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Abstract 

Importance: The entry of artificial intelligence into medicine is pending. Several methods have been used for the 
predictions of structured neuroimaging data, yet nobody compared them in this context.

Objective: Multi‑class prediction is key for building computational aid systems for differential diagnosis. We com‑
pared support vector machine, random forest, gradient boosting, and deep feed‑forward neural networks for the 
classification of different neurodegenerative syndromes based on structural magnetic resonance imaging.

Design, setting, and participants: Atlas‑based volumetry was performed on multi‑centric T1‑weighted MRI data 
from 940 subjects, i.e., 124 healthy controls and 816 patients with ten different neurodegenerative diseases, leading to 
a multi‑diagnostic multi‑class classification task with eleven different classes.

Interventions: N.A.

Main outcomes and measures: Cohen’s kappa, accuracy, and F1‑score to assess model performance.

Results: Overall, the neural network produced both the best performance measures and the most robust results. 
The smaller classes however were better classified by either the ensemble learning methods or the support vector 
machine, while performance measures for small classes were comparatively low, as expected. Diseases with regionally 
specific and pronounced atrophy patterns were generally better classified than diseases with widespread and rather 
weak atrophy.
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Key points
Question: This study compares the different machine 
learning methods for predicting several neurodegenera-
tive syndromes.

Findings: The comparison of support vector machine, 
random forest, gradient boosting, and deep feed-forward 
neural networks yielded the neural networks to be the 
best for the classification of different neurodegenerative 
syndromes based on pre-structured volume measures.

Meaning: Even with pre-structured data, deep neural 
networks are most promising.

Introduction
In light of the demographic shift and the pending short-
age of resources in healthcare systems across the globe, 
computer-aided methods are to shoulder some of the 
challenges. Supportive technology will find its way into 
the clinic to assist physicians in finding the correct diag-
nosis [1]. The implementation of artificial intelligence 
into clinical routine is happening already, and it is a mat-
ter of time until medical decisions will rely on algorithms 
in conjunction with the experience of physicians.

In case of neurodegenerative syndromes, brain imaging 
can render important MRI-morphological biomarkers in 
the form of atrophy patterns. While some focal atrophy 
patterns are quite disease-specific [2–8] leading even to 
incorporation into diagnostic criteria [9–11], neuroimag-
ing findings for other diseases might be less conclusive 
[12]. However, it requires highly trained and specialized 
neuroradiologists to correctly detect and interpret the 
signs—an expertise that is not available ubiquitously.

For analyzing the complex multivariate and nonlin-
ear relationships in high dimensional data derived from 
MRI data, machine learning algorithms are superior to 
standard inferential statistics [13, 14]. For the classifica-
tion of neurological and psychiatric diseases, support 
vector machines (SVM) based on imaging-derived data 
have been the most popular method [14]. SVMs have 
proven to be a suitable approach at least in binary dif-
ferentiations of patients from healthy controls [13–15]. 
A few studies further used SVM to differentiate disease 
entities from each other—a more complex approach that 
simulates the process of differential diagnosis. In a previ-
ous study, we assessed the performance of SVM to dif-
ferentiate two dementia syndromes from each other [16, 

17]. In another study, SVM was used to classify various 
parkinsonian syndromes based on the results of volu-
metric MRI analysis [18]. While SVM produced satisfac-
tory results, other methodological approaches were not 
assessed further.

In recent years, deep learning methods have become 
more and more popular for pattern recognition tasks 
such as the classification of image and text data, but also 
of structured data [19]. Deep learning methods pro-
cess data on several levels. In this way, more and more 
abstract representations are generated up to the class 
as the most abstract form of representation [19]. Deep 
neural networks (DNNs) in particular have proven to be 
highly proficient in predicting diagnoses based on imag-
ing data of the eye, skin, or lung [20–22] and will most 
likely become a key component of imaging diagnostics in 
the future. Hopefully, these advanced models will be able 
to capture more complex atrophy patterns in the human 
brain than SVM approaches and might assist radiologists 
with their assessment in the future.

