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Abstract 

Background Alzheimer’s Disease (AD) is the most common form of dementia. Its early stage, amnestic Mild Cogni-
tive Impairment (aMCI), is characterized by disrupted information flow in the brain. Previous studies have yielded 
inconsistent results when using electrophysiological techniques to investigate functional connectivity changes in AD, 
and a contributing factor may be the study of brain activity divided into frequencies.

Methods Our study aimed to address this issue by employing a cross-frequency approach to compare the func-
tional networks of 172 healthy subjects and 105 aMCI patients. Using magnetoencephalography, we constructed 
source-based multilayer graphs considering both intra- and inter-frequency functional connectivity. We then assessed 
changes in network organization through three centrality measures, and combined them into a unified centrality 
score to provide a comprehensive assessment of centrality disruption in aMCI.

Results The results revealed a noteworthy shift in centrality distribution in aMCI patients, both in terms of spatial 
distribution and frequency. Posterior brain regions decrease synchrony between their high-frequency oscillations 
and other regions’ activity across all frequencies, while anterior regions increase synchrony between their low-
frequency oscillations and other regions’ activity across all frequencies. Thus, posterior regions reduce their relative 
importance in favor of anterior regions.

Conclusions Our findings provide valuable insights into the intricate changes that occur in functional brain networks 
during the early stages of AD, demonstrating that considering the interplays between different frequency bands 
enhances our understanding of AD network dynamics and setting a precedent for the study of functional networks 
using a multilayer approach.
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Background
Alzheimer’s Disease (AD) is an incurable neurodegenera-
tive disease that accounts for about two-thirds of demen-
tia cases [1]. The clinical manifestations start with a 
progressive loss of episodic memory, followed by impair-
ment of other cognitive domains [2]. But clinical symp-
toms are only the tip of the iceberg, as they appear ten 
to fifteen years after the earliest neuronal dysfunctions 
occur [3]. The cascade of events leading to AD starts 
with the malfunctioning of two key proteins, amyloid-β 
(Aβ) and tau, which accumulate to form extracellular 
Aβ plaques and intracellular tau neurofibrillary tangles. 
These aggregates affect synapses, altering neuronal com-
munication, and as more synapses disappear, functional 
networks are disrupted, ultimately causing cognitive dys-
functions. Thus, brain network disruption constitutes 
a potential marker for the detection of AD even before 
clinical symptoms manifest, and its study in the early 
stages of the disease is crucial.

Mild cognitive impairment (MCI) is generally consid-
ered the prodromal stage of AD. MCI represents a stage 
of cognitive decline that is more severe than typical age-
related changes, but not as pronounced as the cognitive 
decline seen in AD [4]. MCI is a clinical state character-
ized by a decline in cognition not severe enough to affect 
independence in everyday activities. Its most common 
subtype, amnestic MCI (aMCI), conveys memory impair-
ment, and is more likely to progress to AD [5].

Electrophysiology provides a non-invasive and acces-
sible means to study brain function in AD and MCI. In 
particular, previous studies using magnetoencephalogra-
phy (MEG) have offered valuable insights for diagnosis 
and understanding disease mechanisms (e.g., [6–8]; see 
[8] for a review). Brain networks are commonly studied 
through functional connectivity: the statistical depend-
ence through time between physiological signals from 
different brain regions [9]. Functional connectivity is a 
direct measure of brain synchrony. Increments in func-
tional connectivity reflect an increase in brain synchrony, 
while decreases imply the opposite; both changes can be 
pathological.

Functional connectivity disruption in AD and 
aMCI patients is a common finding. However, previ-
ous literature shows erratic results due to conflicting 
methodological factors (including differences in the 
various functional connectivity metrics, inconsistencies 
in diagnostic criteria, and inadequacies in sample sizes) 
[10]. Here, we review the most persistent results. The 
anterior aspects of the brain exhibit hypersynchrony 
in patients in delta and theta frequencies [11, 12], and 
sometimes in alpha [13]. The posterior aspects of the 
brain exhibit hyposynchrony in patients in alpha and 
beta [14, 15], and seldom in gamma [16]. In the earliest 

(preclinical) stages of the disease, studies report hyper-
synchrony in theta and delta in posterior brain regions 
[17].

Functional connectivity analyses involve examining 
pairwise correlations, providing information on how 
strongly different brain regions are connected. A further 
step in the study of functional networks is modeling them 
as graphs. A graph is a set of elements, called nodes, con-
nected by links. Under this framework, nodes denote 
brain regions and links denote functional connectivity 
values. This framework allows us to study how changes in 
functional connectivity affect global network parameters, 
such as information flow and integration [18].

One of the main advantages of graphs is that they allow 
us to study the importance of each neural substrate in the 
network by measuring their centrality. In graph theory, 
centrality is a measure of the role each node plays in the 
graph, offering insights into how specific nodes contrib-
ute to network structure and how their impairment could 
affect the network. There are multiple metrics that quan-
tify the centrality of a network node, each considering 
different aspects of how information flows on a network 
[19]. For this reason, authors suggest that aggregating 
rankings across multiple measures might yield more 
robust centrality results [19, 20].

Analyses using graph theory imply a greater level of 
abstraction and methodological complexity than those 
directly measuring functional connectivity, which fur-
ther complicates the interpretation of the results. Con-
sequently, existing papers reach even more conflicting 
conclusions (for reviewing the state of the art, see [21, 
22]). Even so, it is a common finding that variations in 
cerebrospinal fluid biomarkers, namely Aβ and tau, entail 
centrality changes in aMCI and AD [12, 23].

