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Abstract 

Background Isoprostanes and prostaglandins are biomarkers for oxidative stress and inflammation. Their role in Alz‑
heimer’s disease (AD) pathophysiology is yet unknown. In the current study, we aim to identify the association of iso‑
prostanes and prostaglandins with the Amyloid, Tau, Neurodegeneration (ATN) biomarkers (Aβ‑42, p‑tau, and t‑tau) 
of AD pathophysiology in mild cognitive impairment (MCI) subjects.

Methods Targeted metabolomics profiling was performed using liquid chromatography‑mass spectrometry (LCMS) 
in 147 paired plasma‑CSF samples from the Ace Alzheimer Center Barcelona and 58 CSF samples of MCI patients 
from the Mannheim/Heidelberg cohort. Linear regression was used to evaluate the association of metabolites 
with CSF levels of ATN biomarkers in the overall sample and stratified by Aβ‑42 pathology and APOE genotype. We 
further evaluated the role of metabolites in MCI to AD dementia progression.

Results Increased CSF levels of PGF2α, 8,12‑iso‑iPF2α VI, and 5‑iPF2α VI were significantly associated (False discovery 
rate (FDR) < 0.05) with higher p‑tau levels. Additionally, 8,12‑iso‑iPF2α VI was associated with increased total tau levels 
in CSF. In MCI due to AD, PGF2α was associated with both p‑tau and total tau, whereases 8,12‑iso‑iPF2α VI was specifi‑
cally associated with p‑tau levels. In APOE stratified analysis, association of PGF2α with p‑tau and t‑tau was observed 
in only APOE ε4 carriers while 5‑iPF2α VI showed association with both p‑tau and t‑tau in APOE ε33 carriers. CSF levels 
of 8,12‑ iso‑iPF2α VI showed association with p‑tau and t‑tau in APOE ε33/APOE ε4 carriers and with t‑tau in APOE ε3 
carriers. None of the metabolites showed evidence of association with MCI to AD progression.

Conclusions Oxidative stress (8,12‑iso‑iPF2α VI) and inflammatory (PGF2α) biomarkers are correlated with biomark‑
ers of AD pathology during the prodromal stage of AD and relation of PGF2α with tau pathology markers may be 
influenced by APOE genotype.
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Background
Oxidative stress represents a series of adaptive responses 
as a result of the insufficiency of the antioxidant system 
counteracting the oxidant system [1]. Characterized by 
the excessive production of free radicals like reactive oxy-
gen species and reactive nitrogen species, oxidative stress 
results in cellular injury, which has been involved in vari-
ous disorders including neurodegenerative diseases [2, 3] 
such as Alzheimer’s disease (AD) [4–6]. Besides the tissue 
damage, oxidative stress may also influence blood–brain 
integrity which may also activate neuroinflammation [7], 
an early-stage process in AD pathophysiology [8, 9].

A large number of studies have shown elevated cer-
ebrospinal fluid (CSF) and plasma levels of isoprostanes 
and prostaglandins in AD [5, 10–16], but their relation 
with established Amyloid, Tau, Neurodegeneration (ATN 
biomarkers: amyloid-beta 42 [Aβ-42], phosphorylated-
tau [p-tau], and total-tau [t-tau]) [17] is not yet studied 
during the prodromal phase of AD or linked to the pro-
gression from mild cognitive impairment (MCI) to AD 
dementia. To study the oxidative stress and inflammatory 
pathways during the prodromal phase of AD, i.e., MCI, 
we profiled a set of isoprostanes and prostaglandins in 
both CSF and plasma. Isoprostanes are prostaglandin-like 
metabolites produced by free radical-mediated phospho-
lipid peroxidation [18] and are established biomarkers of 
oxidative stress [19]. Together with their isomeric prosta-
glandins, pro-inflammatory metabolites [20], they reflect 
oxidative stress combined with inflammatory status [21]. 
The apolipoprotein E (APOE) genotype plays a substan-
tial role in oxidative stress and inflammation. The APOE 
gene is polymorphic and consists of three alleles, ε4, ε3, 
and ε2, of which ε3 is the most common allele in popu-
lations. The ε2 allele of APOE is considered protective, 
while the APOE ε4 allele is a major genetic risk factor 
for AD [22], with carriers exhibiting increased suscepti-
bility to oxidative damage in the brain. Such individuals 
often exhibit compromised antioxidant defenses, result-
ing in elevated levels of oxidative stress that contribute 
to neurodegeneration [23, 24]. Consequently, examining 
the role of APOE in the relationship between oxidative 
stress and inflammatory markers and AD pathology may 
be relevant.

Our study aims to determine whether oxidative stress 
and inflammation-related metabolites in the prostaglan-
din and isoprostane pathway in CSF and plasma, are 
associated with Aβ-42, p-tau and t-tau levels in CSF dur-
ing the prodromal phase of AD. We further studied the 

influence of APOE on the association of metabolites with 
ATN biomarkers and the progression from  MCI to AD 
dementia.

Methods
Study populations
Study participants included in the analyses came from 
two cohorts of the Alzheimer’s Disease Apolipoprotein 
Pathology for Treatment Elucidation and Development 
(ADAPTED) consortium, including Barcelona-based 
memory clinic Ace Alzheimer Center Barcelona (147 
CSF-plasma paired samples) and Heidelberg/Mannheim 
memory clinic (58 CSF samples). Demographic infor-
mation of the full data set is provided in Supplemen-
tary Table 1. Both cohorts had obtained their approvals 
from their respective medical ethical committees, and 
informed consents are available from all participants 
which permit the use of phenotype and biomarker infor-
mation for research purposes. Due to missing informa-
tion on BMI and lipid-lowering medication use, MCI 
patients with complete information on age at blood col-
lection, sex, body mass index (BMI), lipid-lowering medi-
cation use, as well as AD biomarkers in CSF (i.e., Aβ-42, 
p-tau, and t-tau) were selected for both studies (ACE 
cohort = 142, Heidelberg/Mannheim cohort = 40).

