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Abstract
Background  Studies suggest that cerebrospinal fluid (CSF) levels of amyloid-β (Aβ)42 and Aβ40 present a circadian 
rhythm. However sustained sampling of large volumes of CSF with indwelling intrathecal catheters used in most of 
these studies might have affected CSF dynamics and thereby confounded the observed fluctuations in the biomarker 
levels.

Methods  We included 38 individuals with either normal (N = 20) or abnormal (N = 18) CSF Aβ42/Aβ40 levels at 
baseline. CSF and plasma were collected at two visits separated by an average of 53 days with lumbar punctures 
and venipunctures performed either in the morning or evening. At the first visit, sample collection was performed 
in the morning for 17 participants and the order was reversed for the remaining 21 participants. CSF and plasma 
samples were analyzed for Alzheimer’ disease (AD) biomarkers, including Aβ42, Aβ40, GFAP, NfL p-tau181, p-tau217, 
p-tau231 and t-tau. CSF samples were also tested using mass spectrometry for 22 synaptic and endo-lysosomal 
proteins.

Results  CSF Aβ42 (mean difference [MD], 0.21 ng/mL; p = 0.038), CSF Aβ40 (MD, 1.85 ng/mL; p < 0.001), plasma 
Aβ42 (MD, 1.65 pg/mL; p = 0.002) and plasma Aβ40 (MD, 0.01 ng/mL, p = 0.002) were increased by 4.2-17.0% in 
evening compared with morning samples. Further, CSF levels of 14 synaptic and endo-lysosomal proteins, including 
neurogranin and neuronal pentraxin-1, were increased by 4.5-13.3% in the evening samples (MDrange, 0.02-0.56 fmol/
µl; p < 0.042). However, no significant differences were found between morning and evening levels for the Aβ42/
Aβ40 ratio, different p-tau variants, GFAP and NfL. There were no significant interaction between sampling time and 
Aβ status for any of the biomarkers, except that CSF t-tau was increased (by 5.74%) in the evening samples compared 
to the morning samples in Aβ-positive (MD, 16.46 ng/ml; p = 0.009) but not Aβ-negative participants (MD, 1.89 ng/ml; 
p = 0.47). There were no significant interactions between sampling time and order in which samples were obtained.
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Introduction
There is a great need for fluid biomarkers that robustly 
reflect various aspects of the pathophysiology of 
Alzheimer’s disease (AD) to improve the diagnos-
tic workup, monitor progression and enable effective 
drug-development. Currently available fluid biomark-
ers include amyloid-β (Aβ)42, alone or in ratio with 
Aβ40 and phosphorylated tau (e.g., p-tau181, p-tau217 
and p-tau231) reflecting core AD-related Aβ and tau 
pathologies, respectively. Additional promising biomark-
ers of pathophysiological processes that are common for 
many neurodegenerative disorders are neurofilament 
light (NfL), a marker of axonal degeneration, as well as 
a marker of glial activation, glial fibrillary acidic protein 
(GFAP) [1]. Although cerebrospinal fluid (CSF) mea-
sures are available and have proven highly useful as diag-
nostic and prognostic tools for AD in research settings, 
clinical care and drug trials, blood testing offers several 
advantages (e.g., lower invasiveness, higher accessibility, 
cost-effectiveness) [2]. Accumulating evidence suggests 
that plasma Aβ42/40, different p-tau isoforms (p-tau181, 
p-tau231 and p-tau217), NfL and GFAP approach in 
performance [3–9] or even outperform [10] their corre-
sponding CSF biomarker.

To improve biomarker performance in clinical care and 
trials, it is important to implement standardized sample 
collection and handling procedures that would mini-
mize the effects of pre-analytical component among fac-
tors impacting biomarker variability [11–14]. One such 
pre-analytical factor to consider is time of the day at 
sample collection. Even though, published protocols for 
CSF sampling recommend to perform lumbar puncture 
(LP) at a standardized time (08.00–12.00 AM) to avoid 
potential diurnal variation for CSF biomarkers [15], diur-
nal variability in CSF and plasma concentrations of AD 
biomarkers is not well established. Early reports showed 
fluctuations of CSF Aβ with 1.6-to-4-fold change over 
a 36-hour period in younger non-demented partici-
pants with good general health [16]. Other studies have 
found smaller (5.5 to 6.7%) or no significant fluctuation 
in older, more clinically relevant cohorts [17, 18]. Two 
studies have investigated Aβ dynamics in plasma, report-
ing 5–9% higher levels of Aβ42 and Aβ40 in samples 
collected in the afternoon versus morning and larger 
diurnal fluctuations in younger individuals than in older 

individuals [19, 20]. While data on NfL and GFAP, either 
in CSF or plasma are lacking, some evidence suggest that 
CSF t-tau or p-tau levels do not follow diurnal pattern 
both in healthy old population [17] and in neurosurgical 
patients with CSF pressure monitoring [21].

