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Abstract 

Introduction: The differentiation of Lewy body dementia from other common dementia types clinically is difficult, 
with a considerable number of cases only being found post‑mortem. Consequently, there is a clear need for inexpen‑
sive and accurate diagnostic approaches for clinical use. Electroencephalography (EEG) is one potential candidate due 
to its relatively low cost and non‑invasive nature. Previous studies examining the use of EEG as a dementia diagnostic 
have focussed on the eyes closed (EC) resting state; however, eyes open (EO) EEG may also be a useful adjunct to 
quantitative analysis due to clinical availability.

Methods: We extracted spectral properties from EEG signals recorded under research study protocols (1024 Hz sam‑
pling rate, 10:5 EEG layout). The data stems from a total of 40 dementia patients with an average age of 74.42, 75.81 
and 73.88 years for Alzheimer’s disease (AD), dementia with Lewy bodies (DLB) and Parkinson’s disease dementia 
(PDD), respectively, and 15 healthy controls (HC) with an average age of 76.93 years. We utilised k‑nearest neighbour, 
support vector machine and logistic regression machine learning to differentiate between groups utilising spectral 
data from the delta, theta, high theta, alpha and beta EEG bands.

Results: We found that the combination of EC and EO resting state EEG data significantly increased inter‑group 
classification accuracy compared to methods not using EO data. Secondly, we observed a distinct increase in the 
dominant frequency variance for HC between the EO and EC state, which was not observed within any dementia 
subgroup. For inter‑group classification, we achieved a specificity of 0.87 and sensitivity of 0.92 for HC vs dementia 
classification and 0.75 specificity and 0.91 sensitivity for AD vs DLB classification, with a k‑nearest neighbour machine 
learning model which outperformed other machine learning methods.

Conclusions: The findings of our study indicate that the combination of both EC and EO quantitative EEG features 
improves overall classification accuracy when classifying dementia types in older age adults. In addition, we demon‑
strate that healthy controls display a definite change in dominant frequency variance between the EC and EO state. In 
future, a validation cohort should be utilised to further solidify these findings.
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Introduction
As of 2018, dementia has reached an estimated preva-
lence of 50 million people worldwide  with an expected 
increase to 75 million cases by 2030 [1]. Dementia with 
Lewy body (DLB) pathologies being found in 25–45% 
of dementia cases post-mortem are likely showing an 
under-representation in current data [2, 3]. Notably, most 
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cases of DLB are misdiagnosed as the more common Alz-
heimer’s disease (AD) [4].

Alzheimer’s disease currently represents the largest 
proportion of dementia cases globally [5] and is charac-
terised by an irregular build-up of the polypeptide beta 
amyloid, which forms plaques within brain regions such 
as the hippocampus leading to the damage of neurons 
[6]. Another common group is characterised by the Lewy 
body disease (LBD) pathology, being comprised of Par-
kinson’s disease dementia (PDD) and DLB with a com-
mon pathology of Lewy body protein building up within 
specific brain regions [5, 7].

The initial overlap symptomatically of some dementia 
types is problematic, particularly due to the differential 
treatment required. For example, DLB is often misdiag-
nosed as the more common AD due to presenting similar 
symptoms early in disease progression such as memory 
loss and language pathology [4, 8]. Those with DLB are 
however much more sensitive to commonly prescribed 
neuroleptics and require more specific and targeted 
treatment [9]. DLB also has symptomatic overlap in later 
disease progression stages with the dementia type PDD. 
This manifests with physical tremors, problems with 
balance and a shuffling gait in addition to memory loss; 
differentiation between these two diseases currently is 
highly subjective as it normally relates to which symp-
toms manifest first. If cognitive impairment develops 
first, a patient will often be diagnosed with DLB; how-
ever, if tremors develop first, a Parkinson’s diagnosis is 
usually given. New research though has shown the pres-
ence of mild cognitive impairment (MCI) in Parkinson’s 
disease patients (PD) with no current dementia diagnosis 
[10], which presents a possible further blurring of the line 
between PDD and DLB. Multiple other similarities dis-
played between the PDD and DLB neuropathologically 
compound the belief that these diseases represent regions 
of a larger spectrum. Commonly, both are grouped into 
the Lewy body dementia group [11]. However, despite 
similarities, the more aggressive disease progression of 
DLB leads to a shorter life expectancy, likely necessitating 
the development of a differential treatment between the 
two LBD dementias in the future.

Electroencephalography (EEG) is a tool for the detec-
tion of biomarkers related to surface brain activity and 
is often used in the clinical diagnosis of other neurolog-
ical conditions such as epilepsy [12]. EEG records brain 
activity through use of nodes placed across the scalp 
in specific locations. The brain activity is recorded in 
the form of spectral data. EEG node density can vary 
based upon the specific layout which is quantified via 
distance. The 10-5 system which was utilised in this 
study comprises nodes that are densely packed on the 
scalp. Data can then be interpreted as a visual spectrum 

of activity through which quantitative results can be 
gathered, often referred to as quantitative EEG (qEEG). 
Some studies have already shown promise for the abil-
ity of qEEG to classify between different dementia types 
[13–15]. Importantly, clinical EEG is a non-invasive 
and cost-effective data acquisition technique at around 
$300 USD [16] and is already widely available. Clinical 
EEG systems have a significantly lower cost than cur-
rent gold standards such as brain MRI or DatScan, with 
respective costs of $600 USD and $1200 USD each [16] 
(all prices are based on UK private patient healthcare 
costs as of 2015). Techniques such as DatScan also 
require small dosing with radioactive tracers which 
limits repeat data acquisition in addition to limited 
global availability.

