mathematical model with a probabilistic
structure to estimate the expected time interval for each
individual from the time of measurement to the onset of

a particular clinical state, focusing on the onset of
ADem. We then employed these estimates to align
short-term individual measurements of cognitive and
biological markers on a clinical progression timeline and
model their long-term temporal dynamics at the popula-
tion level. It should be emphasised that although age is
one of the important factors affecting the time to a clin-
ical state, individuals are not aligned based on their age,
and, despite the high variability, the overall biomarker
trajectory can show changes that can occur across the
clinical progression to ADem, independently of ageing.
It was shown that the probability of moving to a more

severe clinical state increases almost exponentially with
age. Depending on the age and clinical state, both the
presence of an APOE ε4 allele and lower levels of educa-
tion increase the likelihood and rate of developing symp-
toms of ADem, but the presence of APOE ε4 was shown
to be the dominant factor (it is worth noting that studies
have shown that APOE ε4 is linked to CSF Aβ1–42 accu-
mulation [8, 53]). However, since ADNI is a sample of
highly educated people (mean 16 years), the actual influ-
ence of education on the clinical expression of AD is un-
clear in this study and should be interpreted with
caution. Many previous studies have shown an associ-
ation between ADem onset and educational attainment,
which could be partly attributed to resistance to cogni-
tive decline due to cognitive reserve, literacy abilities,
socioeconomic status, engagement in cognitively

Fig. 2 Probabilities and times to a more severe clinical state. Probabilities of transitioning to a more severe state within 1 year (top), and the
expected time to reach a more severe state (bottom), as a function of age in the groups of carriers and non-carriers of APOE ε4. The shaded area
represents the values within one standard deviation from the mean transition probabilities
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Fig. 3 Trajectories of cognitive, CSF, plasma and neuroimaging markers. The black solid line represents the best fit of the sigmoid function (linear for Aβ1–
40, Aβ1–42 and t-tau in plasma), the dashed thick lines is the 95% prediction interval and the dashed thin lines are the estimated 95% bootstrap CI (the
2.5th and 97.5th percentiles for each time point). The light grey lines are the best fit of the function to 100 randomly selected bootstrap samples (out of
the 500). The symbols show individual measurements (blue (circles), CN; orange (squares), MCI; red (asterisks), ADem). The vertical dashed and thick dotted
lines represent the average expected time from ADem onset of individuals that are CN (27.75 years) and MCI (9.63 years) at baseline, respectively
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Fig. 4 Normalised trajectories and rates of change. Top row: normalised (min-max) trajectories of cognitive, CSF and neuroimaging markers,
where ‘normal’ is the value in healthy CN individuals (as tADem→ − ∞) and ‘abnormal’ is the value in severe ADem individuals (as tADem→∞).
Bottom row: rate of change of the (normalised) values of cognitive, CSF and neuroimaging markers. The vertical dashed and thick dotted lines
represent the average expected time from ADem onset of individuals that are CN (27.75 years) and MCI (9.63 years) at baseline, respectively

Fig. 5 Initial biomarker changes and inflection points. a The estimated time of the initial change of each of the cognitive, CSF and neuroimaging
markers. b The time at which the inflection point is reached. Error bars show the 95% CI for the mean, estimated by calculating the 2.5th and
97.5th percentiles of the outputs obtained from 500 bootstrap samples. Only the visits at which CSF Aβ1–42 was measured have been included in
the analysis. The plasma markers, PiB-PET and CSF NfL and Ng, have been excluded. Norm HV, normalised hippocampal volume; Norm ECV,
normalised entorhinal cortex volume; Norm FGV, normalised fusiform gyrus volume; Norm MTGV, normalised middle temporal gyrus volume;
Norm WBV, normalised whole brain volume
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demanding work, social activities or occupational roles.
This association could also be partly due to a bias in de-
tecting ADem symptoms [54]. However, there are diver-
gent views amongst researchers on the actual impact of
education on the development of AD and the rate of
progression [20, 55, 56].
The results support and contribute to the current un-