Synaptic homeostasis alteration and degeneration are 
early pathological events common in many neurode-
generative diseases, including AD. This makes synap-
tic proteins that reflect synaptic dysfunction interesting 
early biomarkers [22]. Disruption of sleep and circadian 
rhythm is believed to happen with ageing and contrib-
ute to development of neurodegenerative diseases in 
part through synaptic dysfunction [23]. AD as well as 
other proteinopathies are also accompanied by aber-
rant function of endo-lysosomal networks [24]. Several 
articles reported increased levels of endo-lysosomal pro-
teins in CSF of patients with AD while their levels seem 
to decrease in Parkinson’s disease [25–28]. To the best 
of our knowledge, no studies have assessed variations in 
synaptic or endo-lysosomal protein levels during the day 
in humans.

Most studies on changes in CSF Aβ levels to date used 
frequent and sustained sampling throughout the day with 
an indwelling intrathecal catheter. This procedure has 
been shown to contribute to the rise in CSF Aβ42 and 
Aβ40 independent of circadian fluctuations as repeated 
lumbar sampling presumably drives the redistribution 
of CSF flow towards the lumbar space where it is col-
lected [19, 29, 30]. To minimize the effect of sampling 
procedures on CSF biomarker concentrations, partici-
pants in the present study underwent two LPs, one in 
the morning and another one in the evening, separated 
by an average of 53 days and samples were analyzed for 
all major AD biomarkers as well as a panel of 22 synap-
tic and endo-lysosomal proteins. To ensure that changes 
in biomarker levels were not due to the sampling order, 
17 participants had the first visit in the morning and the 
second in the evening and the order was reversed for the 
remaining 21 participants. In addition to CSF, we col-
lected plasma samples on the same visit and quantified 
the most promising plasma AD biomarkers using cur-
rently best performing immunoassays [31, 32]. Our pri-
mary research question was whether the time at sample 
collection, morning or evening, affected the levels of dif-
ferent biomarkers (Aβ42, Aβ40, Aβ42/40, NfL, GFAP, 

Discussion  Our findings provide evidence for diurnal fluctuations in Aβ peptide levels, both in CSF and plasma, while 
CSF and plasma p-tau, GFAP and NfL were unaffected. Importantly, Aβ42/Aβ40 ratio remained unaltered, suggesting 
that it is more suitable for implementation in clinical workup than individual Aβ peptides. Additionally, we show that 
CSF levels of many synaptic and endo-lysosomal proteins presented a diurnal rhythm, implying a build-up of neuronal 
activity markers during the day. These results will guide the development of unified sample collection procedures to 
avoid effects of diurnal variation for future implementation of AD biomarkers in clinical practice and drug trials.
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p-tau217, p-tau181, p-tau231, t-tau and synaptic and 
endo-lysosomal proteins). A secondary research question 
was whether any of these differences were affected by the 
amyloid status of the participants.

Methods
Participants
Participants were enrolled at the Memory Clinic, Skåne 
University Hospital comprising clinical patients who 
underwent LP as a component of their clinical assess-
ment, along with individuals from the longitudinal Swed-
ish BioFINDER study. The inclusion of the participants 
from the BioFINDER study contributed to the relatively 
high numbers of asymptomatic subjects with unimpaired 
cognition. Participants were selected such that the num-
bers of Aβ + and Aβ- individuals were approximately the 
same. The sole inclusion criterion for participation in this 
study was the performance of a LP at the clinic. Exclu-
sion criteria consisted of individuals who did not undergo 
the requisite two LP. All participants had two visits when 
LPs and venipunctures were performed approximately 
at the same time. We believe that any damage and CSF 
leakage caused by LP at the first visit would have healed 
after approximately one month. Therefore, study partici-
pants had second visit with LP and venipuncture on an 
average 53 days (range 41–65 days) after the first visit. 
For 17 participants the first collection was performed in 
the morning and the following in the evening and for the 
remaining 21 participants the order was reversed. Time 
difference between morning and evening samplings was 
on an average 10:30 h (range 9:45 − 11:45 h).