All the articles mentioned in the previous paragraphs 
treat the different frequency bands individually. Sepa-
rating brain signals into discrete and isolated frequency 
bands is convenient, as each band has been associ-
ated with specific physiological processes. Nonetheless, 
this strict division represents an oversimplification of 
brain dynamics. Several authors suggest that studying 
frequency-specific functional graphs in isolation might 
play a role in the dissimilar results between studies and 
hint at the use of a more integrative approach: the use of 
multilayer graphs, in which each layer corresponds to a 
frequency band. These graphs consider the interplays 
between the different frequency bands, as they con-
tain both intra- and inter-band connections. In a recent 
study, Yu et al. (2017) concluded that MEG-based brain 
graphs comprising all bands reveal information that can-
not be extracted by studying the frequency graphs sepa-
rately, although this work solely focused on intra-band 
connections.
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While several studies have demonstrated the useful-
ness of applying a graph-multilayer approach, few have 
investigated centrality disruption in different brain dis-
orders; examples can be found for AD [24] and schizo-
phrenia [25], but not MCI. In the present work, we have 
approached centrality changes, measured by several 
widely used centrality metrics, in aMCI patients, con-
sidering functional connectivity interactions between all 
pairs of nodes in all frequency bands. To prevent over-
simplifying the network structure, we constructed the 
graphs using brain sources as nodes and the original 
functional connectivity values as links, without applying 
any transformations (such as thresholding or binariza-
tion). We expect aMCI participants to exhibit centrality 
disruptions affecting their whole brain communication 
patterns. Since previous studies suggest non-linear trajec-
tories during AD, we anticipate both centrality increases 
and decreases depending on the brain region.

Materials and methods
Participants
The study participants were recruited from three differ-
ent locations in Madrid, Spain: Hospital Clínico San Car-
los, Centro de Prevención del Deterioro Cognitivo, and 
Centro de Mayores del Distrito de Chamartin. The sam-
ple comprised 277 participants: 172 healthy controls aged 
60–82 (105 women) and 105 aMCI patients aged 64–85 
(69 women). Table  1 summarizes the most important 
demographic and neuropsychological characteristics.

To assess the general cognitive and functional status 
of each participant, a group of experts consisting of neu-
ropsychologists, psychiatrists, and neurologists admin-
istered a set of screening questionnaires: Mini Mental 
State Examination (MMSE), Geriatric Depression Scale 
– Short Form (GDS-SF), Functional Assessment Ques-
tionnaire, and Hachinski Ischemic Score. They then 
interviewed each participant and performed a thorough 
neuropsychological assessment. Based on this informa-
tion, the evaluators placed each participant in a specific 
diagnostic group; participants were diagnosed with MCI 
using the criteria outlined by Petersen and Grundman 
[26]. Also, only those MCI patients who had memory 
impairment (aMCI) were included in the study.

The sample for the analyses only included participants 
aged 60 years or older. The exclusion criteria employed 
were the following: (1) history of psychiatric or neuro-
logical disorders, (2) evidence of infection, infarction 
or focal lesions in a T2-weighted scan within 2 months 
prior to the MEG acquisition, (3) consumption of drugs 
that could affect MEG recordings (e.g., cholinesterase 
inhibitors), (4) alcoholism, (5) chronic use of anxiolyt-
ics, narcotics, anticonvulsants or sedative hypnotics, and 
(6) a modified Hachinski score of 5 or more. Additional 

analyses were carried out to discard causes of aMCI 
other than dementia (diabetes mellitus, thyroid prob-
lems, vitamin B12 deficit, syphilis, and HIV). For the con-
trol group, participants with an MMSE score of less than 
27 were excluded, as well as those who reported Subjec-
tive Memory Complaints in the clinical interview.

MEG recordings
We recorded brain activity using a 306 channel Vec-
torview MEG system (Elekta AB, Stockholm, Sweden), 
which consisted of 102 magnetometers and 204 planar 
gradiometers. The MEG system was housed in a field-
isolated room (VacuumSchmelze GmmbH, Hanau, 
Germany) at the Center for Biomedical Technology in 
Madrid, Spain.

Recordings were obtained under eyes-closed resting-
state conditions and lasted 4 to 5  min, at a 1000  Hz 
sampling rate with an online anti-alias bandpass filter 
(cut-off frequency filtering of 0.1 to 330 Hz). We used a 
3D Fastrak Polhemus digitizer to computerize the head 
shape, which captured around 300 points on the scalp 
surface and three anatomical reference points (nasion 
and left and right preauricular points). During the reg-
ister, the device also recorded head position using four 
head position indication coils placed on the forehead 

Table 1 Descriptive characteristics of the control and aMCI 
groups

*P < .05 (P (sex) > 0.05), indicated in the variable column for group differences 
and in each group column for sex differences in each group; Mann-Whitney non-
parametric test or Pearson’s test, as appropriate

aMCI amnestic Mild Cognitive Impairment, MMSE Mini Mental State 
Examination, BNT Boston Naming Test, TMT-B Trail Making Test B, LM Logical 
memory

Variable Controls (mean ± SD)
Women mean / Men 
mean

aMCI 
(mean ± SD)
Women 
mean / Men 
mean

Sex (W) 105 (61%) 69 (66%)

Age (years)* 69.4 ± 5.3
69.4 / 69.3

74.0 ± 4.6
73.7 / 74.5

Education (years)* 14.6 ± 5.1
13.8 / 15.7*

8.5 ± 4.7
7.8 / 9.8

MMSE* 29.2 ± 1
29.2 / 29.0

26.4 ± 2.5
26.2 / 26.9

Inverse digits* 6.2 ± 2.1
5.8 / 6.8*

3.9 ± 1.4
3.8 / 4.28

BNT* 54.2 ± 6.2
53.3 / 55.7*

44.7 ± 10.5
44.1 / 46.0

TMT-B (seconds)* 105.0 ± 57.4
114.0 / 91.4*

234.0 ± 103.3
255.0 / 201.0*

LM-immediate* 39.3 ± 11.9
38.8 / 40.0

15.4 ± 7.9
14.6 / 16.9

LM-delayed* 23.8 ± 9.3
24.1 / 23.2

6.0 ± 5.9
5.4 / 7.0
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and mastoids. Eye movements and blinks were regis-
tered using two bipolar electrooculogram electrodes 
placed above and below the left eye and a ground elec-
trode attached to the upper cheek.

