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Abstract 

Background Leveraging Alzheimer’s disease (AD) imaging biomarkers and longitudinal cognitive data may allow us 
to establish evidence of cognitive resilience (CR) to AD pathology in-vivo. Here, we applied latent class mixture mod‑
eling, adjusting for sex, baseline age, and neuroimaging biomarkers of amyloid, tau and neurodegeneration, to a sam‑
ple of cognitively unimpaired older adults to identify longitudinal trajectories of CR.

Methods We identified 200 Harvard Aging Brain Study (HABS) participants (mean age = 71.89 years, SD = 9.41 years, 
59% women) who were cognitively unimpaired at baseline with 2 or more timepoints of cognitive assessment 
following a single amyloid‑PET, tau‑PET and structural MRI. We examined latent class mixture models with longitu‑
dinal cognition as the dependent variable and time from baseline, baseline age, sex, neocortical Aβ, entorhinal tau, 
and adjusted hippocampal volume as independent variables. We then examined group differences in CR‑related 
factors across the identified subgroups from a favored model. Finally, we applied our favored model to a dataset 
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI; n = 160, mean age = 73.9 years, SD = 7.6 years, 60% 
women).

Results The favored model identified 3 latent subgroups, which we labelled as Normal (71% of HABS sample), 
Resilient (22.5%) and Declining (6.5%) subgroups. The Resilient subgroup exhibited higher baseline cognitive perfor‑
mance and a stable cognitive slope. They were differentiated from other groups by higher levels of verbal intelligence 
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and past cognitive activity. In ADNI, this model identified a larger Normal subgroup (88.1%), a smaller Resilient sub‑
group (6.3%) and a Declining group (5.6%) with a lower cognitive baseline.

Conclusion These findings demonstrate the value of data‑driven approaches to identify longitudinal CR groups 
in preclinical AD. With such an approach, we identified a CR subgroup who reflected expected characteristics based 
on previous literature, higher levels of verbal intelligence and past cognitive activity.

Keywords Longitudinal analysis, Alzheimer’s disease, Amyloid, Tau, PET, MRI, Cognition, Cognitive Reserve, Cognitive 
Resilience

Background
Cognitive resilience (CR) refers to a property of the brain 
that enables better-than-expected cognitive performance 
given age-related brain change, injury or disease [1, 2]. 
In Alzheimer’s disease, individuals with higher CR show 
a reduced risk and/or delayed onset of dementia [3]. CR 
is thought to be a dynamic construct, that is influenced 
by genetics, lifestyle and environmental factors, and that 
can change over the life course [4]. Identifying and char-
acterizing longitudinal CR can help us to better under-
stand the factors that predict an individual’s likelihood 
of performing well in the face of pathological insult. 
To-date, however, the clinical potential of CR has yet to 
be fully realized and has been limited to the use of CR-
related factors, education [5] and verbal intelligence [6] 
to adjust normative cognitive data for detecting cognitive 
impairment.

Difficulties in measuring the latent construct of CR 
in-vivo are a considerable barrier to achieving trans-
lational impact of CR research. Post-mortem studies 
suggest that CR is relatively common, demonstrated 
in 20–39% of post-mortem cases that possess patho-
logic AD diagnoses without cognitive impairment at 
death [7–9]. Identifying CR in-vivo is more difficult as, 
unlike in post-mortem studies, cognitive performance 
may continue to evolve. Instead, CR has been studied 
in-vivo, and at a cross-section, using sociobehavio-
ral proxy variables (e.g. educational attainment) that 
reflect the degree of exposure to CR-related life expe-
riences. Another popular approach is to use residu-
als, obtained from regressing cognitive performance 
on demographics (e.g. age, sex) and brain structure or 
pathology (e.g. adjusted hippocampal volume, neocor-
tical Aβ). Despite their widespread use, proxies do not 
consistently show CR effects [10, 11] and may be asso-
ciated with cognitive decline via pathways other than 
CR [12]. For example, educational attainment is associ-
ated with socioeconomic status [13] which is associated 
with cognitive decline via various other pathways such 
as access to healthcare, the neighborhood environment, 
and exposure to air pollution [14–16]. CR residuals 
necessarily contain substantial measurement error [17] 
and their association with variables of interest may be 

driven by baseline cognitive levels rather than CR [18]. 
Along with the absence of a gold-standard endpoint, 
these issues compound the difficulty of identifying CR 
in-vivo.

The latent class mixture model (LCMM) [19] is a data-
driven modelling technique that has been applied in epi-
demiological research to identify distinct subgroups of 
body mass index trajectories [20–22] and of treatment 
response trajectories in rheumatoid arthritis [23]. As 
these identified subgroups differ due to a latent variable 
or process, this method provides a conceptually well-
suited approach to investigating CR, which is a latent 
construct [24]. This approach to studying longitudinal 
CR allows us to harness as much within-subject infor-
mation as possible. This can be particularly helpful in 
the context of early or preclinical stages of disease where 
cross-sectional differences in cognitive performance may 
be minimal.

While similar analytic approaches have been applied in 
AD using post-mortem cohorts [25–27], there has only 
been one single application – to our knowledge – of the 
LCMM in prospective cohorts in AD, where three dis-
tinct subgroups of cognitive decline (slow decliners, 
rapid decliners, and severely-impaired decliners) were 
identified in 1,160 AD patients [28]. Biomarkers of AD 
pathology and neurodegeneration were not considered in 
that study and therefore differences in cognitive decline 
across the identified subgroups may have arisen due to 
differences in levels of these biomarkers. By adjusting for 
demographics as well as biomarkers of AD pathology and 
neurodegeneration, we may be able to identify subgroups 
that differ due to some other latent factor, i.e. CR.