Accordingly, we will compare these models for the 
classification of neurodegenerative syndromes based 
on atlas-based volume measures in a very large dataset 
including numerous diseases in this work. Besides DNN 
and SVM, we will apply two ensemble learning meth-
ods (i.e., random forest (RF) and gradient boosting (GB)) 
that have been thriving as proficient models in many 
classification challenges dealing with similar data [14, 
23]. The preprocessing of the data into structured data 
via volumetry in the form of an atlas is useful for clini-
cal purposes, because it normalizes data, reduces thereby 
inter-center variability, guarantees a complete anonymi-
zation of the data, and decreases computing time when 
training the models.

The syndromes considered in this study all belong to 
the neurodegenerative disease spectrum ranging from 
Alzheimer’s disease (AD), frontotemporal lobar degen-
eration with its subtypes behavioral variant fronto-
temporal dementia (bvFTD), and primary progressive 
aphasias (PPA) with the three subforms—semantic vari-
ant (svPPA), nonfluent-agrammatic variant (nfvPPA), 
and logopenic variant (lvPPA)—to atypical Parkinson 
syndromes such as corticobasal syndrome (CBS), pro-
gressive supranuclear palsy (PSP), and multiple system 
atrophy with cerebellar features (MSA-C), as well as 

Conclusions and relevance: Our study furthermore underlines the necessity of larger data sets but also calls for a 
careful consideration of different machine learning methods that can handle the type of data and the classification 
task best.

Keywords: Multi‑syndrome classification, Neurodegenerative syndromes, Deep neural network, Comparative 
analysis, Support vector machine, Random forest, Gradient boosting
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MSA with predominant parkinsonism (MSA-P) and idi-
opathic Parkinson’s disease (PD).

This use case is exemplary for imaging-derived struc-
tural data and can be transferred to other use cases of the 
biomedical sciences. By including ten different neurode-
generative diseases beside a control cohort, our approach 
mirrors best the work of radiologists in clinical routine, 
i.e., firstly categorizing a brain scan as normal or abnor-
mal and secondly defining the neurodegenerative entity 
in the differential diagnostic process. We hypothesize (i) 
that neurodegenerative diseases can be classified with 
reasonable accuracy from structural brain imaging data, 
in particular, if they are characterized by specific atrophy 
patterns, and (ii) that DNNs perform better than SVM.

Methods
Subjects and demographic characteristics
The study included multi-centric data from 940 subjects, 
i.e., 124 healthy controls and 816 patients from the Ger-
man Research Consortium of Frontotemporal Lobar 
Degeneration (www. ftld. de) [24] and from the German 

Atypical Parkinson Consortium Study Group [18, 25]. 
The patient cohort consisted of 72 patients with AD, 146 
patients with bvFTD, 26 patients with CBS, 30 patients 
with lvPPA, 21 patients with MSA-C, 60 patients with 
MSA-P, 58 patients with nfvPPA, 203 patients with PD, 
154 patients with PSP, and 46 patients with svPPA.

Figure 1 and Table 1 provide an overview of the age and 
gender distribution of the study cohort. Age distribu-
tion was compared with the Kruskal-Wallis test and post 
hoc with a Wilcoxon rank-sum test between all pairs of 
samples (Bonferroni-corrected). Patients with AD were 
significantly older than patients with bvFTD (p < 0.05). 
Patients with PSP were significantly older than healthy 
controls (p < 0.001) and patients with MSA-C (p < 0.05), 
MSA-P (p < 0.001), PD (p < 0.05), bvFTD (p < 0.001), and 
svPPA (p < 0.001). Furthermore, patients with bvFTD 
were significantly younger than patients with nfvPPA 
(p < 0.001). Also, patients with svPPA were significantly 
younger than patients with nfvPPA (p < 0.05).