derstanding of the quantitative characteristics of the
clinical progression of AD based on multiple clinical and
biological measures [2, 26]. The timespan and sequence
of biomarker changes are also in general agreement with
observations in autosomal dominant AD [6, 57]. In this
study, we estimated and reported the whole time span
between the first detectable dynamic biomarker changes
and the onset of ADem clinical symptoms. On average,
first signs of memory dysfunction and amyloid depos-
ition, as reflected by the levels of Aβ1–42 in CSF, could
be detected at the pre-symptomatic stage up to about
three decades before the occurrence of substantial cogni-
tive and functional decline, which are mainly observed at
early stages of ADem [2]. Both markers also seem to
change at a similar rate during the disease progression.
This may imply a link between memory deficits and ele-
vated amyloid deposition, a view that is supported by
previous reports [2, 58–61]. The value of episodic mem-
ory tests, and associations of changes in the performance
in delayed recall tasks and the clinical progression to
ADem, has also been observed and discussed in previous
studies [2, 9, 10, 62–65]. However, it should be noted
that such markers may not be sufficient for the improve-
ment of participant recruitment and endpoint choice in
very early-stage prevention trials. Even if first CSF Aβ1–
42 changes and disease-associated subtle memory deficits
could be detected very early at the preclinical stage, the
short time window within which substantial changes
occur and the fact that individuals can have amyloid
pathology for a long period without development of sub-
stantial cognitive dysfunction and brain pathology, as
shown in several preclinical studies [8, 61], demonstrate
the difficulties of recruiting individuals at the preclinical
stage of AD and present obvious challenges in the design
of clinical trials of preventative treatments.
An interesting result derived from our analyses is the

suggestion that changes in CSF NfL [40], a biomarker of
neuronal damage, could also occur approximately over
the same timescale as memory decline and Αβ1–42 accu-
mulation in CSF. However, more data is required to sup-
port this suggested pattern. Progressing towards ADem,
signs of memory dysfunction and changes in CSF Aβ1–42
are closely followed by first signs of cognitive decline, as
assessed by sensitive cognitive performance measures
(e.g. PACC), and alterations in brain structure measured
by hippocampal atrophy. The value of such markers, and
in particular the ability of Aβ1–42 in CSF, cognitive (free

recall) and normalised hippocampal volume to predict
the onset of symptomatic sporadic AD (time to CDR >
0), has also been reported in a recent study [8]. Esti-
mated changes in other CSF measures such as t-tau and
p-tau, brain structural measures and brain glucose me-
tabolism are observed later. Loss of functional abilities
occurs last, closer to the ADem onset. Significant atro-
phy in brain regions, such as the entorhinal cortex, fusi-
form gyrus and middle temporal gyrus, occurs after
initial hippocampal atrophy. However, at later stages,
their expected atrophy rate becomes higher than that of
the hippocampus and whole brain, and the estimates of
the time point at which the maximum rate occurs are
relatively precise, which may be attributed to the smaller
size of these structures. Hence, such brain regions may
be more sensitive biomarkers to changes than bigger
brain regions [66]. Significant volume loss in all brain re-
gions is likely to be observed just before the clinical
diagnosis of ADem and rapid decline in cognitive abil-
ities, which may indicate an association.
The accurate measurement of proteins in the blood

and identification of a clear association with brain path-
ology are still challenging, potentially due to the effect of
factors that are not directly related to the disease stage
of individuals, including clearance mechanisms and high
levels of these proteins produced in the peripheral or-
gans. However, the ease and low cost of measurements
have created much interest in identifying reliable and
sensitive peripheral blood-based markers that could
serve as biomarkers of AD [67]. The changes in the
plasma levels of proteins considered in this study were
not as evident as those of other markers measured in
CSF and the brain. However, plasma NfL seems to be a
promising marker that can indicate pathological changes
at early stages in disease development, and therefore, al-
though not specific for AD, it could potentially be con-
sidered as a biomarker for the screening of related
neurodegeneration and disease prognosis, monitoring
and assessment [68–71].
The rate of change and sensitivity of the various