Here, we applied latent class mixture modeling to 
identify latent cognitive change subgroups in a sample 
of clinically unimpaired individuals from the Harvard 
Aging Brain Study, controlling for sex, baseline age, and 
biomarkers of AD pathology and neurodegeneration. 
We compared these latent subgroups based on many CR 
proxies (including educational attainment, past and cur-
rent cognitive activity levels, verbal intelligence, occupa-
tional complexity, neighborhood disadvantage). Finally, 
we then applied our model to an Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) dataset.
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Methods
Participants
Our first cohort was selected from the Harvard Aging 
Brain Study (HABS) participants. At study entry, all par-
ticipants had a global Clinical Dementia Rating of 0, edu-
cation-adjusted Mini-Mental State Examination score of 
27 or greater, a modified Hachinski ischemic score less 
than or equal to 4 and did not have history of stroke or 
evidence of infarcts with persistent neurological deficits. 
Data were collected from April 2010 through April 2023. 
The HABS protocol and procedures were approved by 
The Mass General Brigham Institutional Review Board 
and all participants signed a written informed consent 
prior to the completion of any study procedures. The 
study was carried out in accordance with the guidelines 
of the Declaration of Helsinki.

We identified 200 participants from the HABS data-
set (see Table  1) with the following criteria: first cogni-
tive assessment within 1 year of the participant’s first 
18F-Flortaucipir(FTP)-PET scan (median weeks between 

cognitive baseline and tau-PET = 17, min = 0, max = 52, 
see eFig.  1), cognitively unimpaired at analysis baseline 
with at least 2 timepoints of neuropsychological assess-
ment (median 6 cognitive timepoints, range = 2–10 
timepoints, median 1.05 years between assessments), 
and had available data from an 11C-Pittsburgh com-
pound-B(PiB)-PET scan (median weeks between cogni-
tive baseline and PiB-PET = 13, min = 0, max = 116) and 
an MRI (median weeks between cognitive baseline and 
MRI = 10, min = 0, max = 62). FTP-PET was introduced 
into HABS mid-study, with these participants undergo-
ing their first FTP-PET at 2.4 ± 1.9 years after the baseline 
visit. As such, we did not include retrospective cognitive 
time points given that we were unclear of their prior level 
of tau pathological burden. We also ensured that data 
for CR-related factors were obtained within 1 year of 
their first FTP-PET scan. The only exception were those 
data collected from HABS study baseline: educational 
attainment, verbal intelligence, occupational complex-
ity, past cognitive activity, neighborhood disadvantage, 

Table 1 Baseline characteristics of HABS and ADNI datasets

1 Mean (SD); n (%). 2Wilcoxon rank sum test; Pearson’s Chi-squared test
* Neocortical amyloid burden not compared across amyloid DVR values in HABS and amyloid SUVR values in ADNI

Characteristic HABS N =  2001 ADNI N =  1601 p-value2

Age 71.89 (9.41) 73.90 (7.60) 0.072

Sex 0.8

 F 118 (59%) 96 (60%)

 M 82 (41%) 64 (40%)

Years of Education 16.28 (2.86) 16.63 (2.41) 0.4

Race 0.4

 White 164 (84%) 140 (89%)

 Black or African American 29 (15%) 16 (10%)

 American Indian or Native Alaskan 2 (1.0%) 1 (0.6%)

 American Indian or Native American/White 1 (0.5%) 0 (0%)

 Asian 0 (0%) 1 (0.6%)

 Unknown 4 2

Ethnicity 0.016

 Not Hispanic or Latino 197 (99%) 149 (94%)

 Hispanic or Latino 3 (1.5%) 10 (6.3%)

 Unknown 0 1

APOE e4 Status 0.019

 e4‑ 143 (72%) 91 (60%)

 e4 + 55 (28%) 60 (40%)

 Missing 2 9

PACC-5 0.24 (0.71) 0.05 (0.55) 0.003

Follow up duration 5.91 (2.13) 3.19 (1.19)  < 0.001

Number of cognitive timepoints 5.94 (1.85) 2.78 (0.74)  < 0.001

Entorhinal Tau Burden 1.33 (0.28) 1.71 (0.29)  < 0.001

Neocortical Amyloid Burden* 1.17 (0.19) 1.14 (0.20) *

Adj. Hippocampal Volume 7,492.70 (834.46) 7,427.77 (822.20) 0.5
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and cardiovascular disease risk scores (available only at 
HABS study baseline).

We identified 160 participants from the ADNI dataset 
(see Table 1) who had at least 2 timepoints of neuropsy-
chological assessment (median 3 cognitive timepoints, 
range = 2–5 timepoints, median 1.92 years between 
assessments) using the same selection criteria as in 
HABS (median weeks between cognitive baseline and 
tau-PET = 1 [min = 0, max = 50], PiB-PET = 101 [min = 0, 
max = 157], MRI = 3 [min = 0, max = 60], see eFig. 1). The 
ADNI was launched in 2003 as a public–private partner-
ship, led by Principal Investigator Michael W. Weiner, 
MD. The primary goal of ADNI has been to test whether 
serial magnetic resonance imaging (MRI), positron 
emission tomography (PET), other biological markers, 
and clinical and neuropsychological assessment can be 
combined to measure the progression of mild cognitive 
impairment (MCI) and early Alzheimer’s disease (AD). 
For up-to-date information, see www. adni- info. org. The 
study was carried out in accordance with the guidelines 
of the Declaration of Helsinki.

The HABS and ADNI datasets differed on length of 
available cognitive follow up (see Table 1), baseline cog-
nitive, Aβ and tau levels, duration between baseline bio-
marker measurements (i.e. neuroimaging scans) and 
duration between baseline cognitive assessment and 
baseline biomarker measurements (see eFig. 1).