Ace Alzheimer Center Barcelona cohort
Patient recruitment and assessment was carried out at 
the Memory Disorders Unit from Ace Alzheimer Center 
Barcelona (ACE), Spain between 2016 and 2017 [25]. 
The diagnosis was assigned for each patient by consen-
sus among neurologists, neuropsychologists, and social 
workers at a case conference. All the MCI patients ful-
filled the MCI Petersen’s diagnostic criteria [26, 27] 
including subjective memory complaints, decline from 
normal general cognition, preserved performance in 
activities of daily living, absence of dementia, and a 
measurable impairment in one or more cognitive func-
tions, with or without a deficit in other cognitive domains 
(amnestic MCI: single domain or amnestic MCI: mul-
tiple domains). The cut-off scores for impairment were 
based on age and different levels of education. Specific 
cutoffs for all tests included in the comprehensive neu-
ropsychological battery (NBACE) are detailed elsewhere 
[28]. Any individual scoring below the established cutoffs 
[28] in any test was considered to have MCI. In the sub-
sequent follow-up of MCI patients, dementia diagnosis 
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was performed based on the Diagnostic and Statistical 
Manual of Mental Disorders (DSM)-V criteria [29]. The 
cognitive deficits within the dementia group were clas-
sified according to the 2011 National Institute of Aging- 
Alzheimer´s Association (NIA-AA) [30] for Alzheimer´s 
disease; the National Institute of Neurological Disor-
der and Stroke and Association Internationale pour la 
Recherche et l’Enseignement in Neurosciences criteria 
(NINDS-AIREN) [31] for vascular dementia, Fronto-
temporal Dementia [32], and for Lewy body dementia 
[33]. Paired CSF and plasma samples were collected 
from fasted patients using clinically recommended 
approaches. Lumbar puncture (LP) was used for CSF col-
lection from the patient’s intervertebral space of L3-L4 
according to standard recommendations [34] and the 
procedure was performed by experienced neurologists 
under local anesthesia (1% mepivacaine) of the patient in 
a sitting position. Two tubes (10-ml polypropylene tube, 
Sarstedt ref 62,610,018) of CSF were obtained passively 
of which, one tube for basic biochemistry analysis includ-
ing glucose, total proteins, proteinogram, and cell type 
and cell number. The second CSF tube was aliquoted into 
polypropylene tubes (Sarstedt ref 72,694,007) after being 
centrifuged (2000xg 10 min at 4°C) and finally stored at 
-80°C. This was performed within 2 h  after CSF collec-
tion. For AD biomarker analysis on the sample collec-
tion day, an aliquot was thawed at room temperature and 
vortexed for 5–10 s followed by CSF Aβ1-42, t-tau, and 
p-tau level determination using commercially available 
enzyme-linked immunosorbent assays, namely Innotest 
Aβ1-42, Innotest hTAU Ag and Innotest PHOSPHO-
TAU (181P) (Innotest, Fujirebio Europe) [34–36].

APOE genotyping was performed in the ACE cohort. 
The patient’s whole blood was obtained for DNA extrac-
tion using DNA Chemagen technology (Perkin Elmer). 
Then TaqMan probes analysis (Real-Time PCR Quant-
Studio3, Thermofisher) was applied to characterize the 
APOE genotype of the patient.

Heidelberg/Mannheim memory clinic sample
Heidelberg/Mannheim memory clinic cohort included 
58 MCI patients between 2012 and 2016 at the Memory 
Clinic of the Central Institute of Mental Health (Man-
nheim, Germany). Patients were recruited by detailed 
medical history, physical and neuropsychiatric examina-
tion, and standard serum laboratory assessment exclud-
ing subjects with neuropsychiatric or general medical 
causes of impaired cognition. Therefore, all MCI patients 
met the MCI Petersen’s diagnostic criteria [26, 27], 
including subjective memory complaints, normal gen-
eral cognition, only minimally impaired performance 
in instrumental activities of daily living, absence of 
dementia, and a measurable impairment in one or more 

cognitive domains. Cognitive impairment was defined as 
performance below 1.2 standard deviation in one or more 
cognitive domains in standard neuropsychological test 
battery [37] (test battery of the Consortium to Establish 
a Registry for Alzheimer Disease (CERAD) [38] plus the 
Wechsler memory scale – logical memory (WMS) imme-
diate and delayed recall [39], and the trail making test A 
(TMT-A) and B (TMT-B) [40]. CSF collected by lumbar 
puncture was used for biomarker assessment and  for 
amyloid determination, and the results of the individual 
patient were discussed at a case conference attended 
by geriatric psychiatrists and neuropsychologists. The 
diagnosis of MCI due to AD or prodromal AD [41] was 
assigned by consensus. CSF samples were collected and 
aliquoted for storage at -80°C. Determination of Aβ1-
42, p-tau, and t-tau were performed based on standard-
ized protocols in the Neurochemistry Laboratory at the 
Department of Neurology, University Medical School, 
Göttingen. CSF levels of p-tau, total-tau and CSF levels 
of Aβ1-42 were both quantitatively determined using a 
commercially available ELISA kit [INNOTEST® PHOS-
PHO-TAU(181P) Innogenetics], INNOTEST® hTAU AG 
and a commercially available ELISA kit [INNOTEST®β- 
AMYLOID (1–42) Innogenetics] from Fujirebio respec-
tively. Aβ-40 was measured with ELISA-Kits from IBL. 
Illumina GSA1.0 Shared Custom Content bead array was 
applied for APOE genotyping. APOE genotype determi-
nation was performed using GenomeStudio 2.0 software 
and data were exported in PLINK format.