Preprocessing
We preprocessed the electrophysiological data using 
the Fieldtrip toolbox version 20,170,501 [27] and in-
house Matlab scripts (version 2021b). The pipeline 
included the following steps: (1) detecting and remov-
ing noisy channels using Maxfilter software, which 
virtually reconstructed their activity; (2) removing 
magnetic noise from outside the head and compensat-
ing for head movements using Temporal Signal Space 
Separation (tSSS) [28]; (3) removing SQUID jumps 
and muscular artifacts through ocular inspection; (4) 
removing the contribution of ocular and cardiac activ-
ity to the MEG signal through the use of the Second 
Order Blind Identification (SOBI) algorithm [29] based 
on Independent Component Analysis (ICA); (5) seg-
menting the continuous data into 4-second epochs with 
2-second padding on each side to avoid edge effects.

Following data preprocessing, we used a source model 
to reconstruct the activities of distinct brain locations, 
referred to as sources. Our source model consisted of 
a regular grid of 4560 points spaced 1 cm apart form-
ing a cube. 2459 of those were placed inside brain tis-
sue, as specified the Montreal Neurological Institute 
(MNI) template. For all further analyses, we considered 
only the 1210 sources belonging to 80 cortical regions 
according to the first version of the Automated Ana-
tomical Labelling (AAL) [30]; excluded regions were 
the amygdala, the caudate, the putamen, the pallidum 
and the thalamus.

We linearly transformed the structural information of 
the source model to the individual 3D image of the head 
obtained using the Fastrak Polhemus, adjusting the size 
of the inner skull surface. This allowed us to construct a 
single shell model, which we used to calculate the lead 
field matrix through a modified spherical solution [31].

MEG data were band-pass filtered between 2 and 
45 Hz using a 450th-order finite input response (FIR) fil-
ter designed with a Hann window. To avoid phase distor-
tion, a two-pass filtering approach was used. In addition, 
to mitigate edge effects, 2000 samples of real data pad-
ding were added to each side of the signal.

Finally, the activity of each participant on each source 
was reconstructed using a Linearly-Constrained-Min-
imum-Variance (LCMV) beamformer [32]. This is a 
widely used technique that spatially filters the MEG data 
to identify the activity of specific brain sources, while 
reducing interference from other sources.

Graph construction
A graph is a mathematical representation of a network 
of elements, called nodes, that are connected by links, 
known as edges. It is typically expressed as an ordered 
pair, G = (V, E) , where V is a set of nonempty nodes and 
E is a set of edges, each denoting a connection between 
two nodes. Additionally, edges can have values assigned 
to them, known as weights, which represent the distance 
between the nodes an edge connects.

In the context of brain networks, nodes correspond to 
brain regions, and edges correspond to some sort of con-
nection between them. In this study, nodes correspond 
to cortical sources from the AAL in five frequency bands 
independently, and edges correspond to the functional 
connectivity values between them. Consequently, we 
ended up using graphs containing 6050 nodes (1210 cor-
tical sources across five frequency bands) and weighted, 
undirected edges. Despite the added computational com-
plexity, we chose to use sources instead of brain regions 
and to keep the weights instead of binarizing the graphs 
to avoid the significant loss of information that these 
would entail.

We calculated functional connectivity between all 
nodes using corrected amplitude envelope correlation 
(AEC) (Fig.  1). AEC has been frequently used to meas-
ure synchrony, both within a single frequency band and 
across different bands [33–35], and its corrected version 
accounts for potential biases in the correlation meas-
ure. Previous studies have shown that corrected AEC 
has higher reproducibility and reliability than phase- or 
coherence-based metrics in MEG [36, 37].

Functional connectivity calculation involved four steps: 
(1) dividing each source signal into five frequency bands 
(delta: 2–4  Hz, theta: 4–8  Hz, alpha: 8–12  Hz, beta: 
12–30  Hz, and gamma: 30–45  Hz), (2) orthogonaliz-
ing each source time series to eliminate source leakage, 
(3) calculating the envelopes of each source activity in 
each frequency band using the Hilbert transformation 
[38], and (4) quantifying functional connectivity as the 
Pearson correlation coefficient between envelopes [39]. 
The absolute values of the coefficients were used as the 
weights of the edges in the graphs. We refrained from 
setting a cutoff value for these weights to prevent intro-
ducing biases in graph structure that arise from selecting 
a specific threshold.

As a result, the brain activity for each participant was 
represented as a single cross-frequency graph, in which 
each node was connected to every other node across all 
frequency bands. This approach allows us to consider 
both intra- and inter-band edges, as opposed to the more 
typically employed frequency-specific approaches that 
ignore inter-band interactions (Fig. 1B, lower part).
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Centrality calculation
We used three graph measures as centrality indicators: 
node strength, eigenvector centrality, and betweenness 
centrality. All these measures were calculated for each 
node of each subject using the NetworkX library (version 
2.6.3) and the SciPy library (version 1.7.1) in Python (ver-
sion 3.10.4).

The strength of a node quantifies the node’s direct con-
nections to other nodes in the graph. It is calculated as 
the sum of the weights of the links incident to node i:

where wij is the weight of the link between nodes i and 
j.