Hippocampal volume
Magnetic resonance imaging was performed at MGH 
on a 3T scanner (TIM Trio; Siemens) with a 12-channel 
phased-array head coil. A T1-weighted volumetric mag-
netization–prepared rapid-acquisition gradient-echo 
(MPRAGE) image was acquired with following param-
eters: TR = 2300 ms, TE = 2.95 ms, TI = 900 ms, flip 
angle = 9°, resolution = 1.1 × 1.1 × 1.2 mm. T1-weighted 
images were processed and quality-assessed using the 
automated reconstruction protocol in FreeSurfer (version 
6.0). Left and right hippocampal volumes were summed 
and then bilateral hippocampal volumes were corrected 
for estimated intracranial volume (eTIV) using the 
regression method with the following Eq [29].:

Fully processed hippocampal volume and eTIV values 
were obtained for ADNI participants from LONI. We 
excluded scans which failed UCSF quality control stand-
ards for processing and segmentation of the overall scan. 

adjusted hippocampal volume = raw hippocampal volume−b(eTIV− mean eTIV)

b = regression coefficient from regression of raw hippocampal volume on eTIV

Adjusted hippocampal volume was calculated following 
the aforementioned method.

Aβ-PET imaging
For HABS, a summary measure of neocortical Aβ was 
measured using images acquired with a 60-min dynamic 
acquisition following injection of PiB-PET radiotracer. 
Imaging was performed on the ECAT EXACT  HR+ scan-
ner (Siemens) using a previously described protocol [29]. 
Images were co-registered to their T1-weighted image 
using Freesurfer-based (version 6.0) regions of interest 
and then mapped into native PET space using SPM12. A 
composite measure of neocortical Aβ was calculated as 
a distribution volume ratio (DVR) across frontal, lateral 
temporal, parietal and retrosplenial (FLR) regions with 
the cerebellar gray as the reference region.

Fully processed neocortical Aβ values were obtained 
for ADNI participants from LONI, where processing 
and quality control methods are fully described [30]. An 
FLR-comparable standardized uptake value ratio (SUVR) 
composite (based on the 50–70 min time window post-
injection) was obtained using a 18F-florbetapir tracer and 
was referenced to the whole cerebellum.

Tau-PET imaging
Tau pathology was measured using images acquired over 
either 80–100 min or 75–105 min following injection 
of FTP-PET tracer. In HABS, imaging was performed 
on the ECAT  HR+ scanner (Siemens) using a previously 
described protocol [31]. Images were co-registered to 
their T1-weighted image using Freesurfer-based (ver-
sion 6.0) regions of interest and then mapped into native 
PET space using SPM12. Tau-PET data were computed 
as SUVRs, with cerebellar gray matter as the reference 
region in HABS, and we obtained SUVRs for the entorhi-
nal and inferior temporal lobe regions. These data were 
partial volume corrected using the geometric transfer 
matrix method [32].

For ADNI, processed SUVR values, partial volume cor-
rected using the geometric transfer matrix method [32], 
were obtained from LONI. Processing and quality control 
methods have been fully described elsewhere [33]. As the 
favored LCMM in HABS was identified using entorhinal 

tau SUVR (see below in Results), we sought to apply a 
model using the same covariates in ADNI. As such, for 
ADNI we obtained the entorhinal tau SUVR value only, 
which was referenced to the inferior cerebellum.

http://www.adni-info.org
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Cognitive performance
The Preclinical Alzheimer’s Cognitive Composite-5 
(PACC-5) was used to assess cognition. This composite 
measure is sensitive to Aβ-related cognitive decline in 
preclinical AD [34, 35] and is calculated as the average 
of z-scores, based on the mean and standard deviation of 
the HABS cohort at baseline. It consists of five neuropsy-
chological tests: Mini Mental State Examination, Logical 
Memory Delayed Recall, Digit-Symbol Substitution Test, 
Free and Cued Selective Reminding Test (both cued and 
free recall), and Category Fluency.

An equivalent version of the PACC-5 was calculated in 
ADNI using the Mini-Mental State Examination, Logical 
Memory Delayed Recall, Trail Making Test Part B – Time 
to Complete, Alzheimer’s Disease Assessment Scale-
Cognitive Subscale Delayed Word Recall, and Category 
Fluency – Animals [34]. Each measure was z-scored 
using study baseline data from cognitively unimpaired 
individuals across the wider ADNI cohort. Despite differ-
ences in the constituent measures of the PACC-5 in both 
cohorts, the PACC-5 displays relative consistency of the 
baseline and slopes in HABS and ADNI [36].

Cognitive resilience-related factors
Several factors that have been associated with CR were 
measured in HABS.

Educational attainment was measured by years of for-
mal education.

Verbal intelligence was measured using estimated 
verbal IQ from the American National Adult Reading test 
(AMNART VIQ) [37, 38].

Occupational complexity was assessed using a sum-
mary ‘Data People Things’ score [39] obtained using 
numerical ratings of each job title from the Dictionary 
of Occupational Titles (DOT: www. occup ation alinfo. 
org). This score assesses the complexity of an occupation 
with regards to working with data, with people, and with 
things. Participants provided the job title for their ‘high-
est level’ lifetime occupation. Ratings for each dimension 
were reversed (such that higher scores reflected greater 
complexity) and then summed to create a total occupa-
tional complexity score [10], with scores ranging from 0 
(minimal complexity) to 21 (maximal complexity).

Neighborhood disadvantage was measured using 
the area deprivation index (ADI). This is calculated at 
the Census Block Group level using 17 census measures 
which capture information related to education, employ-
ment, income, poverty, and housing characteristics [40]. 
National ADI values were obtained from the Neighbor-
hood Atlas website (https:// www. neigh borho odatl as. 
medic ine. wisc. edu/). National ADI values range from 
1–100 and reflect national percentiles of neighborhood 
disadvantage with lower values reflect lower level of 

disadvantage within the nation. We categorized ADI into 
tertiles (Lowest deprivation, intermediate deprivation, 
and highest deprivation) based on the distribution of 
national ADI values across the wider HABS cohort [41].