Metabolomics profiling
All CSF and plasma samples of both cohorts were ana-
lyzed using an ultra-high-performance liquid chroma-
tography tandem mass spectrometry (UHPLC–MS/MS) 
based approach profiling oxidative stress and inflamma-
tory metabolites including isoprostanes and prostaglan-
dins [42, 43].

Samples were stored at -80°C, thawed on ice, and 
randomized prior to analysis. The sample volume of 
CSF aliquot and plasma aliquot was 350 µL and 150 µL 
respectively. The remains were pooled and used for qual-
ity control (QC) samples. CSF samples were dried under 
the vacuum, spiked with deuterated internal standards 
(ISTDs) and antioxidant (BHT:EDTA 1:1, 0.2 mg/mL) 
and then extracted with a mixture of 1-butanol:ethyl 
acetate (1:1, v/v). After the supernatant was collected 
and dried, samples were reconstituted using a mixture of 
methanol: water (70:30, v/v). Plasma samples were pre-
pared with the same ISTDs and antioxidant with extra 
acidifying buffer of 0.2M citric acid and 0.1M disodium 
hydrogen phosphate (pH 4.5). Then liquid–liquid extrac-
tion was performed with a mixture of 1-butanol:ethyl 
acetate (1:1, v/v) and samples were vortexed followed by 
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centrifugation and collection of the upper organic phase 
for evaporation. Dried samples were reconstituted with 
a mixture of ice-cold methanol: water (70:30, v/v). All 
reconstituted samples were measured using a Shimadzu 
LCMS-8050 system (Shimadzu, Japan).

For both plasma and CSF samples, LC–MS analyses 
were performed with high pH run and low pH run using 
two aliquots from each reconstituted sample. The high 
pH run targets 24 lysophosphatidic acid species of which 
results were published elsewhere [42]. The low pH run 
targets 16 isoprostanes and their isomeric prostanoids 
as well as some nitro-free fatty acids. For low pH run, 
samples were measured using an Acquity BEH C18 col-
umn (2.1 × 50 mm, 1.7 µm, Waters) with a tertiary mobile 
phase system of (A) water with 0.1% acetic acid, (B) 75% 
acetonitrile with 25% methanol and 0.1% acetic acid, and 
(C) 100% isopropanol. Dynamic multiple reaction moni-
toring (dMRM) mode with fast polarity switching was 
selected for MS acquisition.

QC samples and blank samples were injected together 
with study samples to ensure data quality. Metabolites 
showing a relative standard deviation (RSD) no more 
than 30% on corrected peak areas in QC samples were 
used as a criterion for metabolite export and further 
analysis. After QC correction, 9 and 2 metabolites in 
CSF and plasma, respectively, were used for further data 
analysis (Supplementary Table  2). We detected two iso-
prostanes in both CSF and plasma including 8-iso-PGF2α 
and 8,12-iso-iPF2α VI. Metabolites exclusively detected 
in CSF samples included three prostaglandins and four 
isoprostanes. The inverse rank transformation was per-
formed to normalize the distribution of metabolites in 
both cohorts.

Association of AD biomarkers with metabolites in CSF 
and plasma
We performed linear regression to assess the associa-
tion of Aβ-42, p-tau, and t-tau with the isoprostanes and 
prostaglandins profiled in paired CSF and plasma sam-
ples from the ACE cohort and only CSF samples from the 
Heidelberg-Mannheim memory clinic. Levels of Aβ-42, 
p-tau, and t-tau in CSF were used as an outcome variable 
in the regression model, and the analyses were adjusted 
for age, sex, body mass index (BMI), and lipid-lower-
ing medications. Information about Aβ-40 and Aβ-42/ 
Aβ-40 ratio was only available in the Mannheim/Hei-
delberg cohort, therefore association analysis of Aβ-40 
and ratio was only conducted in one cohort. The inverse 
rank transformation was applied to normalize the distri-
bution of both CSF AD biomarkers (Aβ-42, p-tau, and 
t-tau) and metabolite levels in CSF and plasma. A meta-
analysis of regression analysis results of the two cohorts 
was performed using METAL software [44] using the 

inverse-variance fixed-effect model. Meta-analysis results 
of association were also corrected for multiple testing 
separately for each AD biomarker using false discovery 
rate (FDR) by Benjamini and Hochberg method [45] and 
findings with FDR < 0.05 were considered significant in 
overall analysis. All analyses were performed in R version 
4.2 (https:// www.r- proje ct. org/).

Sensitivity analysis
To evaluate the relevance of observed associations 
between metabolites and AD biomarkers with AD brain 
pathology, we repeated the association analysis in strati-
fying MCI patients into Aβ positive and Aβ negative 
categories. In the ACE cohort, Aβ positive was defined 
as Aβ-42 < 676 pg/ml and in the participants from Man-
nheim Heidelberg cohort, Aβ positive was define as MCI 
participants with Aβ-42 ≤ 550 pg/ml or an Aβ-42 / Aβ-40 
ratio < 0.55.

Comparison of CSF metabolite levels between ATN 
categories
To further corroborate on the association results of lin-
ear regression between metabolites and AD biomarkers, 
we categorized the patients with MCI based on three 
AD biomarker categories: Aβ-42 (A ±), p-tau (T ±) and 
total tau (N ±). We grouped MCI into four categories 
based on ATN biomarkers to investigate the relation-
ship of metabolites with AD pathology including A-T-
N-, A + T-N-, A + T + N- and A + T + N + . We compared 
the mean values of metabolites between different ATN 
categories using two tailed t test. Multiple testing cor-
rection was performed using FDR < 0.05 based on Ben-
jamin and Hochberg method [45]. In the ACE cohort, 
A + was defined as Aβ-42 < 676 pg/ml, T + as p-tau > 58 
pg/ml, and N + as t-tau levels > 367 pg/ml [36]. In the 
participants from Mannheim Heidelberg cohort, A + was 
defined as participants with Aβ-42 ≤ 550 pg/ml or an 
Aβ-42/Aβ-40 ratio < 0.55, T + as p-tau ≥ 61 pg/ml, and 
N + as total tau ≥ 450 pg/ml. ATN comparison analyses 
were performed on the full dataset since we have not 
adjusted the analysis for covariates.