Plasma and CSF collection and analysis
20mL of CSF was collected in 5-mL LoBind tubes. CSF 
was centrifuged (2000 g, + 4 °C) for 10 min, aliquoted in 
1.5 mL polypropylene tubes and stored at − 80 °C within 
30–60  min of collection [15]. Blood was collected in 
EDTA-plasma tubes (Vacutainer K2EDTA tube, BD 
Diagnostics) and centrifuged (2000 g, + 4 °C) for 10 min. 
Resulting plasma was transferred into one 50-mL poly-
propylene tube, mixed and aliquoted into 1.5 mL poly-
propylene tubes and stored at − 80 °C within 30–60 min 
of collection. All samples from the same patient were 
measured in the same run to limit the effects of run-to-
run variability on biomarker concentrations.

CSF levels of Aβ40, t-tau, NfL and GFAP were mea-
sured as part of robust prototype assay within the Neu-
roToolKit, on fully automated cobas® e 411 or e 601 
analyzers (all Roche Diagnostics International Ltd, Rot-
kreuz, Switzerland) as previously described [33]. CSF 
Aβ42 levels were measured as part of the Roche Neu-
roToolKit using the in vitro diagnostic (IVD) Elecsys® 
assay [34]. Plasma levels of Aβ42, Aβ40, GFAP and NfL 
were also measured as part of the Roche NeuroToolKit 

using Elecsys® plasma prototype immunoassays (All 
Roche Diagnostics International Ltd, Rotkreuz, Swit-
zerland) on cobas® e 411 and cobas e 601 instruments as 
previously described [33]. CSF and plasma p-tau231 and 
p-tau181 levels were measured by an in-house Simoa 
assay developed in the University of Gothenburg, as pre-
viously described [35, 36]. CSF and plasma p-tau-217 lev-
els were measured using an immunoassay developed by 
Lilly Research laboratories on the Meso-Scale Discovery 
Platform as previously described [4].

CSF samples were analyzed for a panel of 18 synaptic 
proteins and 4 endo-lysosomal proteins (See Supplemen-
tary Table 1, Supplemental 1) using liquid chromatogra-
phy with tandem mass spectrometric analysis (LC–MS/
MS) as previously described [37].

Study participants were classified as amyloid negative 
(Aβ-) or positive (Aβ+) using CSF Aβ42/Aβ40 quantified 
with the Food and Drug administration (FDA)-approved 
Lumipulse G assay and established cut-off of 0.072 [38].

Statistical analyses
Differences in the demographic variables were evaluated 
with Student t-test (age, Mini Mental State Examina-
tion (MMSE) scores, estimated glomerular filtration rate 
(eGFR, as an indicator of kidney dysfunction) and Body 
Mass Index (BMI)) or Fisher’s exact test (gender, APOE 
ε4 carriership and diagnosis). Repeated measures two-
way ANOVA including interaction effect between Aβ 
status and time at sampling was used to assess whether 
biomarker levels in Aβ + and Aβ- individuals were 
affected differently by time of sample collection. Similar 
analysis was carried out to assess interaction between 
order in which samples were collected (i.e., morning col-
lection or evening collection first) and time at sampling. 
Multiplicity correction was applied using the Bonferroni-
Dunn method except the CSF synaptic and endo-lyso-
somal panel where we used Benjamini–Hochberg false 
discovery rate (FDR). All significance were two-sided 
with significance level equal to 0.05. Statistical analysis 
was performed using Prism 9 (GraphPad Software, San 
Diego, California, USA).