Past cognitive activity was measured using the Cogni-
tive Activities Scale [42]. Participants self-reported their 
frequency of engagement in cognitive activities at differ-
ent points in their life at ages 6 (3 items), 12 (6 items), 18 
(8 items), and 40 (8 items). Activities included visiting a 
library, reading newspapers, magazines, and books, and 
writing letters. Additional items were specific to age 6 e.g. 
being read to and telling a story. Frequency was assessed 
on a 5-point scale (1 = once a year or less; 2 = several 
times a year; 3 = several times a month; 4 = several times 
a week; 5 = everyday or almost everyday). Past cognitive 
activity was calculated as the average of the 25 items.

Current cognitive activity was measured using as the 
average of 11 items from the Cognitive Activities Scale. 
These items referred to the frequency of current engage-
ment in cognitive activities.

A cross-sectional CR residual was computed by 
obtaining the standardized residual from a linear regres-
sion where baseline cognitive performance (PACC-5) was 
regressed on age, sex, neocortical Aβ, entorhinal tau, and 
adjusted hippocampal volume. Higher residual values 
reflect higher cognitive resilience.

We also examined two important risk factors as well 
as clinical progression. APOE ε4 status was assessed by 
direct genotyping of APOE from a blood sample. All ε4 
haplotypes were considered as ε4 carriers by collapsing 
into a single category. Cardiovascular disease risk was 
assessed with the office-based Framingham Heart Study 
general cardiovascular disease (FHS-CVD) risk score 
[43] which provides a 10-year probability of future car-
diovascular events (defined as coronary death, myocar-
dial infarction, coronary insufficiency, angina, ischemic 
stroke, hemorrhagic stroke, transient ischemic attack, 
peripheral artery disease, and heart failure). This was cal-
culated, from baseline data, as a weighted sum of age, sex, 
antihypertensive treatment (yes/no), systolic blood pres-
sure (millimeters of mercury), body mass index, history 
of diabetes (yes/no), and current cigarette smoking status 
(yes/no) [44]. Clinical progression was assessed by cal-
culating time to progression to the first of two consecu-
tive nonzero CDR global scores (i.e. 0.5, 1, or 2) or to a 
final CDR global score of 0.5, 1, or 2.

Statistical analyses
Latent class mixed models
Latent class mixture models are an extension of linear 
mixed models that can handle non-normally distributed 
longitudinal outcome variables and identify distinct sub-
groups of participants within a study population with 

http://www.occupationalinfo.org
http://www.occupationalinfo.org
https://www.neighborhoodatlas.medicine.wisc.edu/
https://www.neighborhoodatlas.medicine.wisc.edu/
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trajectories that differ with respect to a latent variable 
[19]. We sought to select an appropriate model using 
LCMM that could identify distinct subgroups who dif-
fer based on our latent variable of interest, CR. We used 
the lcmm function (R package lcmm: https:// cecil eprou 
st- lima. github. io/ lcmm/) with cognition as the repeated 
measures outcome variable and time from cognitive 
baseline, age at cognitive baseline, biomarkers of AD 
pathology (neocortical Aβ and entorhinal tau), and neu-
rodegeneration (adjusted hippocampal volume) as covar-
iates. The covariates included in CR models vary across 
studies [3]. Some CR models have explicitly covaried for 
education [45–48] whereas many other studies did not 
adjust for education in their models [49–55]. We favored 
the latter approach, as we aimed to identify subgroups 
that differed by CR, and so we did not want to remove 
variance presumably related to CR from our model. 
Therefore, we did not include any CR-related factors as 
covariates in our model but instead investigated how 
these factors related to our model of CR in subsequent 
analyses.

We searched for a favored model across a combina-
tion of 4 different link functions (linear, beta, equidis-
tant splines, and quantile spline link functions) – which 
normalize the repeated measures outcome variable 
– and different number of latent classes (2 – 7 classes). 
This resulted in a total of 24 candidate models. We first 
specified 1-class models for each link function to obtain 
initial values for the iterative estimation algorithm used 
in the subsequent analytic models (see eMethods for R 
code). To increase the likelihood of successful multi-class 
model convergence to the global maximum for each of 
the 24 candidate models, we implemented an automatic 
grid search with 30 iterations from 15 random departures 
from the initial values (see eMethods for R code).

Selection of favored latent class mixed model
As model fit statistics such as BIC values can decrease 
(becoming more favorable) as more model parameters 
are added, sole reliance on model fit statistics can lead 
to identification of an favored model that is overfit to the 
dataset and that may not identify clinically or theoreti-
cally reasonable trajectory classes [20, 21]. Therefore, we 
used a combination of model fit statistics, class discrimi-
nability, and theoretical considerations to identify our 
favored model [21].

We first restricted the final set of candidate models to 
models that successfully converged and in which each 
identified trajectory class contained a meaningful pro-
portion of the sample (i.e. at least 5% of the sample). We 
then identified a favored model by considering model fit 
statistics (sample size-adjusted BIC [SABIC] where lower 
values indicate better model fit), class discriminability 

statistics (relative entropy where values closer to 1 indi-
cate less classification uncertainty [21, 56]) and theoreti-
cal reasoning (alignment with prior latent class analyses 
of cognitive trajectories and with post-mortem preva-
lence estimates of CR, and visual examination of group-
level trajectories [see Fig. 1 and eFig. 2] and of individual 
trajectories with respect to Aβ, tau, and hippocampal 
volume [see Fig. 2]).

We then completed sensitivity analyses which con-
sisted of comparing the selected model to the models 
with the same link function and number of subgroups 
(i.e. classes) but: 1) without covariates included (to con-
firm the baseline covariates provided useful information); 
2) with inferior temporal tau SUVR in place of entorhinal 
tau SUVR; 3) with non-PVC tau SUVR data in place of 
PVC tau SUVR; and 4) only including individuals with at 
least 3 cognitive timepoints (to ensure that model selec-
tion was not unduly influenced by individuals with the 
minimum number of timepoints, i.e. 2 timepoints).