APOE stratified regression analysis
To identify APOE specific associations of metabolites 
with AD biomarkers, APOE stratified analysis was per-
formed in both participating cohorts based on three 
APOE strata including APOE ε4 (ε4ε4/ ε3ε4/ ε2ε4), APOE 
ε3 (ε3ε3), and APOE ε2 (ε2ε2/ε2ε3). In the stratified 
analysis, subjects with APOE ε2ε4 genotype were pooled 
with patients having APOE ε4ε4/ ε3ε4 genotypes based 
on their similar risk profiles as reported in an earlier 
study [46]. The APOE stratified analyses were adjusted 
for age, sex, body mass index (BMI), and lipid-lowering 

https://www.r-project.org/
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medications. APOE stratified analysis results were 
reported as a combined meta-analysis of both datasets 
(ACE CSF cohort and Heidelberg/Mannheim cohort) 
included in the current study. Due to the smaller number 
of APOE ε2 carriers in these two datasets, a combined 
regression analysis was performed, aggregating all APOE 
ε2 carriers from two cohorts. The combined analysis for 
APOE ε2 stratum was additionally adjusted for cohort 
information in the tested model. The multiple testing cor-
rection was performed using FDR < 0.05 based on Benja-
min and Hochberg method [45].

Association of APOE with metabolite levels
To evaluate the association of APOE genotype with 
metabolites measured in CSF, we also performed the 
association of metabolites (as outcome) with APOE 
(Predictor) using linear regression analysis. In this 
analysis, we tested three APOE binomial categories: 
APOE ε4 versus APOE ε3 carriers, APOE ε2 versus 
APOE ε3 carriers and APOE ε2 versus APOE ε4 car-
riers using linear regression adjusted for the age, sex, 
BMI, and lipid-lowering medications. Analysis results 
were reported for each cohort as well as their combined 
meta-analysis. We also performed adjusted analysis of 
covariance (ANCOVA) test to compare three categories 
of APOE (APOE ε2 versus APOE ε3 versus APOE ε4).

MCI to AD dementia progression analysis
Follow-up information was available for 138 out of 142 
MCI patients of the ACE cohort, of which 43 MCI pro-
gressed into AD dementia (31%) while 95 MCI did not 
progress to AD dementia. The criteria for dementia diag-
nosis are detailed above in the Ace Alzheimer Center 
Barcelona cohort description. We analyzed the associa-
tion of metabolites with MCI to AD dementia progres-
sion using cox proportional hazard model adjusted for 
age at blood collection, sex, BMI, and lipid-lowering 
medication used (Model 1). In the second model, we also 
adjusted the analyses for APOE status. To identify the 
association of metabolites with MCI to AD progression 
in different APOE carriers, we performed a APOE strati-
fied analysis in APOE ε4 and APOE ε3 carriers.

Results
The general characteristics of the ACE (discovery) and 
Heidelberg/Mannheim (replication) cohorts with full 
information of the covariates used in the analysis are 
presented in Table  1. The patients of the ACE cohort 
(Mean age = 71.95, SD = 7.74) were on average 3 years 
older (P = 0.043) compared to the  replication cohort 
(Mean = 68.85, SD = 8.51). The proportion of women 
was similar (ACE cohort: 52.11%, Mannheim/Heidelberg 
cohort: 55%) between the two cohorts (P = 0.886), and 
the  percentage of patients treated with lipid-lowering 

Table 1 Population description

Abbreviations: MCI mild cognitive impairment, SD Standard deviation, CSF Cerebrospinal fluid, APOE apolipoprotein E gene

ACE cohort Heidelberg/Mannheim cohort P-value of 
difference

MCI patients (N) 142 40

Metabolomics profiling tissue CSF and Plasma CSF

Age (SD) blood collection, years 71.95(7.74) 68.85(8.51) 0.043

Female (%) 74(52.11%) 22(55%) 0.886

Body Mass index (SD) 26.47(3.75) 25.86(3.62) 0.354

Lipid‑lowering medication user (%) 63(44.37%) 11(27.5%) 0.083

Amyloid‑beta 42 in pg/mL (SD) 791.59 (337.36) 690.85 (394.14) 0.151

P‑Tau in pg/mL (SD) 71.37 (37.31) 63.17 (29.97) 0.153

Total tau in pg/mL (SD) 425.87 (288.88) 380.95 (326.98) 0.435

APOE genotype N (%)

 APOE ε4 (ε4ε4/ε3ε4/ε2ε4) 50 (35.21%) 18 (45%) 0.344

 APOE ε3ε3 81 (57.04%) 18 (45%) 0.242

 APOE ε2ε2/ε2ε3 11 (7.75%) 4 (10%) 0.895

 Amyloid positive 68 (47.89%) 22 (55%) 0.445

ATN categories

 A‑T‑N‑ 43 (30.28%) 12 (30%) 0.873

 A + T‑N‑ 19 (13.38%) 11 (27.5%) 0.094

 A + T + N‑ 9 (6.34%) 4 (10%) 0.757

 A + T + N + 40 (28.17%) 7 (17.5%) 0.140
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medication in the ACE cohort (44.37%) was 1.6 times 
higher compared to the Heidelberg/Mannheim i.e., 
27.5% (P = 0.083). Aβ-42, p-tau, and t-tau in CSF levels 
were not significantly different between the two cohorts. 
Information about the comorbidities was available for 
Mannheim/Heidelberg cohort which is provided in the 
Supplementary Table 1.