The eigenvector centrality of a node estimates the rel-
evance of the nodes to which it is directly connected. It is 
calculated from the following equation:

where M is the adjacency matrix, � the eigenvalues and 
v the eigenvectors. The element i of the eigenvector v 

si = j �= iwij,

Mv = � v,

that is associated with the largest eigenvalue � 1 holds the 
value for the eigenvector centrality of node i.

Finally, the betweenness centrality of a node measures 
the extent to which the node lies on the shortest paths 
between other nodes. The shortest path between two 
nodes is the path with the minimum sum of weights. 
The betweenness centrality of a node i is calculated as 
the sum of the fraction of the number of shortest paths 
between all node pairs that pass through node i:

where V is the set of nodes, σ (j, k) is the number of 
shortest paths, and σ (j, k|i) is the number of those paths 
passing through some node i other than j, k . As between-
ness centrality takes link weights as a distance measure, 
we used the inverse of the weights (which, in our case, 
indicate functional proximity).

To reduce computation time, betweenness centrality 
was estimated using the algorithm developed by Brandes 
and Pich [40]. This algorithm allows for the efficient 

Bi =
∑

j, k∈ V
σ (j, k|i)

σ (j, k)
,

Fig. 1 Schema of cross-frequency graphs. For simplicity, we display only three brain sources (X, Y, Z) and three frequency bands (Band 1, Band 
2, Band 3), although in the study 1210 brain sources and five frequency bands were used. (A): we calculated the MEG signal of each source, 
which was then divided by frequency; the signals were then orthogonalized, and the envelopes calculated. The absolute value of the Pearson 
correlation between envelopes was used as weight for the graph edges. (B): the upper panels show two examples of the correlation calculation: 
one for inter-band connections and one for intra-band connections; the lower panels display the resulting graph (left) and outline how each node 
has intra-band connections (solid-colored lines) and inter-band connections (dotted-black lines), accounting for the interplays between bands 
(right). Although they are represented differently in the figure, both types of edges were treated equally in the centrality metrics’ calculations
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estimation of betweenness centrality by considering only 
a specified number of random nodes ( k ). In this study, 
the value of k was set to 250, which provided stable 
estimates.

This resulted in three vectors per subject, each with a 
length of 6050 (composed of five blocks, each contain-
ing 1210 values that correspond to the sources in each 
frequency band). To obtain a comprehensive measure of 
centrality, we combined the three metrics into one, here-
after referred to as centrality score. To account for the 
different numeric ranges of the metrics, we first z-scored 
each of the three vectors independently and then aver-
aged them to obtain a fourth vector of the same length 
for each subject, the centrality score.

In addition to calculating the centrality score at the fre-
quency band level, we also calculated its band average. 
To do so, we divided the centrality score vector into its 
five blocks, each corresponding to a frequency. We then 
z-scored each block independently, to ensure equal con-
tributions from all bands, and averaged the five scaled 
blocks, obtaining a single vector of length 1210.

Statistical analysis of centrality metrics
The four centrality measures were compared between the 
control and aMCI groups using Matlab (version 2021b). 
A three-way factorial ANOVA was conducted, with age 
and years of education as covariables and an alpha level 
of 0.05. The ANOVA analysis was non-parameterized 
by using permutations; each F-value obtained for the 
real data was compared with the F-values obtained for 
10.000 randomizations of the original group assignment, 
which enabled us to calculate the permutation-corrected 
p-value for each F-value.

To account for the large number of comparisons con-
ducted, we employed the two-sided cluster-based per-
mutation test (CBPT), using a Montecarlo approach [41]. 
Significant sources were grouped in clusters according 
to their spatial proximity (alpha level of 0.05). Cluster-
level statistics were calculated by summing the F-values 
of all sources within each cluster and comparing that 
F-value to the null distribution of cluster size, which was 
obtained through 10.000 randomizations of the group 
assignments. Only significant clusters after multiple com-
parisons correction are reported in the results section.

Contribution of intra‑ and inter‑frequency couplings
To investigate the role of cross-frequency couplings in 
our analysis, we studied the isolated contribution of 
each pair of frequency bands, both intra- and inter-band, 
considering only the sources that were significant in 
between-group comparisons for each centrality metric.

As a starting point, we used each participant’s origi-
nal graph, with 6050 nodes (1210 sources x 5 frequency 

bands). We extracted subgraphs for each type of inter-
action: intra-band interactions (e.g., delta-delta, theta-
theta) and isolated inter-band interactions (e.g., 
delta-theta, delta-alpha). These subgraphs represent the 
relationships either between a single band or between 
different pairs of bands.

Then, we calculated the three centrality metrics 
(strength, eigenvector centrality, and betweenness cen-
trality) for each subgraph, considering only the edges that 
involve at least one node identified as significant for each 
centrality metric. For instance, to evaluate the specific 
influence of the delta-alpha interactions on the signifi-
cant delta cluster in eigenvector centrality, we focused on 
the delta-alpha subgraph and excluded links not involv-
ing nodes from the delta significant cluster.

After computing the centrality metrics for all sub-
graphs across subjects, we calculated the centrality score 
as described in the main text. Then, we averaged the cal-
culated values for significant sources within each central-
ity score cluster. This resulted in a mean centrality score 
for each band’s significant cluster across all interactions, 
yielding 25 values per subject. Finally, we performed an 
ANOVA for each interaction (25 in total) with age and 
years of education as covariates.

We then used stepwise logistic regression, which is a 
method of model selection that chooses the most impor-
tant predictor variables by adding or removing predic-
tors based on their statistical significance. We designed 
a stepwise logistic regression model for each frequency 
band, trying to predict the group (aMCI or control) using 
the mean centrality values extracted from the isolated 
interactions between two specific bands.