Results
Participant demographics
The demographic and clinical data for all participants are 
summarized in Table 1. Out of 38 participants, 18 were 
Aβ-positive (Aβ+) and 20 Aβ-negative (Aβ-). There were 
no significant differences between Aβ + and Aβ- groups 
for sex, age, MMSE score, diagnosis, eGFR or BMI. There 
was a higher proportion of APOE ε4 carriership in Aβ + in 
comparison with Aβ- (70.6% vs. 15.0%, p = 0.002). Most 
study participants (35 out of 38) were cognitively unim-
paired while 3 individuals were cognitively impaired.
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CSF and plasma AD biomarkers
CSF concentrations of Aβ42 (mean difference [MD], 
0.21  ng/mL; p = 0.038) and Aβ40 (MD, 1.85 ng/mL; 
p < 0.001) were increased by 17.0% (95% CI, 10-24.1) and 
10.5% (95% CI, 6.5–14.4), respectively, in samples col-
lected in the evening compared to those collected in the 
morning (Fig. 1; Table 2). Similarly, plasma levels of Aβ42 
(MD, 1.65 pg/mL; p = 0.002) and Aβ40 (MD, 0.01 ng/mL, 
p = 0.002) were significantly higher in samples collected 
in the evening compared to those collected in the morn-
ing. However, the increases were smaller for plasma Aβ42 
(4.8%; 95% CI, 2.7–6.7) and Aβ40 (4.2%; 95% CI, 2.2–6.3) 
compared with CSF Aβ42 and Aβ40 (Fig. 2; Table 3). In 

contrast, we did not find any significant differences in 
either the CSF Aβ42/Aβ40 ratio (5.3%; 95% CI, 1.6- 9.0; 
p = 0.16) or the plasma Aβ42/Aβ40 ratio (0.7%; 95% CI, 
-0.7 to 1.1; p = 1.0) (Figs.  1 and 2; Tables  2 and 3). We 
also did not find any changes in CSF and plasma levels 
of p-tau217, p-tau181, p-tau231, NfL and GFAP (p = 1.00) 
between collection in the morning and evening (Figs.  1 
and 2; Tables 2 and 3).

Effects of sampling time on CSF and plasma biomark-
ers were not different in the Aβ+ and Aβ- groups (prange 
uncorrected 0.06–0.88 for interaction between sampling 
time and Aβ status, Supplementary Table 3, Supplemen-
tary Figs.  2–3), except CSF t-tau (p = 0.007). There was 

Table 1  Demographics and clinical characteristics of all subjects
All subjects Aβ + Aβ - P-value Aβ+ vs. Aβ −

N 38 18 20
Age (years) 77 (5.91) 78 (4.41) 76 (6.86) 0.08
Gender (F/M) 16/22 8/10 8/12 0.52
APOE ε4 positivity, n (%) 15 (39) 12 (71) 3 (15) 0.002
MMSE 28 (2.10) 28 (1.84) 29 (2.25) 0.16
Diagnosis
Cognitively Unimpaired
Cognitively Impaired

35
3

16
2

19
1

0.32

Kidney Function (eGFR)a 122.29 (21.54) 119.71 (20.52) 124.57 (23.09) 0.54
BMIb 26.64 (2.84) 25.86 (2.31) 27.29 (3.13) 0.31
Data shown as mean (SD) unless specified otherwise

Abbreviations: M, male; F, female; APOE, apolipoprotein; MMSE, Mini-Mental State Examination, eGFR, estimated glomerular filtration rate; BMI, Body Mass Index
a Data was missing in 5 participants (2 Aβ + and 3 Aβ -)
b Data was missing in 3 participants (2 Aβ + and 1 Aβ-)

Fig. 1  CSF biomarkers levels in samples collected in the morning and evening. Subject specific biomarker concentration in samples collected in 
the morning vs. evening. Average percent changes between time points are shown in box-plots plotted with the Tukey method. Blue and orange dots 
represent participants with negative and positive amyloid status, respectively. Asterisks represent p-values for the main effects of sampling time from 
repeated measures two-way ANOVA; * p < 0.05, *** p < 0.001
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a relatively small increase (5.74% (95% CI, 2.85–8.63)) 
in CSF t-tau levels in evening samples compared to the 
morning samples in Aβ+ participants (MD, 16.46  ng/
ml; p = 0.009) but not in Aβ- participants (1.20% (95%CI, 
-1.99-4.39); MD, 1.89  ng/ml; p = 0.47) (Supplementary 
Fig. 2).

Morning or evening biomarker levels were not different 
depending on the order in which samples were collected 
(morning first vs. evening first) for any of the biomarkers 

(prange uncorrected 0.051–0.85 for interaction between 
sampling time and order of sample collection, Supple-
mentary Table 3).