Association of metabolites with ATN biomarkers 
in meta-analysis
Results of association analysis of metabolites meas-
ured in CSF with ATN biomarker (Aβ-42, p-tau, and 
t-tau) levels in CSF are provided in Fig.  1 and Supple-
mentary Table  3. In the meta-analysis of association of 
metabolites with Aβ-42 (Fig.  1A and Supplementary 
Table  3), none of the metabolites studied were signifi-
cantly associated when adjusting for multiple testing. 
Three metabolites showed evidence of association with 
Aβ-42 including PGE2 (β = 0.20, P = 1.33 ×  10–2), 
PGF2α (β = 0.223, P = 3.36 ×  10–2) and 8,12-iso-iPF2α 
VI (β = 0.165, P = 3.74 ×  10–2) that was consistent across 
cohorts, but all had FDR > 0.05. In Mannheim/Heidelberg 
cohort, four metabolites PGE2 (β = 0.432, P = 3.34 ×  10–3), 
PGF2α (β = 0.452, P = 1.76 ×  10–3), 8,12-iso-iPF2α VI 
(β = 0.478, P = 5.97 ×  10–3), and 5-iPF2α VI (β = 0.391, 
P = 2.01 ×  10–2) showed significant association with CSF 
Aβ-40 levels (Supplementary Table 4). In the association 
of metabolites with p-tau (Fig.  1B and Supplementary 
Table 3), increased levels of 8,12-iso-iPF2α VI (β = 0.275, 
P = 2.0 ×  10–4), 5-iPF2α VI (β = 0.216, P = 1.30 ×  10–2) 

and PGF2α (β = 0.273, P = 6.0 ×  10–3) showed signifi-
cant association (FDR < 0.05) with p-tau levels in CSF. 
While the meta-analysis showed a significant associa-
tion of PGF2α and 5-iPF2α VI, individual cohort analy-
ses did not show significant associations in one cohort 
(P < 0.05). The regression coefficients for 5-iPF2α VI were 
similar across two cohorts. However, PGF2α showed a 
threefold increase in regression coefficient in the smaller 
Heidelberg/Mannheim sample compared to the larger 
cohort, suggesting considerable heterogeneity (I2 = 53.4, 
P = 0.143). The isoprostane 8,12-iso-iPF2α VI (β = 0.228, 
P = 3.0 ×  10–3) was also significantly associated with t-tau 
levels at FDR < 0.05, while PGF2α (β = 0.241, P = 0.020) 
showed relationship with CSF t-tau levels, mainly driven 
by the smaller cohort Heidelberg/Mannheim. The 
5-iPF2α VI did not show significant association with 
total tau levels (Supplementary Table 3). The forest plot 
(Fig. 1) of overall meta-analysis has shown that the asso-
ciation of PGF2α, 5-iPF2α VI, and 8,12-iso-iPF2α VI was 
similar across the ATN markers but was strongest and 
most FDR significant for p-tau.

Sensitivity analysis in Aβ positive and Aβ negative MCI 
participants
In the Aβ positive-MCI participants (Supplementary 
Table  5), CSF levels of PGF2α (β = 0.470, P = 1.10 ×  10–3) 
and 8, 12-iso-iPF2α VI (β = 0.326, P = 1.57 ×  10–3) remained 
significantly associated with p-tau, while PGF2α was 
associated with total-tau (β = 0.429, P = 4.07 ×  10–3) after 
multiple testing correction (FDR < 0.05). In the  current 

Fig. 1 Forest plot of the association of cerebrospinal fluid (CSF) metabolite levels with amyloid beta 42 (A), phosphorylated tau (B), total tau levels 
(C). Metabolites within each plot are ordered based on their meta‑analysis p‑values
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meta-analysis of p-tau, we also did not observe a  sig-
nificant difference of regression coefficients of PGF2α 
between two cohorts (I2 = 0, P = 0.571) as we did in origi-
nal meta-analysis. We did not identify the  association of 
PGF2α and 8, 12-iso-iPF2α VI with p-tau/t-tau in the Aβ 
negative-MCI participants (Supplementary Table 6).

Association of plasma levels metabolites with AD 
biomarkers
In plasma-based metabolic measurements, only two 
metabolites (8,12-iso-iPF2α VI, 8-iso-PGF2α) were 
detected in more than 60 percent of participants. We 
observed a significant correlation of 8-iso-PGF2α 
levels between plasma and CSF (correlation coef-
ficient = 0.31, P = 1.8 ×  10–4), no correlation was 
observed for 8,12-iso-iPF2α VI (correlation coeffi-
cient = 0.076, P = 0.37) (Supplementary Fig.  1). The 
observed significant correlation of 8-iso-PGF2α levels 
in plasma and CSF in ACE cohort, supports its simi-
lar association results both in plasma (Supplementary 

Table  7, Aβ-42: β = 0.040, P = 0.652; P-tau: β = 0.020, 
P = 0.818; t-tau: β = 0.026, P = 0.761) and CSF (Sup-
plementary Table 3, Aβ-42: β = 0.139, P = 0.230; P-tau: 
β = 0.080, P = 0.482; t-tau: β = 0.054, P = 0.630). Plasma 
levels of 8,12-iso-iPF2α VI did not show association 
with Aβ-42 (β = 0.180, P = 0.107), p-tau (β = -0.115, 
P = 0.296) and t-tau (β = -0.144, P = 0.183) (Supple-
mentary Table 7).