Gender distribution was tested pairwise with the Fisher 
test (Bonferroni-corrected) post hoc if the chi-square test 

Fig. 1 Violin plot of the age and gender distribution of the cohort sample. The dashed line indicates the mean, and the dotted line indicates 
the standard deviation. AD, Alzheimer’s disease; bvFTD, behavioral variant frontotemporal dementia; CBS, corticobasal syndrome; lvPPA, 
logopenic variant primary progressive aphasia; MSA‑C, multiple system atrophy (cerebellar dysfunction subtype); MSA‑P, multiple system atrophy 
(parkinsonian subtype); nfvPPA, nonfluent variant primary progressive aphasia; PD, Parkinson’s disease; PSP, progressive supranuclear palsy; svPPA, 
semantic variant primary progressive aphasia

http://www.ftld.de
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indicated significant differences (chi-square = 38.855, p 
< 0.001). The gender distribution significantly differed 
between patients with bvFTD and PD (p < 0.001), MSA-P 
(p < 0.05), and PSP (p < 0.05). Furthermore, there was 
a significant difference in gender distribution between 
patients with PD and svPPA (p < 0.05).

The study was conducted according to the Declaration 
of Helsinki. It was approved by the local ethics commit-
tees of all participating centers. Patients, participants, 
caregivers, or legal representatives gave written informed 
consent for the study.

Imaging acquisition and analysis
Standardized structural MRI head scans were acquired 
multi-centrically at German university hospitals. Every 
subject obtained a T1-weighted three-dimensional 
(1-mm isovoxel resolution) magnetization-prepared 
rapid gradient echo (MPRAGE) head MRI brain scan 
[18, 24, 26]. The MPRAGE sequence was converted to 
ANALYZE 7.5 format, and the file names were pseu-
donymized before further processing. Whereas stand-
ardized operating procedures (SOPs) have been applied 
throughout the data acquisition including MRI in the 
German Research Consortium of Frontotemporal Lobar 
Degeneration, no sequence adjustment or homogeniza-
tion between the centers was done in the German Atypi-
cal Parkinson Consortium Study. Instead, the MPRAGE 
sequence from the clinical routine at each center was 

used (for further information on MRI parameters, 
see papers and supplemental materials [4, 17, 18, 25, 
27]). Atlas-based volumetric analysis of the MPRAGE 
sequence data was done using the LONI Probabilis-
tic Brain Atlas (LPBA40) [28], and further masks were 
derived from this atlas. The atlas structures were used 
as an input vector for the model and represent the vol-
ume measures of the input data. A detailed description 
of all image processing steps and the 63 atlas structures 
included can be found in [18]. Before being used as pre-
dictive features, all volume results were corrected for 
intracranial volume (ICV).

Training and evaluation of classifiers
In order to reduce the bias of the existing sampling dis-
tribution, we used a 5-fold cross-validation with the full 
dataset (models were trained on 80% of the data (4-folds), 
20% served for testing (1-fold)). The folds were selected 
randomly, and the experiments were repeated ten times. 
Thus, we trained and evaluated 50 models of each type 
(see Fig. 2). In each training iteration, we optimized the 
learning and hyperparameters of the RF model, the GB, 
and the SVM using Bayesian optimization. In contrast to 
a grid search or a random search, Bayesian optimization 
allows a sequential search and thus includes every previ-
ous search step. This leads to better optimization results 
[29]. During the optimization, overfitting was reduced by 
using a 5-fold cross-validation, where the training data 
was split into training and validation data. The optimiza-
tion was run for 120 iterations.

The kernel applied in the SVM algorithm is critical for 
its way of functioning. Therefore, the learning and hyper-
parameters to be optimized also depend on the selected 
kernel. For this reason, the optimization of the SVM was 
done separately with linear, sigmoid, polynomial, and 
radial basis function kernels. Based on this comparison, 
we considered only SVM with a linear kernel. The linear 
kernel provided the best SVM performance, where c is 
optimized for avoiding misclassifications.

For the RF classifier, we optimized the maximum depth 
of the tree, the number of features to consider, the mini-
mum number of samples required for a leaf node, and the 
minimum number of samples required to split an inter-
nal node. In case of GB optimization, we additionally 
optimized the learning rate.