Comparison of CR‑related factors and clinical progression 
across subgroups
We then compared CR-related factors across each latent 
trajectory subgroup in HABS using non-parametric 
Kruskal–Wallis tests with Dunn’s post hoc test for pair-
wise comparisons [60, 61]. Post hoc tests were corrected 
for multiple comparisons using the Hochberg method 
[62]. Pearson’s chi-squared (χ2) test was used to test for 
group differences in categorical variables. The time to 
clinical progression was compared across subgroups in a 
Kaplan–Meier analysis. Time to progression of the CDR 
global score (defined as an increase in the score from 0 
and the event was classed as the first of two consecutive 
visits with a nonzero score or a final visit with a nonzero 
score). Data was censored at the time of last CDR assess-
ment for individuals who did not show progression.

Application of favored latent class mixed model to ADNI data
Even with careful and considered model selection proce-
dures, LCMMs may be highly dependent on idiosyncra-
sies specific to the cohort on which the model is derived 
[20]. As such, it has been recommended that papers using 
LCMMs adopt a predictive modeling/machine learning 
approach where the model selected in the original cohort 
is validated in an independent cohort [20]. To this end, 
we applied our selected model in the ADNI dataset. We 
conducted an LCMM with an automatic grid-search 
with the same model parameters as the selected model 
from HABS (i.e. using the same link function and num-
ber of classes). To ensure a stable solution, we repeated 
this procedure 10 times, and selected the most frequent 
model. We assessed whether this model successfully con-
verged, identified meaningful trajectory subgroups and 

https://cecileproust-lima.github.io/lcmm/
https://cecileproust-lima.github.io/lcmm/
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compared it to an unconditioned model (i.e. a model 
without covariates).

Data availability statement
HABS data is available via submission of a data request here: 
https:// habs. mgh. harva rd. edu/ resea rchers/ reque st- data/. 
The HABS dataset and imaging protocols have been pre-
viously described [63]. ADNI data can be requested from 
LONI: https:// adni. loni. usc. edu/.

Results
Identification of favored model
13 models successfully converged (see eTable 1) and 5 of 
these models were considered as candidate models as all 
classes contained a meaningful proportion of the sample 
[64] (> 5%; see Table 2). Among these candidate models 
(see eTable 2), the favored model comprised of a 3-class 
model using a splines link function (‘5-equi-splines’). 

The selected model displayed good model fit relative to 
all converged models based on SABIC, a recommended 
fit index for datasets with sample sizes smaller than 
1,000 individuals [65]), acceptable discriminability (rela-
tive entropy > 0.5 [21]), and appeared to reveal meaning-
ful and informative trajectory classes (see Fig.  1) with a 
sufficient N in each subgroup (largest subgroup = 71% of 
sample, next largest subgroup = 22.5% and smallest sub-
group = 6.5%). Sensitivity analyses confirmed that this 
model was favored over alternative models (see eResults: 
Identification of favored model and sensitivity analyses 
for further information on model selection and sensitiv-
ity analyses).

Three separable cognitive trajectories relative to age, sex, 
and biomarkers of AD pathology and neurodegeneration.
The largest of the 3 subgroups identified in HABS 
(see Fig.  1) had a lower cognitive baseline level with a 

Fig. 1 Separable latent subgroups of PACC‑5 trajectories in HABS. A PACC‑5 vs time from baseline (years) colored by latent subgroup. B Smoothed 
group‑level trajectories for HABS colored by subgroup. C PACC‑5 vs time from baseline (years) faceted and colored by subgroup

https://habs.mgh.harvard.edu/researchers/request-data/
https://adni.loni.usc.edu/
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relatively stable cognitive trajectory given demographic 
and biomarker covariates (‘Normal’ subgroup, n = 142, 
71% of sample). The next largest subgroup was labelled 
as ‘Resilient’ as they showed a higher baseline cognitive 
level and relatively stable trajectories given biomarker 
levels (‘Resilient’ subgroup, n = 45, 22.5%). The small-
est subgroup had a higher baseline cognitive level with a 
steeper declining trajectory (‘Declining’ subgroup, n = 13, 
6.5%). A linear mixed effects model confirmed that sub-
groups significantly differed on PACC-5 intercepts and 
slopes (see eFig. 4 and eTable 4). By definition, the sub-
groups did not differ on baseline age, sex, or baseline 
AD pathology or neurodegeneration (see Table  2). In a 

sensitivity analysis, PACC-5 scores at final observations 
were significantly lower in the Declining subgroup com-
pared to the Normal and Resilient subgroups, suggesting 
that the Declining subgroup showed true decline rather 
than a regression to the mean effect [66] (see eTable 5).

Subgroups did not differ on regional tau-PET SUVR
To further examine if the subgroups in HABS differed on 
baseline tau levels in other areas of the brain, a region-
of-interest analysis was conducted where each tau SUVr 
(from 33 bilateral FreeSurfer regions) was regressed on 
subgroup in a linear regression (tau SUVr ~ Subgroup). 
After correction for multiple comparisons, the Resilient 

Fig. 2 Examining PACC‑5 trajectories in Aβ + participants suggests that the Resilient subgroup shows steep decline only in the presence 
of elevated Aβ, elevated tau and hippocampal atrophy. Aβ positivity was classified based on a threshold of > 1.185 DVR. Bottom panel shows 
trajectories of individuals who were positive for hippocampal atrophy (< 6,723mm). Top panel shows trajectories of individuals who were 
negative for hippocampal atrophy (> = 6,723mm). Aβ positivity and hippocampal atrophy were classified based on previously published 
thresholds < 6,723mm [57–59]
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subgroup did not significantly differ from the Normal 
subgroup or the Declining subgroup on any regional tau 
SUVr values (see Table 3).