Results
In this study, we compared strength, eigenvector central-
ity, and betweenness centrality in each brain source and 
frequency band between aMCI and control participants 
(Fig.  2). It is important to bear in mind that our analy-
ses incorporated cross-frequency interplays to reflect the 
interactions between oscillatory activity in each source 
within a given band and all other sources across all bands.

Strength
Our results indicate that node strength decreased in the 
aMCI group in various frequency ranges, particularly 
in posterior and temporal brain regions (Fig.  2A). In 
the alpha band, areas with a lowered strength included 
regions posterior to the precentral gyrus (lateral and 
medial aspects of the parietal and occipital lobes) and the 
temporal lobe ( Fsum = 3291, pcluster = 0.0276 ). The beta 
band cluster of decreased strength comprised these same 
areas and included motor regions and the anterior cin-
gulate cortex bilaterally ( Fsum = 8112, pcluster = 0.0054 ). 
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Fig. 2 Centrality disruption in MCI assessed with strength (A), eigenvector centrality (B), and betweenness centrality (C). The colored regions 
indicate significative differences between the aMCI and control groups, and the color scale represents the F-value of each source: positive values 
(greenish colors) denote significant sources with increased centrality in aMCIs, while negative values (blueish colors) represent significant sources 
with decreased centrality in aMCIs. For each measure, only bands with at least one significant cluster are shown. The centrality metric of each band 
includes the links of nodes in that band with the nodes in that same and other bands
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Finally, the gamma band showed a decrease in strength 
in a smaller portion of the cortex, including the pos-
terior, occipital and posterior part of the frontal lobe 
( Fsum = 3856, pcluster = 0.0158 ). Notably, all posterior 
areas of the default mode network were affected, includ-
ing the hippocampus and parahippocampus bilaterally in 
alpha and beta, and the precuneus and cingulate gyrus 
bilaterally in all three bands.

Eigenvector centrality
Eigenvector centrality showed a combined pattern of 
centrality disruption in the aMCI group. It increased 
mainly in the anterior regions in the delta, theta, and 
alpha bands and decreased in the temporal and pos-
terior areas in the beta and gamma bands (Fig.  2B). In 
the delta band, the centrality increase affected the fron-
tal and parietal lobes, as well as the left temporal lobe 
( Fsum = 5776, pcluster = 0.0032 ). We found a similar clus-
ter in the theta band, including the same regions except 
the temporal lobe ( Fsum = 5545, pcluster = 0.0009 ). 
In contrast, in the alpha band, we only found an 
increase in eigenvector centrality in the frontal lobe 
( Fsum = 1122, pcluster = 0.0064 ). Concerning decreases 
in eigenvector centrality, the beta band showed changes 
in the parietal lobe (extending more anteriorly over 
the lateral surface of the right hemisphere, includ-
ing the temporal lobe) and the occipital lobe bilaterally 
( Fsum = 4819, pcluster = 0.0020 ). Finally, the eigenvector 
centrality of gamma band showed alterations in a smaller 
cluster, affecting the precuneus and superior pari-
etal cortex bilaterally ( Fsum = 1235, pcluster = 0.0304 ). 
Once again, the areas of the default mode network were 
affected: eigenvector centrality increases occurred in the 
prefrontal and anterior cingulate cortices, while decreases 
affected the middle and posterior cingulate cortex, precu-
neus, parahippocampus and right hippocampus.

Betweenness centrality
Finally, betweenness centrality showed a similar dual 
pattern of increases and decreases in the aMCI group, 
although the clusters were remarkably smaller than in pre-
vious metrics. We found a betweenness increase affecting 
the prefrontal lobe in delta ( Fsum = 151, pcluster = 0.0102 ),  
theta ( Fsum = 594, pcluster = 0.0002 ), and alpha (two sig-
nificant clusters were found: F1sum = 265, p1cluster = 0.0006;

F2sum = 130, p2cluster = 0.0064 ), and a decrease over  
posterior areas of the brain (including the cingulate  
gyrus and the precuneus bilaterally) in beta ( Fsum = 208,

pcluster = 0.0002).

Centrality score
We integrated the results of the three classical measures 
into a single measure, the centrality score, ensuring an 

equal contribution of all bands and metrics. The results 
include changes in centrality for each band and for the 
band average (Fig. 3).

Analysis of individual bands revealed that the aMCI  
group exhibited an increase in centrality in the delta  
( Fsum = 1759, pcluster = 0.0346 ) and theta ( Fsum = 2118,

pcluster = 0.0126 ) bands over frontal areas, whereas we  
observed a decrease in centrality in posterior brain regions 
across the alpha ( Fsum = 815, pcluster = 0.0436 ), beta 
( Fsum = 5542, pcluster = 0.0004 ), and gamma (  Fsum = 2238, 
pcluster = 0.0092 ) bands. Specifically, centrality reductions 
affected the parietal lobe in all three bands, the temporal 
lobe in alpha and beta, and the occipital lobe in beta.

When considering the band average, we observed  
a combination of the previously observed dual pat-
tern of centrality disruption, with increased centrality  
affecting the frontal lobe ( Fsum = 797, pcluster = 0.0284 ) 
and decreased centrality affecting temporo-parietal 
areas ( Fsum = 1699, pcluster = 0.0090 ). Remarkably, all 
the areas of the default mode network were implicated in 
these results.