We used a feed-forward DNN with 72 neurons in the 
input layer and 90 neurons in each of the two hidden 
layers. In order to prevent overfitting, we used a drop-
out rate [30] of 45% for the neurons of the hidden lay-
ers and early stopping [31]. For the weight update, we 
used Adam [32] and categorical cross-entropy, where 
the optimizer was initialized with α = 0.001, β1 = 0.9 =, 

Table 1 Demographic characteristics for patients and healthy 
controls

Data are reported as mean ± standard deviation

Abbreviations: AD Alzheimer’s disease, bvFTD Behavioral variant frontotemporal 
dementia, CBS Corticobasal syndrome, lvPPA Logopenic variant primary 
progressive aphasia, MSA-C Multiple system atrophy (cerebellar dysfunction 
subtype), MSA-P Multiple system atrophy (parkinsonian subtype), nfvPPA 
Nonfluent variant primary progressive aphasia, PD Parkinson’s disease, PSP 
Progressive supranuclear palsy, svPPA Semantic variant primary progressive 
aphasia

Number Age (years) Gender 
(female/
male)

AD 72 66.67 (± 9.59) 39/33

bvFTD 146 61.68 (± 9.67) 53/93

CBS 26 65.96 (± 6.91) 15/11

lvPPA 30 67.33 (± 5.60) 13/17

MSA‑C 21 63.05 (± 7.24) 11/10

MSA‑P 60 63.29 (± 7.99) 38/22

nfvPPA 58 68.46 (± 8.32) 29/29

PD 203 64.08 (± 11.21) 135/68

PSP 154 69.03 (± 6.47) 82/72

svPPA 46 62.14 (± 8.31) 19/27

Healthy controls 124 63.71 (± 10.00) 60/64
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β2 = 0.999, and ϵ =  10−8. The training was done batch-
wise with samples of 30 patients. More complex archi-
tectures have provided worse or similar classification 
results in the experiments.

The evaluation was done classwise considering the 
recall, the precision, and the F1-score. We dispense 
with a consideration of the overall recall, the over-
all precision, and the overall F-score, because of the 
included bias in the actual distribution, which limits 
the suitability of the F1-score for the model evaluation 
[33]. Therefore, this metric is not used for the overall 
model evaluation, but to show the distribution of pre-
dicted classes. To reduce this bias and evaluate the 
model performance, we use the Cohen’s kappa coeffi-
cient κ [34], which is defined as follows:

where y denotes the ground truth syndrome classifica-
tion and ŷ the predicted syndrome. In addition, we show 
the accuracy, which allows a more humanly interpretable 

κ =
y− ŷ

1− ŷ

evaluation, but without considering the class imbalance. 
The accuracy is calculated for the total number of ele-
ments n in the test fold and has the following form:

To better understand the classification process of each 
model, we used a novel technique, namely “local inter-
pretable model-agnostic explanations” (LIME), which 
explains the relationship between the components (here, 
brain regions) that are used for the classification and its 
predicted class (here, the syndrome) [35]. This method 
allowed the direct comparison of the decision process of 
all four models.

Results
In the following, the model performance is presented 
with its classification results and the features, i.e., the 
brain regions, that have the highest value for the classifi-
cation decision.

accuracy
(

y, ŷ
)

=
1

n
− 1

(

y, ŷ
)

Fig. 2 Design of the repeated 5‑fold cross‑validation. These experiments are repeated ten times, with the individual folds composed differently in 
each repetition. The random compositions are controlled by the random seeds
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Comparison of classification models
The parameter settings for the tree-based methods (i.e., 
GB and RF) were found through the optimization pro-
cesses after around 80 iterations, while the configuration 
for the SVM with linear kernel required only around 20 
iterations. In the training of the DNN, the validation loss 
decreased until convergence, which was reached after 
about 100 epochs on average. The training is stopped, if 
the validation score was stable for 20 epochs. The conver-
gence and the subsequent overfitting on the training data 
are shown in Fig. 3.

Model-wise performance measures can be found in 
Table  1. Among the models evaluated in this study, the 
DNN rendered the best classification results producing a 
Cohen’s kappa score slightly larger than 0.4 as well as a 
total model accuracy of approximately 0.5. The second-
best performance was obtained with SVM, followed by 
GB and RF. Furthermore, the variability over 50 permuta-
tions was lowest for DNNs, which is reflected by the low-
est standard deviation. This indicates that DNN models 
have the highest reliability of the models across different 
simulations.