CSF metabolite levels between ATN categories
In our analysis of metabolite levels across ATN catego-
ries within the ACE cohort (Fig.  2 and Supplementary 
Table  8), we identified significantly increased levels of 
PGF2α (P = 3.8 ×  10–5) and 5-iPF2α VI (P = 1.4 ×  10–3) 
in A + T + N + compared to A + T-N-. A similar pattern 
was observed for 8,12-iso-iPF2α VI (P = 4.6 ×  10–2) and 
8-iso-iPF2α (P = 2.3 ×  10–2); however, these associations 
were no longer  significant after adjusting for multiple 
comparisons. The CSF levels of 2,3-dinor-8-iso-PGF2α 
were also significantly higher in A + T + N + patients 

Fig. 2 Boxplots illustrating the concentration differences of metabolites across ATN groups. Each p‑value is calculated from a two‑tailed t‑test 
assessing the mean differences between groups. P‑values are displayed only when they are less than 0.05
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compared to A + T + N- patients (P = 7.32 ×  10–5), which 
might indicate its high correlation with PGF2α levels 
(Supplementary Fig.  2). Furthermore, we observed sig-
nificantly lower levels of PGA2 in A + T + N + compared 
to A + T-N- (P = 4.5 ×  10–3), and decreased PGF2α lev-
els in A + T-N- compared to A-T-N- in MCI patients 
(P = 6 ×  10–3).

In the replication cohort (Supplementary Table  9 
and Fig.  3), PGF2α demonstrated higher CSF levels in 
A + T + N + compared to A + T-N- (P = 1.99 ×  10–2), simi-
lar to the findings from the discovery cohort (Supple-
mentary Table 8). CSF levels of 8, 12-iso-iPF2α VI were 
significantly higher in A + T + N- compared to A + T-N- 
patients (P = 4.36 ×  10–4). Additionally, 8-iso-PGF2α 
(15-F2t-IsoP) showed elevated levels in A + T + N + MCI 
patients compared to A + T + N- (P = 1.17 ×  10–2), and 
5-iPF2a VI levels were increased in A + T + N- compared 
to A-T-N- categories (P = 3.41 ×  10–2).

Association of metabolites with ATN biomarkers in APOE 
stratified analysis
To study the role of APOE genotype on associations 
of metabolites in CSF with AD pathology biomarkers, 
APOE stratified analyses were performed (Fig. 3). Of the 
three metabolites (PGF2α, 5-iPF2α VI, 8,12-iso-iPF2α 
VI) which showed association with p-tau levels in CSF 
in the overall analysis (Fig.  3A), PGF2α showed a posi-
tive association with p-tau (β = 0.619, P = 4.0 ×  10–4) and 
t-tau (β = 0.523, P = 4.0 ×  10–3) in only APOE ε4 carriers 
(Fig. 3C-D). Although the heterogeneity p-value was not 
significant (APOE ε4 strata: p-tau = 0.27, t-tau = 0.44), 
beta values are high in the smaller cohort, indicating the 

possibility that association was driven by one cohort. 
The association of 5-iPF2α VI with p-tau (β = 0.308, 
P = 5.0 ×  10–3) and t-tau (β = 0.288, P = 0.011) was signifi-
cant only in APOE ε3 carriers. The isoprostane 8,12-iso-
iPF2α VI showed association with p-tau in both APOE ε3 
(β = 0.293, P = 2.0 ×  10–3) and APOE ε4 carriers (β = 0.395, 
P = 3.0 ×  10–3), while with t-tau in only APOE ε3 carri-
ers (APOE ε33: β = 0.298, P = 3.0 ×  10–3). 8,12-iso-iPF2α 
VI showed a negative regression coefficient in asso-
ciation with p-tau and t-tau in APOE ε2 carriers. In the 
association analysis of the metabolite levels as outcome 
with APOE genotypes (Supplementary tables 10), we did 
not observe altered levels of oxidative stress and inflam-
matory metabolites between APOE ε4 versus APOE ε3 
and APOE ε2 versus APOE ε3 as well as APOE ε4 versus 
APOE ε2.

Role of metabolites in MCI to AD dementia progression
The metabolites were also tested for their association 
with MCI to AD dementia progression in CSF (Sup-
plementary Table  11) and plasma (Supplementary 
Table  12). The mean follow-up time in AD progressors 
was 1.42 years (SD = 0.53) and 1.58 years (SD = 0.73) in 
non-AD progressors. In the ACE cohort, 11 MCI patients 
also progressed to other types of dementia including vas-
cular dementia (n = 6), semantic dementia (n = 1), Parkin-
son dementia (n = 1), Lewy Body dementia (n = 2), and 
Frontotemporal dementia (n = 1). We did not observe sig-
nificant association of metabolite levels with MCI to AD 
dementia progression in both models with and without 
APOE adjustment and in APOE stratified analysis.

Discussion
We observed a significant association of isoprostane 
8,12-iso-iPF2α VI with increased p-tau and t-tau levels 
in CSF, while an isoprostane (5-iPF2α VI) and a prosta-
glandin (PGF2α) showed significant association with 
only p-tau levels in the overall analysis. In the sensitiv-
ity analysis, association of PGF2α with both p-tau and 
total tau levels, and 8,12-iso-iPF2α VI with p-tau levels 
was confined to amyloid positive MCI patients. In the 
APOE stratified analysis, PGF2α and 5-iPF2α VI showed 
significant association with p-tau and t-tau in only APOE 
ε4 and APOE ε3 carriers, respectively. Whereas 8,12-iso-
iPF2α VI showed association with p-tau and t-tau in both 
APOE ε4 and APOE ε3 carriers.