Figure  3 also shows the contribution to the significant 
clusters of each specific interaction between frequency 
bands. In delta, the interactions between bands that discrim-
inate significantly between the two groups are delta-alpha 
( F = 6.57, p = 0.0109 ), delta-beta ( F = 5.48, p = 0.0200 ), 
and delta-gamma ( F = 6.67, p = 0.0103 ); in theta, all inter-
actions are significant: theta-delta ( F = 10.43, p = 0.0014 ),  
theta-theta ( F = 12.13, p = 0.0006 ), theta-alpha ( F = 14.09, 
p = 0.0002 ), theta-beta ( F = 7.61, p = 0.0062 ), and theta-
gamma ( F = 10.01, p = 0.0017 ); in alpha, significant 
interactions include alpha-theta ( F = 4.16, p = 0.0424 ), 
alpha-alpha ( F = 15.46, p = 0.0001 ), alpha-beta ( F = 12.29, 
p = 0.0005 ), and alpha-gamma ( F = 7.28, p = 0.0074 ); 
similarly, beta significant interactions are beta-theta  
( F = 3.95, p = 0.0478 ), beta-alpha ( F = 11.50, p = 0.0008 ),  
beta-beta ( F = 21.01, p < 0.0001 ), and beta-gamma 
( F = 113.02, p = 0.0004 ); finally, all of gamma interac-
tions are significant: gamma-delta ( F = 8.33, p = 0.0042 ), 
gamma-theta ( F = 9.67, p = 0.0021 ), gamma-alpha  
(  F = 13.57, p = 0.0002  ) ,  gamma-beta ( F = 18.03, 
p < 0.0001 ), and gamma-gamma ( F = 14.89, p = 0.0001).

As a final test for the contribution of pairwise interac-
tions between bands to each cluster, we built a stepwise 
logistic regression model for each frequency band, using 
the mean centrality values of pairwise interactions as 
predictors and the group as criterion. All models turned 
out significant ( p < 0.005 ), and the included predictors 
were: for delta cluster, centrality from delta-beta inter-
actions; for theta, centrality from theta-delta and theta-
alpha; for alpha, centrality from alpha-beta; for beta, 
centrality from beta-alpha, beta-beta and beta-gamma; 
and for gamma, centrality from gamma-beta.
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Discussion
This study shows that changes in brain communication 
patterns in aMCI impact the overall structure of brain 
networks in two distinct ways: posterior areas reduce 
their relative importance by decreasing the synchrony 
between their own high-frequency oscillations and the 
activity of other regions in all frequency bands, whereas 
anterior regions increase their importance by synchro-
nizing their low-frequency oscillations with the activity 
of other regions in all frequencies. Notably, this is the first 
MEG study to examine network impairment in aMCI 
using a multilayer, source-based framework, and our 
findings demonstrate that the changes in functional con-
nectivity typically observed in aMCI entail a disruption 
in the global functional network structure. Furthermore, 
we have demonstrated that cross-frequency interactions 
contain relevant information in the analysis of centrality 
changes in aMCI.

Electrophysiological studies investigating informa-
tion flow in the brain typically use a simplified frame-
work, limiting communication analysis to brain regions 
oscillating within the same frequency bands [22]. How-
ever, previous literature has revealed robust interactions 
between brain regions with different oscillatory rhythms; 
for example, theta-gamma coupling plays a major role 
in both working memory [42] and long-term spatial 
memory [43]. In this sense, our work extends the current 
understanding of changes in information flow in the early 
stages of AD by emphasizing the impact of the observed 
alterations on both intra- and inter-band communication 
between sources.

Remarkably, and in contrast to most of the previous 
literature [22], we constructed source-based graphs that 
were completely connected and weighted. Despite the 
technical challenges associated with these large-scale 
graphs, this holistic approach allowed us to capture the 

Fig. 3 Centrality disruption in aMCI assessed with the centrality score. The color code is the same as in Fig. 2. For each of the five classical frequency 
bands, an additional graph is displayed, showing the isolated contribution of each par of frequency bands to the significant cluster of that band. The 
x-axis shows the interaction band, while the y-axis shows the F-value of an ANOVA that discriminates both groups (controls and aMCIs) with age 
and years of education as covariables



Page 10 of 14Taguas et al. Alzheimer’s Research & Therapy          (2024) 16:216 

intricate network structure without oversimplification. 
On these graphs, we assessed centrality changes in aMCI. 
In the context of brain networks, exploring a variety of 
centrality measures can provide deeper insights on inter-
regional interactions [44]; thus, to better understand how 
information flow changes in the quite complex patterns 
of brain communication, we created an integrative cen-
trality score. This centrality score combines three of the 
metrics most employed in isolation to address this matter 
[45], merging the complementary aspects of centrality in 
the results of our centrality score.

Our analyses comparing the centrality scores between 
aMCI and control participants reveal two distinct pat-
terns: a spatial pattern and a frequency pattern. The 
spatial pattern shows that posterior areas reduce their 
relative contribution to network communication in favor 
of anterior regions, that show increases in centrality. 
The frequency pattern shows that the aMCI group has 
decreased centrality through fast-frequency communi-
cation and increased centrality through slow-frequency 
communication.

The result for the band average cross-frequency cou-
pling in the global centrality score metric depicts the 
above-mentioned spatial pattern, with the aMCI group 
showing a centrality decrease over posterior regions and 
an increase in anterior areas. This underscores that cer-
tain brain regions’ centrality is significantly and consist-
ently compromised in the early course of the disease, 
regardless of the specific metric or frequency range. 
These findings align with existing observations on func-
tional connectivity disruptions in aMCI due to AD, that 
report hypoconnectivity in posterior areas and hyper-
connectivity in anterior regions [12, 13, 46, 47]. This 
posterior-to-anterior shift has been previously reported 
in the PASA model [48] and other studies [49]. Further-
more, the centrality changes we report affect all the main 
areas of the default mode network (including medial pre-
frontal cortex, cingulate cortex, precuneus, and angular 
gyrus), which is consistent with previous studies show-
ing that these brain regions are particularly vulnerable to 
AD pathology [50–52], and might be related to memory 
impairment [53]. Furthermore, the medial temporal lobe 
(MTL) system, also associated with memory disruption 
in AD and MCI in the literature [53, 54], is shown to be 
affected in our study. Another network in which func-
tional connectivity disturbances are typically found in 
AD, and which we have found to have centrality disrup-
tion, is the frontoparietal network: the dorsolateral, ante-
rior, and ventral lateral prefrontal cortices show centrality 
increases, while the posterior parietal cortex and inferior 
parietal lobule exhibit centrality decreases. However, our 
results broaden previous evidence suggesting that altera-
tions in functional connectivity translate into changes in 

the way information propagates through the brain, affect-
ing the overall relevance of extensive brain regions to 
network communication, as measured by centrality.