Synaptic and endo-lysosomal panel
We found differences between morning and evening 
samples for 14 out of 22 synaptic and endo-lysosomal 
proteins (Table  4 and Supplementary Table 2, Supple-
mental 1). CSF levels of amyloid precursor protein 

Table 2  CSF biomarker concentrations in samples collected in the morning and evening
Biomarkers Morning 

concentration
Evening 
concentration

Differences 
evening-morning

% Change F (df1, df2) a P-value 
corrected 
(uncor-
rected) b

Aβ42 [ng/mL] 1.53 (0.85) 1.74 (0.82) 0.21 (0.35 to 0.07) 17.02 (9.99 to 24.06) 8.99 (1, 37) 0.038 
(0.005)

Aβ40 [ng/mL] 19.08 (4.44) 20.94 (4.86) 1.85 (1.09 to 2.62) 10.46 (6.50 to 14.42) 24.10 (1, 37) 0.0008 
(0.0001)

Aβ42/Aβ40 ratio 0.081 (0.03) 0.085 (0.04) 0.004 (0.001 to 0.008) 5.29 (1.57 to 9.01) 5.91 (1, 37) 0.16 (0.02)
P-tau217 [pg/mL] 14.50 (19.66) 15.52 (22.61) 1.02 (-0.06 to 2.10) 4.03 (0.81 to 7.25) 3.67 (1, 37) 0.50 (0.06)
P-tau231 [pg/mL] 269.54 (176.24) 272.73 (184.1) 7.84 (2.11 to 13.56) 2.60 (0.48 to 4.72) 7.71 (1, 36) c 0.07 

(0.009)
P-tau181 [pg/mL] 466.51 (669.2) 472.96 (687.58) 14.83 (3.76 to 25.90) 2.80 (0.94 to 4.66) 7.38 (1, 36) c 0.08 (0.01)
GFAP [pg/mL] 13.76 (5.22) 14.25 (5.92) 0.49 (0.03 to 0.95) 2.59 (-0.64 to 5.83) 4.62 (1, 37) 0.30 (0.04)
NfL [ng/mL] 184.92 (84.22) 179.58 (76.04) -5.33 (-6.52 to 17.18) -1.54 (-5.19 to 2.12) 0.83 (1, 37) 1 (0.37)
Data shown as mean (SD) or mean (95%CI) unless specified otherwise. Abbreviations: CSF, cerebrospinal fluid; Aβ, amyloid beta; GFAP, glial fibrillary acidic protein; 
NfL, neurofilament light; P-tau, phosphorylated tau
a Main effects of sampling time from repeated measures two-way ANOVA
bP-values were corrected for multiple comparison using the Bonferroni-Dunn method
c Data was missing for 1 participant

Fig. 2  Plasma biomarkers levels in samples collected in the morning and evening. Subject specific biomarker concentration in samples collected 
in the morning vs. evening. Average percent changes between time points are shown in box-plots plotted with the Tukey method. Blue and orange dots 
represent participants with negative and positive amyloid status, respectively. Asterisks represent p-values for the main effects of sampling time from 
repeated measures two-way ANOVA; ** p < 0.01
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Table 3  Plasma biomarker concentration in samples collected in the morning and evening
Plasma Biomarkers 
[units]

Morning 
concentration

Evening 
concentration

Differences 
evening-morning

% Change F (df1, df2) a P-value 
corrected 
(uncor-
rected) b

Aβ42 [pg/mL] 38.43 (7.76) 40.08 (7.37) 1.65 (0.84 to 2.47) 4.84 (2.68 to 7) 16.81 (1, 37) 0.002 
(0.0002)

Aβ40 [ng/mL] 0.29 (0.05) 0.30 (0.05) 0.01 (0.006 to 0.02) 4.24 (2.15–6.32) 16.05 (1, 37) 0.002 
(0.0003)

Aβ42/40 0.14 (0.03) 0.14 (0.03) 0.001 (-0.002 to 0.001) 0.65 (-0.70 to 1.10) 0.79 (1, 37) 1 (0.38)
P-tau217 [pg/mL] 0.37 (0.16) 0.36 (0.16) -0.01 (-0.01 to 0.03) -0.56 (-7.13 to 6.01) 0.95 (1, 37) 1 (0.34)
P-tau231 [pg/mL] 6.88 (3.05) 6.67 (3) -0.22 (-0.52 to 0.95) 2.48 (-8.86 to 13.83) 0.35 (1, 35) c 1 (0.55)
P-tau181 [pg/mL] 10.61 (4.89) 9.94 (4.43) -0.71 (-0.76 to 2.10) -0.15 (-11.75 to 

11.46)
0.90 (1, 37) 1 (0.35)