markers varies across the different stages of the AD con-
tinuum [26], and so, the order in which they reach spe-
cific degrees of abnormality may differ. This, perhaps,
suggests that the appropriateness of each marker for dis-
ease diagnosis and monitoring and use in clinical trials
should be based on the disease stage [8, 72]. Considering
the rate of change of potential markers instead of just a
single absolute measure at a specific point in time may
help identify the stage in disease progression [8]. For
some markers, such as t-tau and p-tau, the results sug-
gest that the average rate of change tends to zero around
the occurrence of clinical ADem symptoms. This may be
an implication of severe and irreversible pathological
changes that may happen well before individuals reach
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severe clinical stages. On the other hand, some bio-
markers, such as neuroimaging markers, remain dy-
namic even after onset, which may imply that there
might be late stages where therapeutic interventions can
be effective. Such late biomarkers may also be more use-
ful in monitoring disease progression at severe disease
stages [13]. In this study, it is shown that substantial dy-
namic changes in Aβ1–42 are also expected to continue
to occur after the clinical presentation of ADem. This
contradicts previous studies in preclinical Alzheimer’s
disease which suggested that Aβ1–42 reaches a plateau by
the time of ADem onset [61, 72]. However, the late dis-
ease stages are not well represented in the ADNI sample
which may have biassed the estimation of the late bio-
marker behaviour. Thus, whether biomarkers reach a
plateau or continue to decelerate after ADem onset
needs to be validated when more longitudinal data at
late stages become available.
In addition to modelling the biomarker trajectories

using all available ADNI data, the trajectories have also
been estimated in a sample of individuals that may be
more likely to be in the Alzheimer’s continuum due to
the evidence of brain Aβ accumulation observed during
the study [16]. It has been shown that, on average, indi-
viduals in the amyloid-positive group tend to move fas-
ter towards more severe clinical states, potentially
because they are at an advanced stage in disease devel-
opment. However, no remarkable differences were ob-
served in the average qualitative and quantitative
behaviour of biomarkers throughout the disease progres-
sion when compared to the biomarkers estimated in the
entire sample, especially in the late disease stages. This
may be attributed to the fact that ADNI participants are
a highly selective group who have an increased risk of
developing the disease (almost 50% of the individuals are
classified in the amyloid-positive group). Differences,
however, may be pronounced when comparing the tra-
jectories during follow-up in the study between the
groups of those that have and those that have not shown
elevated levels of Aβ at baseline [37].
It is worth emphasising that whether biomarker changes

as predicted by the models can be detected in a clinical
study is uncertain. The high variability and overlap between
the measurements at the different clinical states confirm
difficulties in detecting significant biomarker changes and
in making accurate predictions at the individual level.
Hence, the order at which changes in biomarkers can be
detected might be different from the current general view
of biomarker change patterns [12]. In addition, due to the
lack of knowledge of the exact impact of each biomarker
change on the biological process of disease development, it
is difficult to assess their importance based on the changes
observed, as a small change in one marker might be more
important than a large change in another marker.

The model estimations are contingent on the validity
of a series of simple assumptions. The mathematical
model assumes that at every given state, the future of
the system (for example, the probability of progressing
to ADem in the next year given the current state is
MCI) is entirely independent of the history of the system
(for example, at which states individuals were before and
for how long). However, this limitation is partly miti-
gated by the fact that transition probabilities in the
model depend on the current diagnostic state and age,
and thus, depending on the clinical state, older individ-
uals are more likely to transition to more severe states
independently of the system’s history. In addition, the
model relies on pre-defined distinct clinical states and
the accuracy of clinical diagnosis. Despite the high meas-
urement noise in clinical scores and the high rate of
clinical misdiagnosis [22], it was also assumed that indi-
viduals transitioned to a different clinical state at the
visit when the diagnostic criteria were satisfied, even
though, due to the long-term/gradual nature of AD pro-
gression and the sequential change in different patho-
physiological processes, defining any other distinct
boundaries between the states is challenging. The
current categorisation of individuals in clinical groups is
also based on a simplified set of criteria, which does not
fully represent their biomarker profile and does not take
into account various sources of uncertainty. Hence, al-
though this classification is useful in clinical practice, it
increases heterogeneity within and overlap between the
biomarker measurements in the clinical groups. Indeed,
the overlap for some biomarkers could also be partly at-
tributed to neurobiological changes occurring in non-
Alzheimer’s ageing population, due for example to age-
ing or the presence of other pathological processes and
neurodegenerative or cardiovascular diseases, that can
be present in all clinical stages [73].
As a biomarker model, and based on the current un-