The decline in centrality in aMCI over posterior areas 
observed in our results is highly consistent with AD, 
which entails a disconnection condition [55]. The abnor-
mal expression of tau primarily contributes to this phe-
nomenon [12], as it affects the cytoskeleton of neurons 
and leads to synaptic loss [12, 55]. Other studies link 
hypometabolism with reduced functional connectivity 
[15], further supporting these findings.

While disconnection signs have been unanimously 
interpreted as a pathological sign by previous litera-
ture, the biological implications of the network central-
ity increase we observe in the aMCI group over anterior 
brain areas is subject to more debate. Traditionally, neu-
roscientists have suggested that functional connectivity 
increases may palliate some of the burden produced by 
decreased connectivity in posterior areas of the brain, 
acting as a compensatory mechanism [56]; one example 
is the PASA model [48], in which shift in brain activations 
is seen as an offsetting process. However, this increased 
activity entails the accumulation of residuals, which 
eventually can lead to more significant cognitive declines 
[57]. Recent research provides an alternative pathological 
explanation for this phenomenon [58]. This hypothesis 
proposes that Aβ plaques affect preferentially inhibitory 
neurons, which leads to an increase in excitability, which 
could result in functional connectivity upregulations. 
Several studies reinforce this idea by demonstrating that 
pyramidal neurons in contact with plaques lose GABAe-
rgic synapsis [59], that Aβ causes neuronal hyperactivity 
[60], and that Aβ colocalizes with hypersynchrony, but 
not with hyposynchrony [12].

According to this framework, the centrality increase 
would be interpreted as a pathological sign, contribut-
ing to the cascading network failure by increasing neural 
noise and leading to neuronal death through heightened 
excitotoxicity. Numerous studies support this theory by 
showing a widespread loss of functional connectivity 
among advanced AD patients, including frontal regions 
[61–63]. Furthermore, Damoiseaux et  al. (2012) per-
formed a longitudinal study in which they measured 
the functional connectivity of AD patients twice (two to 
four years apart) using fMRI: the first scan revealed con-
nectivity increases in anterior areas of the default mode 
network and connectivity decreases in posterior areas, 
while the second scan showed connectivity decreases in 
all areas. These findings reinforce hyperexcitability as a 
precursor to hypoexcitability. Nonetheless, we must state 
that we carried out correlation analyses, not shown in this 
article, which did not reveal any significant relationships 
between the connectivity increases in frontal regions and 
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cognitive performance for the aMCI group; for this rea-
son,  using our available data, we cannot support either 
the compensatory or the pathological hypothesis.

On the other side, the frequency pattern displays cen-
trality increases in low-frequency bands (delta and theta) 
and centrality decreases in high-frequency bands (alpha, 
beta, and gamma). It is important to note that the cen-
trality changes we have presented involve the interactions 
of nodes of one frequency band with each other and with 
nodes of other bands, as explained in the previous sec-
tions. These results suggest that certain brain regions 
(more concretely anterior areas) increase their relevance 
in the network by increasing the coupling of its own slow 
wave activity with other parts of the network, regardless 
of the latter´s frequency range. Nonetheless, our results 
are congruent with previous findings on functional con-
nectivity in aMCI and AD, that link increments in syn-
chrony mainly to delta and theta and decrements to alpha 
and beta activity [10–12, 14, 15]. In addition, some stud-
ies report hyperconnectivity in the alpha range over ante-
rior regions [13], whereas hypoconnectivity has rarely 
been associated with gamma [16].

Interpreting the specific meaning of the frequency 
pattern emerging from our results is challenging due 
to the limited understanding of the human resting state 
dynamics and the role different frequency bands play in 
AD. Previous studies have found an increase in power 
for the delta and theta bands, as well as a decrease for 
the alpha and beta bands [47, 64, 65]. This pattern may 
relate to a loss of synapses, which can impede commu-
nication between brain regions, as information can flow 
through fewer “pathways”. In this regard, Cabral et  al. 
[66] used a computational model to demonstrate how 
reductions in coupling strength can lead to increased 
slow-frequency activity. In line with this hypothesis, 
several studies have reported decreased activity of both 
theta [62] and even delta [63] during later stages of 
the disease progression. In this vein, our results could 
reflect an intermediate state in which some regions 
exhibit a diminished ability to contribute to network 
communication while oscillating in faster rhythms, 
whereas others show an increased relevance in slower 
frequencies, resembling the pattern of alterations sug-
gested by the mentioned studies.

When analyzing each individual metric, we observe 
that both the spatial and frequency patterns are appar-
ent. This was expected, as the three metrics represent 
centrality. Nevertheless, it is worth noting that the met-
rics reflect different aspects of a node’s significance: node 
strength measures the number and intensity of connec-
tions a node has, eigenvector centrality considers the rel-
evance of said connections, and betweenness centrality 

estimates the capacity of a node to connect other nodes 
in the network through shortest paths.