Modelwise performance measures are shown sepa-
rately for each of the classes, i.e., diseases, in Table  2. 
Whereas some diseases such as PSP, svPPA, MSA-P, 
bvFTD, and PD reached relatively high classification 
performance, other classes reached middle values, i.e., 
healthy controls and AD, and others relatively low perfor-
mance such as lvPPA, MSA-C, and nfvPPA. Of note, CBS 

was characterized by the lowest performance results. 
The order of the modelwise performance quality across 
the whole cohort (DNN > SVM > GB > RF) was also 
observed for AD and bvFTD, whereas the other classes 
showed a more complex picture.

Importance of brain regions
The LIME method allowed us to assess the contribu-
tion of each brain region for classifying each syndrome 
within a model. An entire listing with the weighting of 
all brain regions for all models is publically available in 
the project repository. In the interest of greater clarity, 
we display the five most important brain regions for all 
models for three selected pathologies with well-known 
atrophy patterns (i.e., AD, PSP, and svPPA; see Table 3). 
Note that the weighting of brain regions was averaged 
over all patients that were classified correctly by the 
respective model. All models independently identified 

Fig. 3 Averaged training loss and validation loss of the DNN. For the consideration of overfitting, the early stopping was dispensed with for this 
recording

Table 2 Metrics for model comparison

Data are reported as mean ± standard deviation

Abbreviations: DNN Deep neural network, GB Gradient boosting, RF Random 
forest, SVM Support vector machine

RF GB SVM DNN

Cohen’s 
kappa

0.325 ± 
0.036

0.358 ± 
0.036

0.383 ± 
0.043

0.404 ± 0.03

Accuracy 0.429 ± 
0.032

0.456 ± 
0.032

0.472 ± 
0.038

0.496 ± 0.025
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Table 3 Class‑wise performance metrics for multi‑syndrome classification

Abbreviations: AD Alzheimer’s disease, bvFTD Behavioral variant frontotemporal dementia, CBS Corticobasal syndrome, lvPPA Logopenic variant primary progressive 
aphasia, MSA-C Multiple system atrophy (cerebellar dysfunction subtype), MSA-P Multiple system atrophy (parkinsonian subtype), nfvPPA Nonfluent variant primary 
progressive aphasia, PD Parkinson’s disease, PSP Progressive supranuclear palsy, svPPA Semantic variant primary progressive aphasia
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the key regions, such as the midbrain for PSP, the infe-
rior temporal gyrus on the left side for svPPA, and the 
hippocampus for AD.

Discussion
In this work, we compared several well-established 
machine learning algorithms (i.e., DNN, GB, RF, and 
SVM) to predict the diagnosis out of numerous differ-
ent neurodegenerative syndromes on the basis of pre-
structured, atlas-based volumetric brain MRI data. In 
agreement with our hypothesis, we show that neurode-
generative diseases can be classified from structural brain 
imaging data, in particular, if they are characterized by 
specific atrophy patterns. Here, DNN showed a moder-
ate performance, whereas the three other models showed 
a fair performance according to Cohen’s kappa scores. 
Although reasonable for this ambitious clinical ques-
tion, results were not reaching substantial or even per-
fect classification results as achieved in comparisons of 
single neurodegenerative diseases vs. controls [1, 17, 27, 
36–38]. This important difference between the diagnos-
tic (disease vs. control) and differential diagnostic (dis-
ease vs. disease) approach might be related to etiological 
overlap between clinical syndromes, unspecific atrophy 
patterns for some diseases, and even the fact that single 
patients might show different syndromes in the course of 
the disease. These severe limitations, to be addressed in 
future studies, hamper the translation of multi-syndrome 
classifiers to clinical settings to date. In the following, we 
will discuss our results in more detail.