Steep cognitive decline in Resilient subgroup requires Aβ 
positivity, elevated tau and hippocampal atrophy
As a visual examination of the face validity of the Resil-
ient subgroup trajectory in HABS, Aβ positive subgroups 
of each latent classes were created by selecting only 
individuals with cortical Aβ above previously published 
thresholds of > 1.185 DVR [57–59] (see Fig.  2). Some 
individuals in the Resilient subgroup do eventually show 
steep cognitive decline, but these individuals have ele-
vated Aβ, elevated tau, and reduced hippocampal volume 

at baseline and yet appear to show little decline over 2.5 
years. Moreover, for these individuals, this steep decline 
occurs after the onset of clinical symptoms, in line with 
the inflection point that has been reported in individuals 
with high CR [67] (see eFig. 5).

Differences in CR-related factors in the Resilient subgroup
Both the Resilient and Declining subgroups had signifi-
cantly higher baseline PACC-5 scores and CR residual 
values than the Normal subgroup (see Figs.  3A-B). The 
Resilient subgroup had significantly higher levels of ver-
bal intelligence compared to the Normal subgroup (see 
Fig. 3C). The Resilient subgroup had numerically higher 
levels of verbal intelligence than the Declining subgroup, 

Table 2 Characteristics of identified latent trajectories in HABS

1 Data obtained within 1 year of analysis baseline except for the following variables, collected at full study baseline or prior to analysis baseline: APOE e4 Status, Years 
of Education, AMNART VIQ, Occupational Complexity, National ADI, Past Cognitive Activity, and CVD Risk
2 Mean (SD); n (%) 3Kruskal-Wallis rank sum test; Pearson’s Chi-squared test; Fisher’s exact test

Characteristic1 Normal N =  1422 Resilient N =  452 Declining N =  132 p-value3

Age 71.61 (9.62) 71.76 (9.16) 75.38 (7.72) 0.3

Sex 0.7

 F 82 (58%) 27 (60%) 9 (69%)

 M 60 (42%) 18 (40%) 4 (31%)

Race 0.5

 White 112 (81%) 39 (89%) 13 (100%)

 Black or African American 24 (17%) 5 (11%) 0 (0%)

 American Indian or Native Alaskan 2 (1.4%) 0 (0%) 0 (0%)

 American Indian or Native American/White 1 (0.7%) 0 (0%) 0 (0%)

 Unknown 3 1 0

Ethnicity 0.6

 Not Hispanic or Latino 140 (99%) 44 (98%) 13 (100%)

 Hispanic or Latino 2 (1.4%) 1 (2.2%) 0 (0%)

Neocortical Amyloid Burden 1.17 (0.20) 1.16 (0.16) 1.27 (0.22) 0.2

EC Tau Burden 1.33 (0.28) 1.31 (0.25) 1.41 (0.38) 0.2

Adj. HC Volume 7,505.12 (807.85) 7,554.93 (912.03) 7,141.59 (824.10) 0.3

APOE e4 Status (n = 198) 0.4

 e4‑ 105 (75%) 29 (64%) 9 (69%)

 e4 + 35 (25%) 16 (36%) 4 (31%)

PACC-5 0.02 (0.65) 0.70 (0.55) 0.93 (0.71)  < 0.001

CR Residual ‑0.34 (0.87) 0.71 (0.75) 1.21 (0.90)  < 0.001

Years of Education 15.96 (2.93) 16.91 (2.48) 17.54 (2.73) 0.026

AMNART VIQ (n = 199) 120.77 (8.94) 126.09 (5.38) 124.00 (6.39)  < 0.001

Occupational Complexity (n = 196) 10.05 (3.33) 10.25 (3.34) 10.62 (2.69) 0.6

National ADI (n = 195) 0.7

 Lowest Tertile (1–7) 50 (36%) 17 (40%) 7 (58%)

 Intermediate Tertile (8–17) 51 (36%) 16 (37%) 3 (25%)

 Highest Tertile (18–85) 39 (28%) 10 (23%) 2 (17%)

Past Cognitive Activity (n = 173) 2.97 (0.65) 2.83 (0.40) 2.44 (0.49) 0.008

Current Cognitive Activity (n = 178) 2.78 (0.49) 2.77 (0.39) 2.60 (0.44) 0.4

CVD Risk (n = 190) 26.76 (18.43) 26.05 (16.39) 27.62 (20.15)  > 0.9
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but this pairwise comparison was not statistically signifi-
cant. Both the Resilient and Normal subgroups reported 
higher lifetime engagement in cognitive activities (Past 
Cognitive Activity) than the Declining subgroup (see 
Fig.  3D). Educational attainment was significantly dif-
ferent between the subgroups, but post-hoc pairwise 
comparisons did not discriminate between the groups 
(see eTable 6 for all post-hoc pairwise comparisons). No 
other differences were observed across subgroups on 
CR-related factors, e4 status, or CVD risk (see Table 2). 
A Kaplan–Meier survival analysis model revealed no dif-
ferences in time to clinical progression (χ2 = 1.2, p = 0.56, 

see eFig.  6) across the 3 subgroups (16% progressed in 
the Normal subgroup, 24% in the Resilient subgroup, and 
33% in the Declining subgroup).

Application of selected LCMM to ADNI data
Application of the selected model from HABS in the 
ADNI dataset identified similar subgroups (see Fig.  4). 
The model successfully converged, displayed good 
model fit (SABIC = 535.486) and discriminability (rela-
tive entropy = 0.847). This model showed better model 
fit and discriminability than an unconditioned model 
(SABIC = 557.035, relative entropy = 0.743, minimum 
class proportion = 1.88%). The largest subgroup had a 
lower cognitive baseline level and a stable cognitive tra-
jectory (‘Normal’ subgroup, n = 141, 88.12% of sample). 
The next largest subgroup had a higher baseline cogni-
tive level with a stable trajectory (‘Resilient’ subgroup, 
n = 10, 6.25%). The smallest subgroup had the lowest 
baseline cognitive level with a steeper declining trajec-
tory (‘Declining’ subgroup, n = 9, 5.62%). A notable dif-
ference between the identified subgroup in HABS and 
ADNI was that the Declining subgroup in ADNI had a 
lower baseline level. The Resilient and Normal subgroups 
also remained on distinct group-level trajectories (i.e. 
confidence intervals did not overlap) in ADNI whereas 
in HABS, the confidence intervals of the Resilient and 
Normal subgroups begin to overlap at approximately 5.5 
years after baseline. This occurred beyond the mean fol-
low-up duration in ADNI (3.91 years) and the confidence 
intervals of the group-level trajectories of the HABS sub-
groups do not overlap when limited to this time period 
(see eFig. 7). As expected, subgroups did not differ on the 
model covariates, including baseline age, sex, and bio-
markers of AD pathology and neurodegeneration (see 
eTable 7).