As a result of these nuances, each metric yields unique 
results. The results for node strength only show decreases 
in alpha, beta, and gamma bands. Remarkably, most of 
the brain is affected, even the posterior parts of the fron-
tal lobe. This might be due to the neuronal death that 
AD entails. Remarkably, no increases in strength were 
observed, meaning that none of the regions exhibit a sig-
nificant increase in the magnitude of its raw total con-
nection to the rest of the network.

The results for eigenvector and betweenness central-
ity show increases in delta, theta, and alpha, along-
side decreases in beta (both metrics) and gamma (only 
eigenvector centrality). These findings reinforce the loss 
of coordination in the posterior brain regions, but also 
highlight heightened centralization within the frontal 
cortex. This might be due to the disconnection occur-
ring among posterior areas, which appears responsible 
for shifting relative importance towards anterior brain 
regions—a phenomenon previously reported [64, 67].

Another noteworthy feature is the variable central-
ity changes displayed by the alpha band, depending on 
the metric. This finding might suggest a transitional fre-
quency role between faster and slower brain rhythms for 
the alpha band in the maintenance of the global com-
munication structure. While the role of the beta and 
theta activity is consistently altered towards decreased 
and increased centrality respectively, alpha band activity 
seems to display both patterns depending on the aspect 
of centrality we pay attention to.

Lastly, it is remarkable that betweenness central-
ity alterations in the aMCI group affect a smaller por-
tion of the network than changes in the other metrics. 
This is likely due to betweenness centrality being a more 
global measure that considers all other nodes in the net-
work—reflecting higher-scale aspects of centrality—
while strength and eigenvector centrality are more local, 
depending mainly on a node’s immediate neighbors. 
Thus, the smaller disruption in betweenness centrality 
may indicate that while local changes are pronounced, 
the overall information flow structure of the network is 
less affected. This observation underscores the impor-
tance of considering different centrality measures to 
gain a comprehensive understanding of global network 
dynamics.

Furthermore, future research exploring global graph 
metrics, such as small-worldness and modularity, could 
provide further insights in the broader impacts of the 
disease on network efficiency and modular organiza-
tion. Applying these metrics in the context of multilayer 
networks could reveal new aspects of brain connectivity 
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that are not captured by local centrality measures alone. 
It should be noted that, in this work, corrected AEC 
was selected to calculate functional connectivity. Previ-
ous studies have shown that different functional con-
nectivity measures reflect distinct neural mechanisms, 
at least to a certain degree [68]. Therefore, the election 
of an amplitude-based metric, instead of a phase- or 
amplitude-phase-based metric, must be considered when 
comparing our results with other works employing other 
connectivity metrics.

One last remarkable finding of this study is the impor-
tant contributions of cross-frequency couplings to the 
study of functional disruptions. Our results show that 
interactions between different frequency bands are 
highly discriminative between groups. We find a pattern 
where, while the faster bands (alpha, beta, and gamma) 
influence themselves and the slower bands, the slower 
bands seem to have less influence on themselves and 
others. Both alpha and beta, which are the frequency 
bands more strongly associated to AD—being posterior 
decreases in these bands the most common finding in 
MCI and AD research [69]—influence all other bands 
and themselves. Similarly, gamma band also influences 
all five frequency bands, which again is not surprising as 
recently many articles have stated its importance in AD 
[70]. On the other side, delta and theta bands have the 
lowest influence on the faster bands (alpha, beta, and 
gamma), and also in delta. An explanation for this could 
be the aforementioned phenomenon where, at a loss of 
synapses, there is a decrease in fast oscillations which 
in turn increases the activity in slow oscillations—i.e., 
a loss of alpha, beta and gamma activity due to the loss 
of direct communications between neurons would lead 
to an increase in the slower communications. Under 
this line of thought, while now we see that delta is the 
least influenced by other bands, we could expect it to 
be more affected in later stages of the disease. How-
ever, further work is required to test these hypotheses. 
Lastly, it is noteworthy that the theta and gamma bands 
are the ones influenced by all the other bands; in both it 
has been shown that their cross-frequency couplings are 
relevant in different cognitive processes [42, 43]. In any 
case, cross-frequency couplings should be considered in 
posterior studies in this matter, as they provide a valuable 
source of information.

Limitations
The main limitation of this study is the lack of biomark-
ers, leading to some uncertainty about the presence of 
AD in all subjects with aMCI. However, it is worth noting 
that all patients exhibited memory impairment, which 
is strongly linked to the subsequent development of AD 
in particular [71, 72]. However, future studies should 

include biomarker data to better characterize the rela-
tionship between centrality changes and disease progres-
sion in AD. Another limitation that must be considered 
is the lack of individual T1 data, reason why in this study 
we used a standard template. Finally, it must be noted 
that no empty room recording was performed to assess 
sensor noise, and instead recorded data underwent visual 
and automatic inspection to guarantee a good signal-to-
noise ratio; furthermore, we applied the MaxFilter tSSS 
to all recordings to minimize sensor noise.

Conclusions
Overall, our findings shed light on the complex changes 
that occur in brain networks in the early stages of AD. 
The results indicate a noteworthy shift in centrality dis-
tribution from posterior to anterior regions, indicating 
a decline in relative significance of the former and an 
increase in importance of the latter. These findings dem-
onstrate a remarkable level of consistency, with congru-
ent outcomes across all bands and metrics, suggesting 
that using a unified approach that considers the interac-
tions between different frequency bands can enhance our 
understanding of AD network dynamics in a more com-
prehensive manner. Furthermore, this study establishes 
a new approach to comprehensively study disruptions 
in cross-frequency functional networks not only for AD, 
but also for other neurological disorders studied through 
electrophysiology techniques.
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