Currently, EEG is not used for the diagnosis of demen-
tia as a whole and is instead primarily an interest of 
research; however, EEG has become popular as an aux-
iliary tool for the clinical diagnosis of DLB patients 
displaying its utility as a diagnostic tool [17]. The possi-
bility of further expanding EEG as an auxiliary biomarker 
detection method in addition to its overall affordability 
would allow for more frequent screening which could 
assist in targeted treatment for patients on an individual 
basis.

As a tool for assisting in dementia research, EEG is 
most often recorded in an eyes closed resting state (EC) 
where participants remain awake while performing no 
task or movements. It has been shown that, during EC 
resting state EEG, dementia patients display a definite 
decrease in power for the alpha frequency range within 
the EEG spectrum when compared to healthy partici-
pants [18, 19].

A similar procedure can be performed with eyes kept 
open (EO), commonly used for the diagnosis of condi-
tions such as epilepsy or other seizure-related neurologi-
cal conditions. In this case, participants are asked by their 
clinician to open and close their eyes [20]. This is cur-
rently not widely utilised for dementia research despite 
the routine EO EEG data acquisition in clinical neuro-
physiology, as during EO EEG the alpha peak of dementia 
patients does not display the same significant decrease 
when compared to healthy participants. Recently, how-
ever, a significant impairment has been found within the 
EO resting state alpha reactivity of LBD patients when 
compared to those with AD, thus representing the need 
for further investigation into the EO dataset [21].

Previous studies that utilised qEEG features as a tool 
for the classification of AD, DLB and PDD dementia 
groups have focussed on the EC resting state EEG of 
patients [13–15]. In this study, we investigate the hypoth-
esis that the inclusion of EO resting state EEG data rep-
resents a valuable source of statistically significant qEEG 
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features, improving classification accuracies in dementia 
diagnosis.

Methods
The dataset used in this study is the same as that used by 
Peraza et al. [13]; hence, the assessments used for partici-
pants as well as the process of cleaning EEG recordings 
and data acquisition are the same.

Participant assessment
In total, 98 participants were recruited from the North 
East Region of England. Those with dementia were 
recruited from a population that had been referred to old 
age neurology services and clinics. In total, 80 dementia 
patients were recruited for the study; this included 32 
AD patients (22 male, 10 female), 26 DLB patients (21 
male, 5 female) and 22 PDD patients (20 male, 2 female). 
Along with these dementia patients, 18 age-matched 
healthy controls (11 male, 7 female) were also recruited 
for between-group comparisons [13]. A diagnosis of 
dementia was made by two experienced old age psychia-
trists who followed the clinical diagnosis criteria for DLB 
[4, 22], the diagnostic criteria for PDD [23] and the AD 
National institute on Aging-Alzheimer’s Association cri-
teria for the diagnosis of AD [8].

For this study, participants underwent in-depth neu-
rological and neuropsychiatric testing. The Cambridge 
Cognition Examination (CAMCOG) and Mini-Mental 
state exam (MMSE) were used to assess cognitive func-
tion in patients, with both tests being commonly used 
for assessing the extent of a participant’s dementia symp-
toms. Additionally, the Neuropsychiatric inventory test 
was performed to assess the severity and frequency of 
hallucinations for participants (NPI hal).

A breakdown of the demographics and clinical vari-
ables for the participant cohort in this investigation is 
given in Supplementary Table  2. No significant differ-
ences were observed between groups for both age and 
gender. Similar overall global cognitive impairment was 
displayed between the dementia groups. However, the 
AD group displayed significant differences with the DLB 
and PDD groups in lower CAMCOG memory impair-
ment and NPI hallucinations when utilising a Bonferroni 
correction (p < 0.05), which is displayed in supplemen-
tary Table 3. Additionally, it was found that AD patients 
displayed a significant difference in CAMCOG total 
score when compared to DLB patients which is not seen 
when comparing the AD and PDD patients, which can 
also be found in supplementary Table 3.

Importantly, there were no significant differences in 
the usage of cholinesterase inhibitors across dementia 
groups. The Bonferroni-corrected values are displayed in 
supplementary Table 4.