Discussion
In a cohort of older adults from HABS, cognitively unim-
paired at baseline, we identified 3 separable subgroups 
(Normal, Resilient, Declining) whose cognitive trajec-
tories were statistically distinguishable after adjusting 
for baseline age, sex, neocortical Aβ, entorhinal tau, and 
adjusted hippocampal volume. The Resilient subgroup 
(22.5% of cohort) showed a high baseline cognitive level 
and a stable slope over a 10-year follow-up period. Nearly 
a quarter of the HABS participants were assigned to this 
cognitively resilient subgroup, in line with estimates of 
20–38.8% from post-mortem studies, including the Adult 
Changes in Thought Study [8], the 90+ Study [7], and 
ROSMAP [9].

We found that the Resilient subgroup showed sig-
nificantly higher premorbid verbal intelligence and lev-
els of past cognitive activity. CR has been consistently 

Table 3 Region‑of‑interest analysis for tau‑PET SUVr according 
to latent class

Note: FDR p-values from an FDR-corrected linear regression of tau-PET SUVr on 
latent class across 33 bilateral ROIs

ROI Estimate p-value FDR p-value

bankssts 0.042 0.448 0.976

caudal anterior cingulate ‑0.067 0.311 0.976

caudal middle frontal ‑0.026 0.617 0.976

cuneus 0.089 0.102 0.976

frontal pole 0.089 0.277 0.976

fusiform 0.008 0.870 0.976

inferior parietal 0.023 0.615 0.976

inferior temporal 0.034 0.543 0.976

insula ‑0.049 0.309 0.976

isthmus cingulate ‑0.045 0.377 0.976

lateral occipital 0.094 0.156 0.976

lateral orbitofrontal ‑0.013 0.813 0.976

lingual 0.044 0.330 0.976

medial orbitofrontal ‑0.029 0.643 0.976

middle temporal 0.012 0.804 0.976

paracentral ‑0.137 0.015 0.490

parahippocampal 0.029 0.608 0.976

pars opercularis 0.043 0.418 0.976

pars orbitalis 0.012 0.849 0.976

pars triangularis 0.036 0.507 0.976

pericalcarine 0.063 0.325 0.976

postcentral ‑0.057 0.151 0.976

posterior cingulate ‑0.003 0.946 0.976

precentral 0.010 0.786 0.976

precuneus ‑0.045 0.384 0.976

rostral anterior cingulate ‑0.024 0.694 0.976

rostral middle frontal ‑0.001 0.980 0.980

superior frontal ‑0.016 0.745 0.976

superior parietal ‑0.006 0.907 0.976

superior temporal 0.004 0.934 0.976

supramarginal 0.023 0.595 0.976

temporal pole 0.004 0.943 0.976

transverse temporal ‑0.032 0.682 0.976
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associated with higher verbal intelligence [10, 38, 52, 68–
70] and lifetime cognitive activity levels [10, 26, 52, 55]. 
Verbal intelligence may be a particularly important factor 
in CR as exposure to broader educational (i.e. including, 
but not restricted to, formal education in early life) and 
cognitive experiences over the lifespan, may be reflected 
in a better reading ability [71, 72]. Similarly, our findings 
suggest that regular engagement in cognitive activities 
may be critical in the development of CR over the lifes-
pan [55]. This association may be specific to early and 
midlife periods, as the subgroups did not differ on cur-
rent cognitive activity. A stronger association of early and 
mid-life experiences with CR, compared to late-life expe-
riences, has been previously reported [55].

We observed numerically higher years of education 
in the Resilient subgroup compared to the Normal sub-
group, although post-hoc comparisons were not statisti-
cally significant. This difference is not entirely surprising 
as, in contrast to verbal intelligence, the evidence relating 

educational attainment to CR is somewhat mixed, despite 
its widespread use as a proxy of CR [10, 11]. Education 
may be associated with cognitive decline in AD through 
other pathways than CR via its associations with general 
health or socioeconomic status, for example [55].

The Resilient subgroup did not show significantly 
higher occupational complexity nor did they display 
lower CVD risk. While previous findings have related 
increased occupational complexity to higher CR [73, 
74], null associations have also been reported [10]. More 
nuanced consideration of occupational complexity, by 
quantifying specific job demands and skills, may better 
unravel the contribution of occupational complexity to 
CR [75]. While a composite CVD risk score was not asso-
ciated with CR here, specific CVD risk factors, namely 
smoking and diabetes mellitus, have been associated with 
lower CR in other studies [76]. The contribution of CVD 
risk to CR may therefore be limited to specific CVD risk 
factors rather than overall CVD risk. Alternatively, we 

Fig. 3 Pairwise comparisons of characteristics with significant differences across latent trajectory subgroups. A Baseline PACC‑5. B CR residual. C 
AMNART VIQ. D Past Cognitive Activity
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may have failed to detect an association with lower CVD 
risk as CVD risk was measured approximately 2.5 years 
before the measurement of cognitive and imaging data 
used to classify CR.