derstanding of the pathophysiological processes that are
associated with AD [26], a sigmoid function of time was
chosen to describe biomarker temporal dynamics. Des-
pite the high variability and the limited data to support
very early and late stages in disease progression, this
choice was supported by the available data and it de-
scribed quite well the dynamic behaviour of most of the
biomarkers. It also allowed us to estimate when signifi-
cant biomarker changes occur, as well as the point at
which biomarkers are most likely to reach the maximum
rate of change before they potentially begin to plateau.
In addition, it was assumed that all individuals will fol-
low the same pathway of neuropathological changes to-
wards ADem. Although the sample of individuals
considered are at high risk of developing ADem, this
may have resulted in the overestimation of the expected
times to a clinical state, which may have in turn
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influenced the estimation of the biomarker dynamics
and the point at which first significant changes occur.
Although all biomarker data has been synchronised on

the same disease progression timeline independently of
the levels of any of the biomarkers, estimating the trajec-
tories utilising a complete dataset for all biomarkers
would enable us to make a better comparison between
the biomarker dynamics, and in particular the point at
which the first significant change and the inflection
point occur. Due to the limited data, a complete dataset
could not support the model of changes in many bio-
markers and the estimation of the quantities considered.
When utilising the whole dataset, the results produced
were more precise for biomarkers with more measure-
ments, even though in this case many biomarkers may
not be comparable. However, in any case, a definite se-
quence of pathophysiological events that lead to ADem
cannot yet be suggested given the available data. More
frequent measurements taken systematically at the same
time for all biomarkers would enable us to reduce data
variability and produce more precise results. Increasing
the sample size, reducing data heterogeneity and defin-
ing the error of each measurement/assay would greatly
facilitate the detection of even earlier changes than the
ones presented in the current study.
The model can be used to estimate the biomarker tra-

jectories in different risk groups. It can also be extended
to incorporate other potential confounding variables,
such as the level of specific biomarkers; so, given the
characteristics of an individual and the levels of bio-
markers included in the model, the expected time to
ADem, or other disease states, will be estimated. The
same methodology can also be applied to describe the
sequence and magnitude of biomarker changes with re-
spect to the time required to reach a specific biomarker
value, e.g. a defined biomarker threshold/cut-off point
[8, 74]. The estimation of these times could help in the
identification of individuals at the earliest disease stages
that could be recruited in secondary prevention trials,
where, currently, participants are included if they have
already developed a biomarker pathology defined by
conventional biomarker thresholds.

Conclusions
The model presented here estimates the continuous
changes that can be observed in the level of cognitive
and biological markers during the clinical progression of
cognitively unimpaired individuals to Alzheimer’s clin-
ical syndrome. Despite the high variability within and
between individuals at the different clinical states, it
demonstrates the long period of asynchronous patho-
logic changes occurring along with the clinical progres-
sion and supports and complements previous conceptual
and hypothetical models on the pathophysiological

cascade [26]; amyloid deposition and signs of memory
decline can occur in cognitively unimpaired individuals
as early as 30 years prior to the onset of Alzheimer’s
clinical syndrome. A sequence of events, including tauo-
pathy, structural brain changes and neurodegeneration,
follows before the onset of severe cognitive symptoms.
Such models can provide insights into the underlying
causes of the clinical symptoms and support the choice
of appropriate endpoints in clinical trials according to
the stage in disease progression. They can also facilitate
the identification of the position of individuals in the
pathophysiological continuum, which will be an import-
ant tool for improving the recruitment process in clinical
trials and the assessment of treatment outcomes.
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