Electroencephalography and signal processing
In total, 150 s of resting state EEG was acquired using a 
128 sintered Ag/AgCl electrode Waveguard cap (ANT 
Neuro, The Netherlands) placed in a 10-5 position-
ing system [24] for each participant. Channels were 
recorded at a sample rate of 1024 Hz with an electrode 
impedance of no more than 5kΩ [13]. Before the analy-
sis of qEEG features, all EEG pre-processing and clean-
ing was carried out blinded to group membership using 
EEGLAB [25] MATLAB functions (R2012; MathWorks, 
Natick Massachusetts) for both EC and EO recordings 
[13]. After pre-processing and cleaning, the following 7 
processing steps were conducted: (1) Baseline compo-
nents were subtracted from EEG channels and a phase 
invariant band pass was applied between 0.3 and 54 Hz 
with a 2nd order Butterworth filter. (2) Bad channels 
were deleted from EEG recordings based on noise, bad 
contact or zero amplitude, and the Fz reference chan-
nel was also deleted for each EEG recording. (3) The 
full EEG recording was inspected for noisy time-bound 
artefacts that contaminated all channels such as chewing 
and swallowing. These bad segments were then deleted, 
and the EO state required the deletion of additional seg-
ments due to greater noise compared to the EC state. (4) 
EEG with ICA implemented using fast ICA [26] through 
EEGLAB default parameters and used to reduce noise via 
the removal of eye artefacts, and the 50 Hz power line 
component and heartbeats were identified and deleted, 
with no more than 12 artefactual independent com-
ponents being deleted. (5) After the initial use of ICA, 
some EEG recordings still showed artefacts and so ICA 
was repeated, and no more than 12 ICs were deleted. (6) 
Previously deleted channels were then interpolated back 
using information from surrounding electrodes using 
spherical interpolation in EEGLAB. (7) EEG data was 
then referenced to the average reference using EEGLAB 
[13] with recordings being segmented into 2-s windows 
with a 1-s overlap.

From the original 98 subjects, 65 were used for analy-
sis, including 15 HC, 12 AD, 21 DLB and 17 PDD sub-
jects. The other 33 patients (2 HC, 13 AD, 4 DLB, 4 PDD) 
were removed from the dataset due to participants not 
having at least 20 s of combined resting state eyes closed 
or eyes open EEG after cleaning [13]. This criterion was 
employed because 20 s of continuous resting state EEG 
has been shown to be the required amount to account for 
the inherent variability in EEG [27].

Spectral analysis
EEG segments were analysed over 5 cortical regions: 
frontal (F), central (C), temporal (T), parietal (P) and 
occipital (O). Within each of these regions, the relative 
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power for the delta (0.5–4 Hz), theta (4–5.5 Hz), high 
theta (5.5–8Hz), alpha (8–13 Hz) and beta (13–30 Hz) 
frequency bands in addition to each subject’s dominant 
frequency (DF) and dominant frequency variance (DFV) 
were calculated using a Welch’s Periodogram; 2048 sam-
ple segments, using a Hamming window with a 50% over-
lap between segments as well as a fast Fourier transform 
size of 2^13; giving a frequency resolution of 0.125 Hz. 
Here, DF is defined as the power spectrum with the high-
est power frequency bin between 4 and 15 Hz with an 
average taken across the time series frequency bins for 
the mean, and DFV is the standard deviation across these 
segments [13]. Relative power spectral density was used 
as to account for inter-patient variability that is present 
in non-normalised data, such as neurophysiology and tis-
sue properties [13, 18, 28].

Statistics
The statistical analysis of qEEG features was conducted 
using the MATLAB statistical toolbox feature (R2018a; 
MathWorks, Natick Massachusetts), WEKA [29] and 
SPSS (SPSS Statistics for Windows, version 23.0. IBM). 
qEEG measures were analysed using a one-way ANOVA 
for the four groups using a post hoc unpaired Bonfer-
roni t-test for between-group comparison, and any fea-
tures found not to have normally distributed data were 
assessed similarly using the Kruskal-Wallis non-para-
metric test. Normality of data was tested for by quartile-
quartile plots. A p value of less than 0.05 was considered 
statistically significant (p < 0.05), and the significance 
value of the post hoc tests was automatically corrected so 
that a p value of 0.05 represented a statistically significant 
difference between group means.

Feature selection
Feature selection is critical to the reliability of machine 
learning algorithms as it prevents the overfitting of data 
while removing redundant features, such that the over-
all generalisability of the created classifier is maximised. 
Feature selection was performed in WEKA [29] and 
MatLab (R2018a; MathWorks, Natick Massachusetts) 
using neighbourhood component analysis (NCA). NCA 
utilises a gradient ascent technique as well as a leave-
one-out cross-validation to maximise the classification 
accuracy and to remove redundant features from the 
dataset [30]. For feature selection, participant data was 
split into training and testing to avoid overestimation of 
cross-validation accuracy. This feature selection method 
produced a weight for each feature allowing it to be 
ranked against all other features for future classification 
as well as removal of redundant features. We performed 
wrapper style feature selection, utilising 100 simulated 
runs to ascertain the consistency of our feature selection 

method. Wrapped feature selection provides as subset 
of provided features that improve classification accuracy 
without adding redundant information. Two bar charts 
displaying the number of times features improved clas-
sification accuracy can be found in Fig. 1A and B, for dif-
ferentiation between HC vs dementia groups and AD vs 
DLB groups, respectively.