Isoprostanes are the products of lipid peroxidation and 
established markers of oxidative stress [19]. Our find-
ings are in line with earlier studies reporting the asso-
ciation of an isoprostane 8,12-iso-iPF2α VI with MCI 
[5] and AD [11] and CSF levels of tau and amyloid in 
AD patients [10]. The association of 8,12-iso-iPF2α VI 
with p-tau and t-tau was observed in both APOE ε4 and 

Fig. 3 Heatmap of meta‑analysis results from regression analyses 
of oxidative stress metabolites with Aβ‑42, p‑tau, and t‑tau levels 
in Cerebrospinal Fluid (CSF) for the overall sample (A). Stratified 
association results by APOE for Aβ‑42 (B), p‑tau (C), and t‑tau (D) are 
presented. Note: A star (*) indicates a significant association (False 
Discovery Rate < 0.05)
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APOE ε3 carriers suggesting the oxidative stress in AD 
is not restricted to APOE ε4 carriers. The association of 
8,12-iso-iPF2α VI with p-tau levels was observed only 
in amyloid positive MCI patients. Its increased levels in 
A + T + N-/ A + T + N + compared with A + T-N-, alto-
gether support its relevance with amyloid induced tau 
aggregation and oxidative stress. Multiple studies suggest 
that oxidative stress enhances the phosphorylation [47] 
through multiple pathways [48], thus enhancing polym-
erization of tau as neurofibrillary tangles [49]. Future 
studies are warranted to understand the complex inter-
play between oxidative stress metabolites (8,12-iso-iPF2α 
VI), amyloid and tau pathology. The isoprostane 5-iPF2α 
VI, which is highly correlated with 8,12-iso-iPF2α VI, also 
showed significantly higher levels in A + T + N + com-
pared with A + T-N- in ACE cohort. Considering the 
CSF levels of p-tau and t-tau as biomarkers of neurode-
generation and AD progression [50], our findings sug-
gest that isoprostanes (8,12-iso-iPF2α VI, 5-iPF2 α Vi) 
may increase during the prodromal phase of AD devel-
opment independent of APOE ε4. This is still not clear 
whether oxidative stress is a cause or consequence, how-
ever, higher mean levels of isoprostanes in A-T-N- MCI 
patients compared to A + T-N- cases, may also sug-
gest the oxidative stress an early event in AD pathology 
[51] which is exacerbated by amyloid. We also observed 
increased levels of CSF 8-iso-PGF2α in A + T + N + com-
pared to A + T-N- (P = 2.3 ×  10–2) in the ACE cohort and 
a similar trend among A + T + N + versus A + T + N- 
(P = 1.2 ×  10–2) in the replication cohort. This aligns with 
the reported elevated levels of 8-iso-PGF2α in hippocam-
pal neurons of AD patients, and its weak correlation with 
p-tau (neurofibrillary tangles) levels during advanced AD 
pathology compared to controls [52].

The difference in association of specific isoprostanes 
with AD biomarkers between APOE ε3 and APOE ε4 
carriers is aligned with the relationship of APOE iso-
forms with oxidative stress pathways and lipid peroxida-
tion processes [53]. APOE ε3 and APOE ε4 alleles may 
influence oxidative stress in distinct manners, leading to 
different lipid peroxidation profiles of 5-iPF2α VI and 
8,12-iso-iPF2α VI which are two F2 isoprostane regioi-
somers. The isoprostane 8,12-iso-iPF2α VI was associ-
ated with p-tau in both APOE ε33 and APOE ε4 carriers, 
but with t-tau only in APOE ε33 carriers. This indicates 
that 8,12-iso-iPF2α VI may be a more general marker of 
oxidative stress independent of APOE ε4. However, the 
APOE ε3 specific association of 8,12-iso-iPF2α VI with 
t-tau may also suggest nonspecific nature of total-tau 
marker in reflecting AD specific neurodegeneration.

Among the nine profiled isoprostanes and prostaglan-
dins, only two were detected in plasma samples of ACE 
cohort. This may be due to low concentrations of these 

metabolites in plasma or their levels falling below our 
limit of quantitation. We did not observe any associa-
tion between plasma levels of isoprostane 8,12-iso-iPF2α 
VI and 8-iso-PGF2α with CSF levels of Aβ-42, p-tau 
and t-tau, which might be due to lack of correlation 
(P = 0.37) between CSF and plasma levels of these spe-
cific isoprostanes in our study. This low correlation can 
be attributed to the low concentration of isoprostanes 
in plasma along with different clearance mechanisms in 
blood and CSF. This might also suggest that the origin of 
the plasma levels of 8,12-iso-iPF2α VI may be different 
and do not reflect the AD pathology-specific oxidative 
stress and lipid peroxidation in the brain. Isoprostanes 
have been shown to associate with AD when measured 
in CSF, but their plasma levels did not confirm the find-
ings of CSF [54, 55], suggesting that peripheral oxida-
tive stress may not directly reflect oxidative stress status 
in the central nervous system. Despite a strong positive 
correlation of plasma and CSF levels of 8-iso-PGF2α, we 
did not observe its association with ATN biomarkers in 
overall MCI population in linear regression. This dis-
crepancy underscores the complex relationship between 
peripheral and central biomarker concentrations in AD 
research. This relationship can be specific to individual 
metabolites due to distinct biosynthetic pathways of iso-
prostanes [56]. Therefore, this highlights the need for 
further research into the mechanisms underlying these 
differences.