GFAP [pg/mL] 0.11 (0.07) 0.10 (0.05) -0.01 (-0.004 to 0.02) -1.81 (-10.03 to 
6.40)

2.04 (1, 37) 1 (0.16)

NfL [ng/mL] 3.83 (2.10) 3.42 (1.47) -0.41 (-0.12 to 0.94) -3.96 (-11.75 to 
3.82)

2.46 (1, 37) 1 (0.13)

Data shown as mean (SD) or mean (95%CI) unless specified otherwise. Abbreviations: Aβ, amyloid beta; GFAP, glial fibrillary acidic protein; NfL, neurofilament light; 
P-tau, phosphorylated tau
a Main effects of sampling time from repeated measures two-way ANOVA
bP-values were corrected for multiple comparison using the Bonferroni-Dunn method
c Data was missing for 2 participants

Table 4  CSF synaptic and endo-lysosomal biomarkers with increased levels in samples collected in the evening vs. morning
Biomarkers Morning 

concentra-
tion (fmol/
µl)

Evening con-
centration 
(fmol/µl)

Differences 
evening-morning

% Change F (df1, df2)a P-value cor-
rected (uncor-
rected) b

Synaptic panel
Amyloid Precursor Protein 3.80 (1.32) 4.04 (1.41) 0.24 (0.12 to 0.37) 7.06 (4.02 to 10.10) 15.46 (1, 37) 0.005 (0.0004)
Syntaxin-1B 0.31 (0.10) 0.34 (0.11) 0.02 (0.01 to 0.03) 7.10 (3.38 to 10.81) 13.77 (1, 37) 0.005 (0.0007)
Neuronal pentraxin receptor 1.22 (0.55) 1.35 (0.60) 0.12 (0.05 to 0.19) 12.15 (6.15 to 18.15) 13.58 (1, 37) 0.005 (0.0007)
Neuronal pentraxin-1
ETVLQQK
LTPGEVYNLATCSTK

0.67 (0.24)
1.52 (0.46)

0.71 (0.26)
1.61 (0.49)

0.04 (0.01 to 0.07)
0.09 (0.04 to 0.14)

7.66 (3.28 to 12.04)
6.24 (3.02 to 9.47)

8.38 (1, 37)
11.92 (1, 37)

0.020 (0.006)
0.008 (0.001)

Neurogranin 0.60 (0.28) 0.66 (0.31) 0.06 (0.02 to 0.10) 11.59 (6.64 to 16.54) 10.56 (1, 37) 0.012 (0.003)
β-synuclein 0.28 (0.10) 0.30 (0.12) 0.03 (0.04 to 0.007) 9.59 (3.90 to 15.28) 7.91 (1, 37) 0.020 (0.008)
γ-synuclein 0.60 (0.21) 0.64 (0.20) 0.13 (0.001 to 0.26) 8.50 (3.31 to 13.70) 5.82 (1, 37) 0.042 (0.021)
PEBP- 1 7.91 (2.43) 8.23 (2.57) 0.32 (0.10 to 0.54) 4.45 (1.71 to 7.20) 8.96 (1, 37) 0.020 (0.005)
14-3-3ε 0.43 (0.14) 0.45 (0.16) 0.03 (0.01 to 0.05) 6.62 (2.29 to 10.96) 8.05 (1, 37) 0.020 (0.007)
Chromogranin-A 4.04 (2.82) 4.38 (2.99) 0.34 (0.10 to 0.57) 9.38 (4.97 to 13.78) 8.2 (1, 37) 0.020 (0.007)
Secretogranin-2 4.10 (1.55) 4.36 (1.74) 0.26 (0.06 to 0.47) 7.06 (2.65–11.47) 6.75 (1, 37) 0.030 (0.013)
Neurosecretory protein VGF
NSEPQDEGELFQGVDPR
AYQGVAAPFPK

3.77 (2.00)
7.52 (4.02)

3.98 (2.13)
8.08 (4.49)

0.21 (0.03 to 0.38)
0.56 (0.14 to 0.98)

6.38 (1.89 to 10.88)
8.45 (3.47 to 13.43)

5.84 (1, 37)
7.41 (1, 37)

0.041 (0.021)
0.023 (0.010)

Endo-lysosomal panel
Ganglioside GM2 activator
EVAGLWIK
ESVLSSSGK

3.91 (1.45)
5.38 (1.95)