Classification and machine learning algorithms
Several supervised machine learning methods were eval-
uated using the k-fold cross-validation (CV) method in 
MATLAB and WEKA [29] for HC-dementia, AD-DLB 
and DLB-PDD classification.

Selected features were used to train machine learning 
classifiers utilising 10-fold cross-validation. The k-near-
est neighbour model was employed for classification 
between different patient groups. Moreover, both logis-
tic regression and support vector machines were used 
to assess the impact of the EO dataset on classification 
accuracy. For each classifier, a receiver operating curve 
(ROC) was also examined to determine the area under 
the curve value (AUC) and the confidence interval (CI) 
of classification results. Additionally, logistic regression 
and support vector machine models were used to com-
pare the effect that inclusion of EO data had on overall 
classification accuracy; these machine learning methods 
are compared due to their common use in dementia clas-
sification based on EEG data.

Finally, we have used a multi-class k-nearest neigh-
bour machine learning approach to filter HCs from 
non-healthy participants (step 1) and then classify each 
dementia group individually against other individuals 
determined to be non-healthy (step 2). This is done so 
that each of the 4 classes is classified within the same set-
ting. This can be seen as emulating how machine learn-
ing is likely to assist in clinical setting. For non-healthy 
individuals, the classifier (step 2) determines whether the 
patient is one of the three dementia subgroups (AD, DLB 
and PDD). As above, we have performed this classifica-
tion technique both with and without the addition of EO 
data alongside EC data to determine what if any benefit 
the addition of EO data has on classification results.

Results
Neighbourhood component analysis (NCA)
NCA was performed on all datasets to remove redun-
dant features (that could lead to decreased classification 
accuracies for machine learning due to overfitting). Nota-
bly, NCA transforms and maximises the performance of 
features for utilisation in k-nearest neighbour [31]. We 
performed these simulation 100 times to ascertain model 
consistency, and as can be seen in Fig.  1A and B, the 
overall model consistently chooses the same features for 
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classification across multiple runs, with 4 features cho-
sen in >95% of runs for HC-dementia and 3 features for 
AD-DLB. For HC vs dementia, the EC frontal high theta, 

EC central theta, EC occipital delta and the ratio between 
the EC and EO dominant frequency variance (DFV) in 
the parietal region were chosen; for AD-DLB, EC frontal 

Fig. 1 Figures showing the total number of times that features for HC‑D (A) and AD‑DLB (B) classification. Wrapped feature selection utilised 
training and testing datasets and was simulated 100 times such that model consistency could be ascertained. In both cases, several features were 
selected consistently, with other features which were selected less adding redundant information that did not improve classification accuracy. With 
features consisting of the relative delta, theta, high theta, alpha and delta power in addition to the ration of the high theta‑alpha relative power 
(TAR) dominant frequency (DF), dominant frequency variance (DFV) and the ratio of the dominant frequency variance between the EC and EO state 
(EC/EO)
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beta, EO frontal high theta and EO parietal high theta; 
for AD-DLB/PDD, the EC temporal DFV, EO frontal high 
theta, EO parietal high theta, EO occipital high theta and 
EO occipital DFV; and finally for DLB-PDD classifica-
tion, only the EC parietal alpha and EO occipital delta 
features were chosen. Features were utilised for machine 
learning if they were picked in 95% of simulated runs; a 
full list of features tested for the HC-D group is displayed 
in supplementary Fig. 1.

Quantitative EEG and dominant frequency analysis
From the one-way four group ANOVA, it was found that 
there were significant differences for the eyes closed DF 
between the HC and dementia groups in the parietal 
and occipital regions, with dementia groups displaying 
a mean slowing in their DF towards the high theta fre-
quency range. Additionally, we found the same signifi-
cant difference between the HC and dementia patients 
DF in the EO resting state within the same regions. These 
results are displayed in supplementary Table 5.

Similarly, we investigated the significance of DFV in 
the EC and EO state between groups. By computing the 
ratio between the two states, we found that healthy con-
trols displayed a significant decrease in variance in the 
EC compared to EO state. Notably, this change was found 
to be significant across all cortical regions for the healthy 
control groups when compared to dementia groups. For 
the AD, DLB and PDD groups, we found no significant 
change in DFV between the EC and EO states. These 
results are displayed in supplementary Table 6. Addition-
ally, we investigated the EEG data scroll of participants 
between the two states and found that HC participants 
displayed an apparent change in frequency that was not 
seen for dementia patients, with some exemplary exam-
ples shown in supplementary Fig. 2.

The ratio of the theta and alpha relative power (TAR) 
also showed a significant difference between the HC and 
dementia groups within the occipital region in both the 
EC and EO resting states. The parietal region showed a 

significant difference between the HC and the dementia 
groups within the EC state. However, in the EO state, 
only the DLB and PDD groups were found to have a sig-
nificantly greater TAR than the HC groups.

Inter‑group classifications
We investigated inter-group group separability using 
machine learning classification for EC and EO spectral 
features. To this end, we only used features which had 
been chosen via feature selection. A k-nearest neighbour 
model classifier was chosen for inter-group classifica-
tion. A k value of 10 was selected for cross fold valida-
tion between different participant groups. A summary of 
the results for classification between healthy controls and 
dementia patients in addition to classification between 
the AD, DLB and PDD groups can be found in Table 1 for 
EC and EO qEEG features.