A prostaglandin PGF2α associates significantly with 
both p-tau and t-tau in only APOE ε4 carriers in overall 
MCI patients, and in MCI due to AD pathology in non-
APOE stratified analysis. The APOE ε4 not only increases 
cerebral amyloid pathology, neuroinflammation and tau 
pathology [57], but also potentiates the impact of amy-
loid pathology on tau pathology [58]. The association of 
PGF2α with phosphorylated tau in amyloid positive MCI 
patients in linear model, along with significantly higher 
levels in A + T + N + compared with A  +T-N- supports 
the role of PGF2α in neuroinflammation due to amy-
loid pathology exacerbated tau pathology. PGF2α is one 
of the most important prostanoids with wide-ranging 
functions in inflammation, cardiovascular function, and 
smooth muscle contraction [21, 59]. PGF2α is a prod-
uct of arachidonic acid metabolism which can be gener-
ated through enzymatic mediation by cyclooxygenase-2 
(COX-2) and Prostaglandin F Synthase (PGFS) or via 
autooxidation. In the central nervous system, prosta-
mide/prostaglandin F synthase and cannabinoid recep-
tor 1 (CBR1) both involve the production of PGF2α of 
which CBR1 is possibly the predominant one [60–62]. 
Oxidative stress, crucial in AD  pathogenesis, has been 
reported to be associated with increased levels of cyto-
toxic carbonyl products which consequently induce 
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elevated level of CBR1 enzyme in the brain [63]. Carbon-
yls from lipid peroxidation modify tau proteins and result 
in consequent aggregation of phosphorylated tau [64, 
65]. Therefore, this may suggest the mechanistic relation-
ship among phosphorylated tau proteins, carbonyl com-
pounds, PGF2α production via CBR1 and oxidative stress 
in APOE ε4 stratified analysis. On the other hand, PGF2α 
together with F2-series isoprostanes (e.g. 2,3-dinor-8-iso-
PGF2α; 5-iPF2α VI; 8,12-iso-iPF2α VI) showed positive 
associations with p-tau and t-tau in the APOE ε4 group 
(Fig. 3). This may indicate the potentially active contribu-
tion of autooxidation pathway mediated PGF2α produc-
tion. Future mechanistic investigations on which pathway 
is more actively involved in PGF2α generation should be 
performed to shed light on the association of prostaglan-
din/isoprostane generation with APOE genotype as well 
as ATN biomarkers.

In the meta-analysis of overall MCI patients, CSF levels 
of PGE2 showed associations with Aβ42 which did not 
pass multiple testing (FDR < 0.05), and therefore needs 
validation. An additional explanation for the weak asso-
ciation of PGE2 and PGA1 with Aβ42, beyond the small 
sample size, may be the longitudinal stability of Aβ42 
compared to p-tau and total tau levels [66]. Nonethe-
less, CSF PGE2 levels along with four other metabolites 
(PGF2α, 8,12-iso-iPF2α VI, and 5-iPF2α VI) showed 
significant associations with CSF Aβ40 levels in the 
Mannheim/Heidelberg cohort. The positive correlation 
between CSF levels of PGE2 and Aβ may indicate the role 
of PGE2 levels in amyloid beta production. This obser-
vation is supported by multiple studies that the PGE2 
receptors suppresse the neuroprotective effects of micro-
glia, thereby promoting the neuroinflammation [67, 68] 
and Aβ pathology. This aligns with another study which 
reported increased levels of PGE2 in AD compared to 
healthy controls [69]. The ATN category analysis showed 
that in amyloid positive MCI, the PGE2 levels were lower 
in A + T + N + compared to A-T-N-, and levels of PGA2 
(product of PGE2 dehydration) were significantly lower 
in A + T + N + compared to A + T-N- in the ACE cohort 
(Supplementary Table  8). Similar results were reported 
in a longitudinal study, where CSF PGE2 levels were 
decreased in AD compared to MCI patients [15]. Early 
rise in COX-mediated inflammatory response in demen-
tia may explain the initial surge in CSF PGE2 levels, fol-
lowed by a decline in PGE2 levels due to neuronal loss 
[15, 70, 71]. Our observations may suggest that the neu-
roinflammatory role of increased levels of PGE2 may 
be more relevant before the neurodegeneration stage. 
Nevertheless, future longitudinal studies are needed to 
determine whether the positive correlation of CSF levels 
of PGE2 and Aβ42 is a cause or consequence of amyloid 
pathology.

One of the major limitations of our study is our lim-
ited sample size which challenged our APOE strati-
fied analyses. For two study cohorts included in this 
study, meta-analysis of association of metabolites with 
AD pathology biomarkers was only available for CSF 
samples due to the unavailability of plasma samples 
from Heidelberg/Mannheim memory clinic cohort. 
Moreover, our study had a short follow-up duration 
for MCI patients, and the sample size for those pro-
gressing from MCI to AD dementia was also limited. 
Furthermore, recent evidence has revealed the limited 
prognostic utility of plasma t-tau and has instead pro-
posed the combined additive value by investigating 
t-tau and neurofilament light (NfL) [72]. In the pursuit 
of deeper insights into the pathogenesis of AD, future 
research endeavors should investigate the relationship 
of oxidative stress/inflammatory metabolites with NfL 
and neuroimaging phenotypes. Such investigations 
will provide a more profound understanding of the 
underlying mechanisms driving Alzheimer’s disease 
pathology. Another limitation is the non-availability 
of information on Aβ42/ Aβ40 for ACE cohort which 
is considered a superior marker compared to Aβ42 
marker alone.

Conclusions
In our study, we showed the association of CSF levels 
of inflammatory (prostaglandins) and oxidative stress 
(Isoprostanes) related metabolites with biomarkers of 
AD pathology (Aβ-42, p-tau, t-tau). Robust associa-
tions between PGF2α and 8,12-iso-iPF2α VI with tau 
pathology in amyloid positive participants in both 
cohorts indicate the role of these metabolites in neu-
roinflammation and oxidative stress specific to AD 
pathology. Moreover, our study provides insight into 
the role of APOE in influencing the oxidative stress 
and inflammatory metabolites during the prodromal 
phase of AD.
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