4.11 (1.49)
5.60 (2.01)

0.20 (0.10 to 0.30)
0.23 (0.11 to 0.35)

5.95 (2.94 to 8.96)
4.70 (2.27 to 7.13)

15.87 (1, 37)
14.15 (1, 37)

0.005 (0.0003)
0.005 (0.0006)

Cathepsin F 0.45 (0.13) 0.49 (0.13) 0.04 (0.01 to 0.07) 13.29 (4.44 to 22.14) 7.97 (1, 37) 0.020 (0.008)
Data shown as mean (SD) or mean (95%CI) unless specified otherwise. Data for all synaptic and endo-lysosomal proteins is shown in Supplementary Table 2. 
Abbreviations: CSF cerebrospinal fluid
a Main effects of sampling time from repeated measures two-way ANOVA
bP-values were corrected for multiple comparison using the FDR method
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(APP), syntaxin-1B (STX1B), neurogranin (Ng), neuro-
nal pentraxin receptor (NPTXR), neuronal pentraxin 
1 (NPTX1), β-synuclein (β-Syn), γ-synuclein (γ-Syn), 
14-3-3ε, phosphatidylethanolamine-binding protein 1 
(PEBP-1), cathepsin F (CTSF), GM2 activator (GM2A), 
neurosecretory protein VGF (VGF), secretogranin-2 
(SgII) and chromogranin A (CgA) were all increased by 
4.5-13.3% (95% CI, 1.7–7.2 to 4.4–22.1; p < 0.048) in sam-
ples collected in the evening compared to those collected 
in the morning (Supplementary Fig.  1, Supplemental 1, 
Table 4).

Effects of sampling time were not different in the 
Aβ + and Aβ- groups (prange uncorrected  0.06–0.88, for 
interaction between sampling time and Aβ status) for any 
of the proteins from the MS panel. In addition, morning 
or evening protein levels were not different depending 
on the order in which samples were collected (morning 
first vs. evening first) (prange uncorrected  0.09–0.85, for 
interaction between sampling time and order of sample 
collection).

Discussion
In this study, we show higher levels of Aβ42 and Aβ40 
in samples collected in the evening compared to those 
collected in the morning. The increases were modest 
and consistent in both CSF and plasma. Importantly, 
no changes were observed in the Aβ42/Aβ40 ratio, or 
any other tested AD biomarker (i.e., p-tau217, p-tau231, 
p-tau181, NfL and GFAP) either in CSF or plasma. 
Additionally, 14 out of 22 synaptic and endo-lysosomal 
proteins were also increased in CSF in the evening in 
comparison to the morning samples.

Although there have been handful of studies on diur-
nal variation in the CSF levels of AD biomarkers, results 
have been inconsistent. Some have pointed to fluctua-
tions in biomarker concentrations during the day [16, 
17, 30], whereas other have not found any significant 
changes [18, 21]. The conflicting results are possibly 
caused by the small sample size in several of the stud-
ies, cohort specific differences as well as differences 
in the CSF sampling methods and assays used for Aβ 
quantification. Many reports have highlighted that fre-
quent sampling and extraction of large volumes of CSF 
via indwelling catheter leads to increased levels of CSF 
Aβ [17, 19, 29, 39–41] possibly by promoting the trans-
fer from the interstitial fluid to CSF [17] and by redis-
tribution of fluid towards the lumbar space [29, 41]. To 
mitigate these sampling-related effect, CSF in the pres-
ent study was collected at two separate LPs with an aver-
age interval of 53 days allowing sufficient time for tissue 
damage caused by the LP to heal. Of note, no interaction 
effects were seen between sampling time (i.e., morning 
and evening) and order in which samples were collected 
for any biomarker indicating that the differences in levels 