The Resilient subgroup demonstrated higher baseline 
values on the CR residual, which suggests that Resilient 
individuals possess higher cognitive reserve (i.e. referring 
to overall cognitive resources available [2]) and it may 
be this initially higher reserve that sets them apart (i.e., 
they have ‘more to lose’). However, sole reliance on cog-
nitive level or measures of CR derived from cross-sec-
tional data may not be a suitable approach for identifying 
individuals with CR [18] as the Declining subgroup also 
showed higher CR residual values at baseline, compared 
to the Normal subgroup. The faster subsequent decline, 
relative to baseline age, sex, AD pathology, and neurode-
generation, evident in the Declining subgroup highlights 
the importance of considering both level and slope of 

cognition when assessing CR. In line with this, using ret-
rospective cognitive data from post-mortem cases, Wag-
ner et al. compared different quantitative measures of CR 
and found that only a measure which considered both 
level and slope of cognition showed consistent associa-
tions with established CR factors [26].

In addition to adjusting for AD pathology in our 
model, we controlled for adjusted hippocampal volume 
to remove variance related to neurodegeneration down-
stream of AD pathology. This approach also removed 
variance related to brain reserve [4], which we consider 
sensible as we aimed to identify those who showed bet-
ter-than-expected cognitive trajectories given adverse 
brain change and pathology [2]. This is in line with other 
approaches for investigating CR, which include test-
ing interactions between CR-related variables and hip-
pocampal volume on cognitive outcomes [10, 77, 78], 
or using a CR residual, where measures of cognitive 

Fig. 4 Separable subgroups of PACC‑5 trajectories in ADNI. A PACC‑5 vs time from baseline (years) colored by subgroup. B Smoothed group‑level 
trajectories for HABS colored by subgroup. C PACC‑5 vs time from baseline (years) faceted and colored by subgroup
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performance are regressed on hippocampal volume [45, 
54]. Our model effectively extends such approaches by 
also incorporating AD-specific biomarkers of Aβ and tau 
pathology. Given that hippocampal atrophy is not spe-
cific to AD pathology, and is associated with other factors 
such as TDP-43 [79] and vascular pathology [80], individ-
uals identified as resilient in our model could potentially 
exhibit resilience beyond AD-specific pathology. Future 
work, incorporating biomarkers of other pathologies, 
could attempt to assess this.

Our model presents a novel alternative to the reliance 
on proxy variables or residual measures when charac-
terizing CR and identifies a subgroup that appear to 
be cognitively resilient. We have provided R code in 
the supplementary materials so that other research-
ers can apply our model to investigate CR in their own 
dataset. Nonetheless, there were some limitations to 
our findings. The small size of the Declining group in 
HABS may have reduced statistical power to detect 
group-level differences in important variables, such as 
AD pathology, neurodegeneration, and clinical progres-
sion. A longer follow-up period would also improve the 
likelihood of detecting group-level differences in clini-
cal progression. The varying follow-up periods for each 
individual, an inevitable consequence of analyzing data 
from ongoing observational studies, can lead to group 
differences in follow-up duration, as seen here where 
the Normal subgroup had shorter average follow-up 
durations than the Resilient and Declining subgroups. 
Future work could attempt to incorporate metrics such 
as Aβ chronicity to account for duration of exposure to 
elevated Aβ, which is associated with faster cognitive 
decline in cognitively unimpaired indiviudals [81]. As 
LCMMs may be strongly influenced by idiosyncrasies 
specific to the cohort on which the model is derived, it 
is recommended, although rarely applied in practice, to 
examine the model in an independent cohort [20]. We 
tested our model in the ADNI dataset and confirmed 
that the model successfully converged and provided a 
better fit to the data than an unconditioned model. In 
ADNI, we identified three somewhat similar trajectory 
subgroups. Unlike in HABS, however, these subgroups 
remained on distinct group-level trajectories. This was 
likely due to the lower baseline level of the Declining 
group and the shorter follow-up duration in ADNI as 
Resilient and Normal subgroup trajectories were dis-
tinct over the same time-period in HABS. A smaller 
Resilient subgroup (6.25% of analysis sample) was 
observed, which could be due, in part, to lower PACC-5 
performance at the baseline relative to HABS, or a 
higher proportion of e4 + carriers and higher entorhinal 
tau burden in ADNI given that CR-related differences 
in cognition are diminished with increasing levels of 

pathology [82, 83]. ADNI participants also tended to 
be older (although this difference was not statistically 
significant) and these differences, along with differ-
ences in follow-up duration, amyloid-PET tracers, and 
time between cognitive and biomarker assessments, 
may limit the generalizability of our model, derived in 
HABS, to the ADNI cohort. Application of this model 
to other cohorts will be necessary to confirm these 
findings. More broadly, the HABS cohort are mostly 
highly educated, non-Hispanic White older adults 
who live in neighborhoods with low levels of depriva-
tion. As such, the generalizability of these findings to 
more representative populations may be limited. For 
instance, in contrast to our findings, CR has been asso-
ciated with lower neighborhood deprivation in cohorts 
with higher average levels of deprivation [41] and with 
higher educational attainment in cohorts with very 
low levels of education [84]. Finally, while we consider 
those in the Resilient subgroup to show CR to AD, we 
must acknowledge that many individuals in our sample 
had low levels of Aβ and tau at baseline and may not be 
on the AD continuum. Nonetheless, the Resilient sub-
group, as a whole, displayed expected characteristics 
of a high CR group. Future work in large biomarker-
confirmed preclinical AD cohorts, such as the A4 study 
[85], will increase our understanding of the nature of 
CR in preclinical AD.

In summary, we applied latent class mixture modeling 
to identify a subgroup with cognitively resilient trajec-
tories based on longitudinal cognition conditioned on 
baseline age, sex, and imaging biomarkers of AD pathol-
ogy and neurodegeneration. Our model identifies that up 
to 22.5% of older adults, cognitively unimpaired at base-
line, display CR to AD pathophysiology and these indi-
viduals show higher verbal intelligence and higher levels 
of early to mid-life cognitive activities, supporting the 
theoretical validity of our approach. This proposed model 
provides a new useful tool that may be helpful to advance 
our understanding of CR to AD.
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