Table  2 summarises the classification results between 
the AD and DLB patient groups when utilising only EC 
qEEG features and combining EC and EO qEEG features, 
for the k-nearest neighbour algorithm, logistic regression 
and a quadratic support vector machine.

Additionally, we investigated the change in classifica-
tion accuracy for AD vs DLB classification when one 
includes clinical scores, with CAMCOG memory score 
being chosen during feature selection alongside EC 
frontal beta and EO parietal high theta, with a marked 
increase in accuracy for identifying patients with DLB. 
These results are presented in Table 3.

Multi‑class classification results
Finally, we have investigated the capability of a multi-
class classification approach to differentiate HCs from 
non-healthy participants and then differentiate each 
dementia type from other participants determined to be 
non-healthy. Again, we investigated if the addition of EO 
data improves classification results. These results are dis-
played in Table 4.

Table 1 Comparison of classification results between HCs and dementia patients as well as AD and DLB using 10‑fold cross‑validation. 
Utilising a k‑nearest neighbour machine learning model, in addition, we present the confidence interval (CI) for the specificity and 
sensitivity of each classification type

Machine Learning classification accuracies

Classification Type Accuracy Specificity (± CI) Sensitivity (± CI) Weighted 
Average 
AUC 

HC‑D 0.91 ± 0.07 0.87 ± 0.09 0.92 ± 0.08 0.85

AD‑LBD 0.86 ± 0.10 0.75 ± 0.19 0.9 ± 0.13 0.76

AD‑DLB 0.82 ± 0.13 0.75 ± 0.19 0.81 ± 0.17 0.74

DLB‑PDD 0.61 ± 0.16 0.76 ± 0.20 0.3 ± 0.22 0.61
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Discussion
Through spectral data analysis, it was found that demen-
tia participants, within our study, displayed a definite 
mean EEG slowing between 4 and 13 Hz. This slowing 
is most prominently seen as a decrease in dominant fre-
quency in the occipital and parietal brain regions when 
comparing between healthy controls and dementia 
patients. This decrease in DF can be most prominently 
seen in the DLB and PDD groups, with the theta-alpha 
relative power ratio of both groups also being signifi-
cantly different from the healthy control group for both 
regions. These findings are in agreement with already 

Table 2 AD‑DLB classification result comparison for EC and EC‑EO classification using 10‑fold cross‑validation, with comparisons 
across 3 separate machine learning models: k‑nearest neighbour, logistic regression and support vector machine

AD‑DLB classification accuracies

Classifier Accuracy Specificity (± CI) Sensitivity (± CI) Weighted 
Average 
AUC 

EC + EO data

 Cosine KNN 0.82 ± 0.13 0.75 ± 0.19 0.81 ± 0.17 0.74

 Logistic Regression 0.76 ± 0.15 0.67 ± 0.20 0.86 ± 0.15 0.84

 Quadratic SVM 0.82 ± 0.13 0.58 ± 0.21 0.95 ± 0.09 0.82

EC data only

 Cosine KNN 0.67 ± 0.16 0.5 ± 0.21 0.76 ± 0.18 0.63

 Logistic Regression 0.73 ± 0.15 0.58 ± 0.21 0.81 ± 0.17 0.77

 Quadratic SVM 0.73 ± 0.15 0.58 ± 0.21 0.81 ± 0.17 0.72

Table 3 Improved AD‑DLB classification results when including 
CAMCOG memory total score for classification, done for both EC 
+ EO and EC only classification

AD‑DLB classifications with CAMCOG memory inclusion

Data Accuracy Specificity Sensitivity Weighted 
Average 
AUC 

EC + EO 0.88 ± 0.12 0.75 ± 0.19 0.95 ± 0.09 0.94

EC 0.73 ± 0.27 0.67 ± 0.20 0.76 ± 0.18 0.71

Table 4 Comparison of two step classification results using EC and EC‑EO data for classification with 10‑fold cross‑validation. 
Classification was done using the k‑nearest neighbour. Each classifier first identifies and filters HCs from non‑healthy participants (part 
1), and those identified as non‑healthy are then carried through to the next stage of classification. Non‑healthy individuals (part 2) are 
then classified within the multi‑class environment based on which of the three dementia subgroups they are likely to belong to (AD, 
DLB, PDD)

Classifier 1 (EC+EO)
Accuracy Specificity CI Spec Sensitivity CI Sens Weighted Average AUC 
Step‑1 HC against Non healthy

HC 87.70 ± 1.34 86.0 ± 7.3 0.10 93.3 ± 1.7 0.13 0.91 ± 0.04

Dementia Type Step 2 ‑ Separation of individual dementia groups

AD 83.20 ± 1.10 89.47 ± 3.71 0.10 75.00 ± 0.76 0.28 0.83 ± 0.01

DLB 85.60 ± 0.89 88.89 ± 1.48 0.13 90.48 ± 6.23 0.13 0.86 ± 0.01

PDD 96.8 ± 1.10 90.09 ± 9.3 0.00 88.24 ± 2.64 0.16 0.98 ± 0.03

Classifier 2 (EC Only)
Accuracy Specificity CI Spec Sensitivity CI Sens Weighted Average AUC 
Step‑1 HC against Non healthy