Structuring imaging data for machine learning approaches
Pre-structuring of the data with atlas-based volumetry 
had some clear advantages such as easy assessment of 
particular brain regions as contributing factors for the 
diagnosis on an individual level as well as across syn-
dromes, thereby increasing the interpretability of the 
respective model. Moreover, data could be normalized 
individually by adjusting to the subject’s intracranial 
volume. Presumably, atlas-based volumetry seems to be 
also superior to voxel-based morphometry, because the 
impact of different centers, scanner types, protocols, and 
applied parameters seem to be decreased by processing 
steps in atlas-based volumetry—a hypothesis that has to 
be validated in future studies. Furthermore, using volu-
metry data also allowed for the training of a model on a 
single CPU core and with 6-GB RAM. In contrast to this, 
the training of a convolutional neural network (CNN) 
with raw imaging data [39], which is the state-of-the-art 
method for image classification, requires machines with 
at least one 12-GB GPU or in case of 3D MRI volumes 
a server with several GPUs [40]. Finally, pre-structuring 

of the data increased the anonymity of the data—a gen-
eral benefit that facilitates central data aggregation with-
out risking the exposure of privacy-sensitive medical 
information.

The reason we were not able to conduct the same 
experiment with raw imaging data was that we did not 
have access to the raw images. Despite all the advantages 
of pre-structured imaging data listed above, it precludes 
the possibility of data augmentation of raw imaging 
data—a powerful strategy to increase the amount of 
training data and thereby boosting model performance. 
Furthermore, and perhaps more importantly, predefined 
feature extraction might lead to a loss of valuable infor-
mation, which is a clear limitation of our study.

Comparison of machine learning models
Corresponding to the literature [41], our results 
indicate that the DNN with a simple feed-forward 
architecture is the superior method for this kind of 
classification task, closely followed by the SVM as illus-
trated in Table  2. While neural networks became the 
state-of-the-art method for the processing of imaging 
data and text data, DNNs [42] were shown to outper-
form tree-based methods as well as SVM with struc-
tured data. However, it is informative to take a closer 
look at model performance and model robustness for 
every single class individually, especially considering 
the size of the class and the specificity of atrophy pat-
terns, respectively (see Table  3). The DNN performed 
best (high F1-score and high robustness) in large 
classes (e.g., PD, bvFTD, AD, and PSP) where there was 
a sufficient data for the model loss to converge. Gen-
erally, classes with smaller sample sizes expectedly 
led to models with weaker performance measures. GB 
and SVM seemed to best perform for smaller classes 
(e.g., MSA-C, lvPPA, CBS), while RF rendered the 
best robustness for smaller classes. The high robust-
ness of RF in this case might be due to the prediction 
ensembles, while the superior performance of GB and 
SVM over the DNN might reflect those models pos-
sibly needing less data than neural networks. Notably, 
classes with more specific atrophy patterns (e.g., svPPA 
and AD) were also best predicted by the DNN despite 
the comparatively small sample size possible due to the 
faster convergence of the loss function. As expected, 
diseases with regionally specific and pronounced atro-
phy patterns such as svPPA, AD, and PSP were gener-
ally better classified than diseases with widespread 
and rather weak atrophy such as CBS (see Fig. 4). The 
confusion matrices in Fig. 4 give a nice overview of the 
class-specific performance of the different methods 
and nicely show that the DNN has a reasonable perfor-
mance for all classes.
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In conclusion, the larger the dataset, the better the 
performance. It was here, where the DNNs were able to 
clearly show their superiority with respect to classifica-
tion performance as well as robustness. However, the 
point of convergence is the critical factor for good perfor-
mance. For this, a balanced validation set must be used.

Validation
The validation was not only performed by using the 
prediction score, but also the standard deviation of the 

prediction scores as a measure of robustness. Gener-
ally, the standard deviation of the model performance 
depends on the training dataset used, which is why we 
chose k-fold cross validation [43] instead of a leave-
one-out cross-validation. In contrast to a leave-one-out 
cross-validation, a k-fold cross-validation changes the 
class distribution in the training dataset over the dif-
ferent experiments, which affects the model training. 
When a leave-one-out cross-validation is performed, a 
class imbalance in the dataset always exists in a similar 

Fig. 4 Confusion matrix for every classification model. The values are averaged over all folds and figured as a percentage value of the true label. 
The coloration depends on the number of predicted cases in percent (the scale goes from the highest value (dark blue) to the value 0 (white)). The 
confusion matrix shows row normalized percentages, which results in precision are shown for matching classes in column and row
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ratio (with the exception of the validation instance) and 
is therefore reflected in a lower model quality. The high-
est overall robustness was observed for the DNN while 
the ensemble methods in turn were least robust, possi-
bly due to their general propensity to overfit the models.