we report were not due to samples being collected at a 
later date. Our results support those that suggest a cir-
cadian rhythm for Aβ42 and Aβ40, with higher levels in 
the evening. The increases in CSF were modest with 17% 
and 10.5% for Aβ42 and Aβ40, respectively, (Table 2) and 
in a similar range (3.8–15%) to some studies that have 
included elderly subjects as well as patients with AD [17, 
29]. The increases in plasma Aβ42 and Aβ40 were lower 
than in CSF (4.8% and 4.2% respectively; Table 3) and in 
a similar range (2-9%) as in previous reports [19, 20]. The 
smaller changes in the evening of Aβ in plasma could be 
partly due to the contribution of peripheral sources of 
Aβ that are less affected by circadian rhythms. The dif-
ferences in Aβ42 and Aβ40 levels in the morning and 
evening samples were not influenced by brain Aβ status, 
which is important since 47% of our sample had abnor-
mal Aβ-status (Table  1). These findings are in line with 
previous reports indicating that in elderly individuals 
day/night variability in Aβ42 and Aβ40 levels, did not 
vary between Aβ + and Aβ- groups [19, 39]. At the same 
time, we show that CSF and plasma Aβ42/Aβ40 ratios 
remained unaltered, suggesting that increased produc-
tion or decreased clearance of Aβ peptides during day-
time similarly affect the CSF and plasma levels of the 
Aβ42 and Aβ40.

Our results with higher APP levels in the evening 
in comparison to the morning suggest that circadian 
rhythm and synaptic activity might affect brain and CSF 
Aβ levels through modulation of APP expression, release 
and/or metabolism (Table  4). Aβ42 and Aβ40 are pro-
duced by the cleavage of APP and increased synaptic 
activity promotes the amyloidogenic processing of APP 
[42] leading to increased interstitial Aβ levels [43]. Inter-
estingly, it has been shown in mice that interstitial fluid 
levels of Aβ correlate with time spent awake and change 
in response to activation of orexin which is known to 
regulate wakefulness under physiological conditions and 
follow a diurnal fluctuation [44, 45].

In agreement with earlier data, we did not find any 
significant fluctuations over the day for CSF or plasma 
p-tau [18, 21]. Furthermore, we show for the first time, 
that there are no differences in CSF and plasma NfL and 
GFAP concentrations between samples collected in the 
morning and evening. Collectively, these results suggest 
that during daytime there is a specific increase in the CSF 
and plasma levels of Aβ proteins rather than a general 
build-up of AD biomarkers.

Higher neuronal activity and increased synaptic 
strength during wakefulness compared to sleep have 
been reported in mice and rats [46–48]. High synaptic 
activity is associated with increased production of syn-
aptic proteins, especially proteins that regulate the secre-
tory pathways [49]. Taken together these findings may 
explain the higher levels of synaptic proteins in evening 
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samples in comparison to the morning seen in our study 
(See Supplementary Table 2, Supplemental 1, Table  4). 
It remains unclear why only some synaptic and endo-
lysosomal proteins were selectively affected in our study. 
Future investigations should explore the underlying 
mechanisms behind these findings.

The strength of the current study is that we assessed 
a wide range of the established and candidate CSF and 
plasma AD biomarkers measured using state-of-the art 
assays. However, this study has limitations. The sample 
size was relatively small and determined based on previ-
ous studies examining the effects of diurnal variability on 
Aβ levels (no power calculations were performed). The 
difference in biomarker levels between the morning and 
evening samples, in plasma in particular, were also small 
with intra-individual variability potentially influencing 
these results. Future work in larger cohorts accounting 
for the effects of intra-individual variability in biomarker 
concentration are warranted. These studies should also 
assess the impact of diurnal variability on diagnostic per-
formance of AD biomarkers.

Conclusions
In summary, we demonstrate that Aβ42 and Aβ40 levels 
in CSF and plasma have diurnal fluctuations with higher 
levels in the evening. Previous data have indicated that 
Aβ42/Aβ40 ratio is less affected than Aβ42 alone by dif-
ferent AD non-specific factors and pathologies (e.g., pre-
analytical sample handling, inter-individual variability 
in Aβ levels, subcortical injury) [50]. Here, we also show 
that CSF and plasma Aβ42/Aβ40 levels are not influ-
enced by the timing of the sample collection further sup-
porting the use of Aβ42/Aβ40 ratio over Aβ42 alone in 
the diagnostic workup of AD. While the CSF and plasma 
levels of p-tau variants, NfL and GFAP did not exhibit 
diurnal variability, CSF levels of many synaptic and endo-
lysosomal proteins were increased in samples collected in 
the evening. These results suggest an increase and build-
up of markers associated with neuronal activity during 
wakefulness. In addition, our data highlight the need to 
consider the effects of circadian rhythms on the CSF (and 
potentially plasma) levels of synaptic and endo-lysosomal 
proteins that are considered as candidate biomarkers of 
AD. Overall, the findings of the present study support 
the standardization of sample collection protocols for 
AD biomarker determination, with sampling at a specific 
time interval during the day.
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