HC 84.30 ± 2.29 73.30 ± 2.00 0.13 86.00 ± 5.57 0.18 0.88 ± 0.04

Dementia Type Step 2 ‑ Separation of individual dementia groups

AD 81.60 ± 4.98 84.22 ± 7.46 0.13 58.3 ± 2.94 0.37 0.73 ± 0.04

DLB 79.2 ± 1.79 81.46 ± 5.21 0.16 81.00 ± 3.53 0.19 0.86 ± 0.03

PDD 96.4 ± 4.98 90.09 ± 9.3 0.00 88.2 ± 0.89 0.16 0.98 ± 0.03
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well-documented literature on EC EEG slowing [13, 14, 
18, 19]. Additionally, our results suggest that there is 
also a significant decrease in the dominant frequency of 
dementia patients when compared to healthy controls in 
the occipital and parietal regions in the EO state, and this 
data is presented in supplementary Table 5. We also must 
consider however that the inherent variance in dementia 
conditions may require greater statistical rigour. Thus, 
if the significance level is decreased to p ≤ 0.01, the sig-
nificant change in dominant frequency for the EO state 
is only present between the HC and DLB+PDD groups. 
A larger independent validation cohort is required to 
strengthen this finding and to help minimise inherent 

variance in the dementia groups and validate the AD 
findings.

In healthy controls, we found a significant increase 
in dominant frequency variance (DFV) in the EC state 
compared to the EO state as shown in Fig. 2. This dif-
ference in DFV between EC and EO was not seen in 
any dementia group. This difference was yet undocu-
mented in relevant literature. It is possible that there 
may be further features within the EO dataset that have 
yet to be investigated. We display the EEG data scrolls 
in the occipital regions for a HC, AD, DLB and PDD 
participant in supplementary Fig.  2, with the occipital 
region being chosen as not only do we see the greatest 

Fig. 2 Box plots for the dominant frequency variance (DFV) ratio in the eyes closed (EC) and eyes open (EO) resting state for HC, AD, DLB and PDD 
participants across all cortical regions. These boxplots display a possible difference between healthy and dementia participants when comparing 
eyes closed and open states that has yet been uncommented upon in literature for inter‑group differentiation and may be representative on an 
underlying biomarker. The HC group showed a significant difference (p < 0.05) in comparison to all dementia groups for the ratio of EC and EO DFV. 
In addition, no dementia group was found to have a significant difference with any group other than HC, as shown in supplementary Table 6. “–” is 
the median DFV value of the group, with “+” representing outliers
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difference in DFV between states for HC participants 
in this region, but these nodes also display prominent 
alpha rhythms for HC participants. We found that the 
HC participant displayed a decrease in wavelength in 
the EO state when compared to the EC state, which is 
not the case in the AD, DLB or PDD participants. This 
may indicate a reason for the change in DFV of HC par-
ticipants. It is notable that despite the large variance in 
all three dementia conditions the difference between the 
HC and dementia groups was still found to be signifi-
cant up to p ≤ 0.01. For both the DLB and PDD groups, 
this significance was found to a value of p ≤ 0.001. 
These statistics are displayed in supplementary Table 6.

For our first inter-group comparison, we investigated 
the classification between HC and dementia participants 
when utilising features selected through feature reduc-
tion. Utilising the k-nearest neighbour (KNN) machine 
learning method, we achieved a specificity of 0.87 and 
sensitivity of 0.86. Good classification accuracies were 
achieved, in line with classification results being compa-
rable with those of Peraza et  al. [13] who utilised more 
complex network analysis EEG features.

Secondly, we investigated the AD-DLB classification 
type, achieving results of 0.75 and 0.86 for sensitivity 
and specificity, respectively. These classification results 
are similar to those of Zande et al. [14] who achieved a 
specificity of 0.87 and sensitivity of 0.83 and Pascarelli 
et al. who achieved a diagnostic result of 0.75 sensitivity 
and 0.85 specificity [32] or Mehraram et al. who achieved 
0.47 sensitivity and 1.00 specificity [33]. Unlike our inves-
tigation, other studies combined either the EC resting 
state qEEG of participants with network-derived con-
nectivity measures [14] or investigated inter-group differ-
ences using EEG cortical sources which are more difficult 
to acquire in clinical settings [32], without the inclusion 
of EO qEEG data. Notably, our results for AD-DLB clas-
sification are comparable to FP-CIT-SPECT, which cur-
rently acts as the gold standard in diagnosis of dementia 
patients [34–36]. However, unlike EEG, FP-CIT-SPECT 
scans are limited in repeat data acquisition due to requir-
ing the use of single gamma photon emission for imag-
ing. Additionally, we investigated AD vs DLB/PDD 
classification, which achieved a specificity of 0.75 and 
a sensitivity of 0.90 (with all PDD patients being suc-
cessfully differentiated from those with AD). Finally, we 
investigated the classification accuracy between the DLB 
and PDD dementia groups with a specificity of 0.76 and 
a sensitivity of 0.30. The ability to achieve such classifica-
tion results between AD and DLB through the utilisation 
of only qEEG features from the EC and EO EEG dataset 
is highly applicable to assisting in dementia classification 
in a clinical environment due to the relative simplicity 
of data acquisition and interpolation without the need 