Model performance
Both recall and precision are class-wise measures and 
are therewith independent of the number of true nega-
tives, which are over-represented in a multiclass prob-
lem and thereby inflate measures contingent on the true 

negatives. The F1-score is a combination of both preci-
sion and recall and is supposed to give a more holistic 
measure of class-wise model performance.

For the overall model performance, accuracy is a pop-
ular measure, which we included in the reported met-
rics. However, in the case of a multiclass problem with a 
large imbalance, accuracy is not able to provide an hon-
est reflection of the overall model performance. For this 
reason, we limit the consideration to the Cohen’s kappa 
score for the overall model evaluation (Table 2), because 
this score allows a normalization by the size of the 

Table 4 Brain regions with the highest weighting, i.e., importance, for classification

Abbreviations: AD Alzheimer’s disease, DNN Deep neural network, GB Gradient boosting, RF Random forest, SVM Support vector machine, PSP Progressive supranuclear 
palsy, svPPA Semantic variant primary progressive aphasia
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respective class [34]. For the interpretation of the Cohen’s 
kappa score, the following scheme can be used: 0–0.20 as 
slight, 0.21–0.40 as fair, 0.41–0.60 as moderate, 0.61–0.80 
as substantial, and 0.81–1 as almost perfect agreement 
[44]. According to this scheme, every DNN performs 
with a moderate performance and the three other mod-
els with a fair performance. The confusion matrix (Fig. 4) 
further visualizes how the DNN performs better for all 
different classes in comparison with the tree-based meth-
ods, where the model overfits towards the larger classes 
such as Parkinson, PSP, and bvFTD.

Feature importance
To better understand the process of decision-making of 
every model, we extracted the feature importance with 
the LIME method. LIME explains the model perfor-
mance by approximating an explainable model that has 
exactly the same predictive behavior as the used classifier.

Despite the differences in performance metrics, all 
methods were able to reproduce well-known atrophy pat-
terns of respective syndromes  (see Table  4). Note that 
unlike in binary disease-vs.-healthy classification tasks, the 
interpretation of the feature importance resulting from a 
multiclass classification problem is more ambiguous. The 
“important features” listed above merely reflect which 
brain regions were most important to differentiate the 
respective diagnosis from all other diagnoses included in 
the classification task.

Limitations
While the use of volumetry data simplifies the task of 
classification, it simultaneously limits the classification 
basis to atrophy patterns only and excludes brain tissue 
that has no effect on atrophy. The two-stage approach 
consisting of the volumetry calculation and the classifi-
cation of the diseases also carries the risk of error sum-
mation, which can lead to increased prediction error 
compared to approaches that are using the original data. 
Our study results might be limited by the unbalanced 
dataset, i.e., varying numbers in subjects per group. 
Although this variability reflects, at least partly, differ-
ences in prevalence and data availability, the findings 
of our study shall be validated in future more compre-
hensive, better balanced, and preferably international 
cohorts. Herewith, our results have to be validated exter-
nally to improve model generalization.

Conclusion
In conclusion, we found the DNN to be the best method 
to assess imaging-derived structured data. However, the 
performance of different methods largely depends on 
the dataset and the underlying classification problem. To 

select the optimal method, one should test and validate 
several methods and consider the available computing 
resources. Despite the mentioned advantages of pre-
structuring brain data, our future work will extend the 
application of CNN [39] on raw MRI data as well, for 
which remarkable results have previously been achieved 
for the diagnosis of smaller numbers of neurodegenera-
tive diseases [36, 45–49]. This addresses the aforemen-
tioned limitations; however, challenges arise in data 
privacy when processing the data and in the increased 
demand of training data, which requires further data 
acquisition considering the rarity of coverage of the vari-
ous neurodegenerative syndromes.
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