for a more complex method. Finally, we investigated 
the impact of standard dementia testing scores, such as 
CAMCOG, when combined with the spectral qEEG data. 
For AD vs DLB classification, we achieved the same spec-
ificity of 0.75 but with a marked increase in sensitivity to 
0.95, displaying the power of combining simple EC and 
EO qEEG features with standard clinical testing data to 
differentiate between these dementia groups.

To investigate the overall impact of the EO data on 
classification, we also compared the results of the three 
widely used classifiers: KNN, support vector machines 
(SVM) and logistic regression (LR). It was found that all 
three machine learning methods performed better when 
identifying individuals with Lewy body disease with the 
inclusion of EO qEEG features; these results are summa-
rised in Table 1.

Additionally, we have also investigated the capabil-
ity of EO data to improve the classification accuracies 
of a multi-class k-nearest neighbour machine learning 
approach. Here, healthy individuals are first filtered out 
from possible non-healthy participants with a second 
stage to identify a specific dementia group against other 
individuals determined to be non-healthy participants. 
This is done to identify each group within the context of 
the whole cohort and follows the likely path that would 
be taken within a clinical setting. These results are sum-
marised in Table  4. In the case of identifying HCs, the 
classifier using the additional EO data achieved an overall 
accuracy of 87.70% ± 1.34 with a sensitivity and speci-
ficity of 93.3% ±1.7 and 86.0% ±7.3, respectively. These 
results are higher than that achieved by the EC only clas-
sifier which achieved an overall accuracy of 84.30% ±2.29 
with a reduced specificity and sensitivity of 86.0% ± 5.57 
and 73.00% ± 2.00, respectively, thus indicating that the 
addition of EO data improves the ability of the model 
to correctly identify healthy individuals. For dementia 
participants, the reduction in accuracy when only utilis-
ing the EC data set is even larger. For example, a 16.7% 
reduction in sensitivity is observed for the classification 
of AD individuals against all other participants deter-
mined to be non-healthy when not using the additional 
EO data set. Such a substantial reduction indicates that 
the addition of EO features can greatly improve the mod-
el’s ability to correctly identify AD participants against 
other individuals. Similarly, when differentiating indi-
viduals with DLB from all other participants classified 
as non-healthy, we see a reduction of 9.48% in sensitiv-
ity and 7.43% for specificity, indicating that the addition 
of EO data provides a significant increase to the multi-
class model. The only group which saw no significant 
change in classification results was that of the PDD group 
achieving similar overall classification accuracies for both 
classifier types.
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Overall, these results indicate that EO qEEG data 
represents an underutilised source of data for assist-
ing in the diagnosis and classification of dementia. 
The general ease of accessibility of EO EEG data, due 
to its common acquisition alongside standard EC data, 
means that it would not be difficult improving the dif-
ferentiation between AD and LBD dementia types in 
clinical settings. It is also pertinent to consider that 
standard EEG setups are already widely available in 
many clinical settings for assisting in the diagnosis of 
other neurological diseases with minimum alterations 
required for translation to these methodologies. How-
ever, a larger validation cohort is required to further 
cement the strength by which EO features improve 
inter-group classification accuracies.

Further research into the utilisation of EC and EO 
qEEG for assisting in the diagnosis of dementia should 
likely investigate the combination of network-derived 
functional connectivity methods or hierarchical clus-
tering methods [37], as these methods have already 
been shown excellent ability to differentiate between 
dementia groups. EC data has already been utilised 
in studies for comparing derived and weighted net-
work measures which show a significant difference 
between AD and LBD groups [13, 14, 33]; thus, inves-
tigating EO-derived connectivity measures could fur-
ther improve such inter-group classification methods. 
Moreover, the inclusion of structural information 
(MRI and DTI) is likely to provide additional valu-
able information to further improve diagnostic accu-
racy. A lack of research studies utilising EO data may 
be driven by the need for highly trained technical staff 
to identify and clean EEG signals. EC EEG is certainly 
easier to pre-process than EO since, by definition, EC 
segments have fewer ocular movement artefacts and 
no blink artefacts. We placed special care on correctly 
cleaning the more challenging EO segments while fol-
lowing the same cleaning protocols for both EO and 
EC recordings, to decrease any bias that may have 
been produced by the cleaning procedure.

Another major benefit of utilising qEEG features 
is the ease of integration into new technologies. For 
example, deep convolutional neural networks have 
been shown to be an excellent method for identifying 
disease types in both medical imaging tasks [38, 39] 
and classifying EEG signals from epileptic patients [40] 
in addition to dementia patients from healthy indi-
viduals [41]. Deep neural networks and other similar 
methodologies could easily integrate EC and EO qEEG 
features presented within this study in future, to fur-
ther strengthen classification results. More complex 
methodologies, such as deep neural networks, were 
not utilised in this study due to the need for extensive 

datasets. Additionally, we chose to focus on qEEG fea-
tures as these are already established in clinical prac-
tice, which will likely speed up its integration into 
clinical environments.

Limitations
While our work constitutes a proof-of-principle, future 
work leveraging data from larger independent participant 
cohorts will be required for two major reasons. Firstly, 
replication is an important part of validating scientific 
studies; however, we do not have access to a large enough 
independent cohort to this end. Secondly, a larger dataset 
will ensure that measurements are not biased or overfit-
ted to any group of patients.

Conclusions
Our study has found that EO qEEG data contains sev-
eral features with significant inter-group variability for 
the classification between healthy controls and demen-
tia groups, in addition to dementia inter-group analysis. 
By including such EO qEEG features, we achieved simi-
lar classification results to previous qEEG studies using 
more complex computational methods. Overall, the com-
bination of EC and EO qEEG features improves the over-
all classification accuracy for HC-D and AD-DLB.

Additionally, we found a yet undocumented phenom-
enon between healthy controls and dementia patients 
when one compares the difference in DFV across brain 
regions in the EC and EO states. Healthy controls dis-
played a significantly higher DFV in the EO state, which 
was not seen in the dementia patients. This is possibly 
representing an underlying biomarker for inter-group 
classification; this should be further investigated with 
functional connectivity methods.

Overall, our study presents EO qEEG as an underuti-
lised significant dataset for assisting in the diagnosis of 
dementia patients in combination with EC data, improv-
ing inter-group classification accuracy for classifying 
between HC-D and AD-DLB datasets. Additionally, we 
present undocumented differences between the HC and 
dementia groups which are not seen while utilising only 
the EC dataset.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13195‑ 022‑ 01046‑z.

Additional file 1: Supplementary Table 1. All Abbreviations and 
their full names from throughout the paper. Supplementary Table 2. 
Demographic and clinical variables for HC, AD, DLB and PDD groups, 
including descriptive statistics for each variable. Supplementary Table 3. 
Outputs from one way four group ANOVA, with post‑hoc unpaired Bonfer‑
roni correction. For testing the significance of the difference between 
dementia patient’s MMSE, CAMCOG and NPI hal values. With a significant 

https://doi.org/10.1186/s13195-022-01046-z
https://doi.org/10.1186/s13195-022-01046-z


Page 11 of 12Jennings et al. Alzheimer’s Research & Therapy          (2022) 14:109  

difference seen in AD patients CAMCOG memory and NPI hal scores when 
compared to DLB and PDD patients. Additionally, a significant difference 
is seen between AD and DLB patients for CAMCOG total that is not seen 
when comparing AD and PDD patients. Supplementary Table 4. Outputs 
from unpaired t‑test between each dementia subgroup for cholinesterase 
inhibitor usage. With no significant inter‑group difference (p‑value < 0.05) 
for any two subgroup comparisons. Supplementary Table 5. Outputs 
from one way four group ANOVA, with post‑hoc unpaired Bonferroni 
correction. For testing the significance of the difference between HC and 
dementia patient’s theta‑alpha ratio (TAR) and dominant frequency (DF) 
in the parietal and occipital regions. With a significant decrease in the DF 
of dementia patients not only in the EC but also the EO resting state. In 
addition, the TAR was found to also be significantly different for the DLB 
and PDD groups when compared to healthy controls in the same regions. 
Supplementary Table 6. Outputs from one‑way ANOVA, four group, with 
post‑hoc unpaired Bonferroni correction. For testing the significance of 
change in DFV between the EO and EC resting state for HC, AD, DLB and 
PDD patients. Notably, HC was found to be the only group to experience 
a significant change between the two states when compared to other 
groups. In addition, no dementia group was found to have a significant 
difference between the two states when compared with other dementia 
groups. Supplementary Figure 1. Figures showing the total number of 
times that full feature set for HC‑D (A) classification were selected. Utilising 
training and testing data sets across 100 simulated runs. With features 
consisting of the relative delta, theta, high theta, alpha and delta power 
in addition to the ration of the high theta‑alpha relative power (TAR) 
dominant frequency (DF), dominant frequency variance (DFV) and the 
ratio of the dominant frequency variance between the EC and EO state 
(EC/EO). Supplementary Figure 2. EEG data scrolls in the EC and EO state 
exported from EEGLAB for examples of AD, DLB and PDD patients with an 
exemplary HC example for displaying DFV differences between both stats. 
Firstly, this Figure displays the expected alpha rhythms (arrow) in the EC 
state for the HC participant which are not present for the AD, DLB or PDD 
participants. Secondly, displaying the difference between the EC and EO 
state for all participants with a notable decrease in wavelength for the HC 
participant within the EO state when compared to the EC with the loss 
of the alpha rhythms. It is notable that no significant difference is seen 
between the EC and EO state for any dementia patient.
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