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Abstract
Background  The potential of microglia as a target for Alzheimer’s disease (AD) treatment is promising, yet the 
clinical and pathological diversity within microglia, driven by genetic factors, poses a significant challenge. Subtyping 
AD is imperative to enable precise and effective treatment strategies. However, existing subtyping methods fail to 
comprehensively address the intricate complexities of AD pathogenesis, particularly concerning genetic risk factors. 
To address this gap, we have employed systems biology approaches for AD subtyping and identified potential 
therapeutic targets.

Methods  We constructed patient-specific microglial molecular regulatory network models by utilizing existing 
literature and single-cell RNA sequencing data. The combination of large-scale computer simulations and dynamic 
network analysis enabled us to subtype AD patients according to their distinct molecular regulatory mechanisms. For 
each identified subtype, we suggested optimal targets for effective AD treatment.

Results  To investigate heterogeneity in AD and identify potential therapeutic targets, we constructed a microglia 
molecular regulatory network model. The network model incorporated 20 known risk factors and crucial signaling 
pathways associated with microglial functionality, such as inflammation, anti-inflammation, phagocytosis, and 
autophagy. Probabilistic simulations with patient-specific genomic data and subsequent dynamics analysis revealed 
nine distinct AD subtypes characterized by core feedback mechanisms involving SPI1, CASS4, and MEF2C. Moreover, 
we identified PICALM, MEF2C, and LAT2 as common therapeutic targets among several subtypes. Furthermore, we 
clarified the reasons for the previous contradictory experimental results that suggested both the activation and 
inhibition of AKT or INPP5D could activate AD through dynamic analysis. This highlights the multifaceted nature of 
microglial network regulation.

Conclusions  These results offer a means to classify AD patients by their genetic risk factors, clarify inconsistent 
experimental findings, and advance the development of treatments tailored to individual genotypes for AD.
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Background
Alzheimer’s disease (AD) is complex and heterogeneous, 
exhibiting a wide spectrum of clinical phenotypes and 
degrees of pathology, resulting in variability in response 
to treatments [1–4]. Heterogeneity in AD poses a sig-
nificant challenge in developing effective therapies, as 
treatments that target specific molecular pathways are 
only effective in a subgroup of patients [5]. Precision 
medicine approaches, therefore, warrant attention to 
dealing with heterogeneity among AD patients, lead-
ing to the subtyping of AD patients [6–8]. However, the 
subtyping of AD patients has been focused on disease 
characteristics based on the amyloid hypothesis, which 
posits that the accumulation of amyloid beta plaques is 
the primary driver of AD pathology [9–12]. However, 
such an approach has limitations in explaining the incon-
sistencies between pathological features and clinical phe-
notypes observed in AD patients, which are thought to 
originate from the complex and nonlinear characteris-
tics of AD pathogenesis [13, 14]. Therefore, an improved 
patient subtyping method that utilizes the multifactorial 
causes and complex interactions of AD is required to 
overcome this situation.

Neuroinflammation and synapse loss are recognized 
as key elements in AD progression among its various 
features. In this respect, microglia, the primary immune 
cells of the brain, have gained particular interest as a 
potential target for drug development in AD [15–18]. 
Because microglia play a pivotal role in AD through their 
inflammatory and phagocytotic functions, understand-
ing the functions and mechanisms of microglia in AD 
progression is now considered a crucial task [19]. For 
this reason, recent studies have tried to target microglia 
processes, especially inflammatory processes, to attenu-
ate AD progression [20, 21]. However, while targeting 
microglial pathways has shown improvement in cellular 
and transgenic AD model organisms with specific muta-
tions, clinical trials have reported limited success [22, 
23]. The limited efficacy of such studies stems from their 
focus on a single pathway or individual molecules, which 
may be effective only in a subset of the heterogeneous AD 
population [24]. It is, therefore, necessary to understand 
the nonlinear and complex molecular interactions within 
microglia in order to subtype AD patients by pathogen-
esis mechanisms and identify potential drug targets.

Other than the complexity of molecular interactions 
themselves, microglial heterogeneity can also be a large 
obstacle to classifying AD patients. The heterogeneity 
of microglia between patients is known to play a cru-
cial role in driving diverse microglial responses in the 
progression of AD [25]. The largest source of microg-
lial variability originates from genetic variability and is 
known to be correlated with amyloid response [26, 27]. 
Existing methods for assessing genetic variation employ 

linear approaches, neglecting the nonlinear characteris-
tics of gene expression [13]. Consequently, while these 
techniques may predict the global trend in relationships 
between severity and each AD characteristic, they fail 
to uncover detailed nonlinear mechanisms underlying 
pathogenesis [28, 29]. Therefore, given the large influence 
of genetics on microglial variation and the complexity of 
gene expression, the integration of genetic risk factors 
and their nonlinear interactions is essential for subtyping 
AD patients [30].

In recent years, systems biology approaches have 
emerged as powerful tools for studying complex diseases, 
such as cancer and aging [31–33]. These approaches 
utilize network-based mathematical models and quan-
titative simulations to analyze the molecular dynamics 
underlying disease processes. Boolean models, which 
represent molecular interactions as logical operations 
with binary variables, are known to appropriately capture 
and describe biological phenomena [34, 35]. Such Bool-
ean models have been proven to be effective in analyzing 
large-scale networks and explaining cellular dynamics to 
unveil hidden mechanisms [36–38]. The Boolean model-
ing framework can integrate genomic alterations, signal-
ing pathways, and molecular interactions to predict how 
changes at the molecular level affect cellular phenotypes 
[39, 40]. Therefore, by employing the Boolean modeling 
framework, it is possible to subtype AD patients based 
on their genomic alterations and understand the complex 
molecular interactions that drive AD heterogeneity.

In this study, we constructed a comprehensive molec-
ular regulatory network model of microglia using the 
Boolean modeling framework, including information 
on AD risk factors from scattered molecular interaction 
data and single-cell RNA sequencing data of microglia. 
The network model incorporates known major biologi-
cal processes, including the inflammatory response, cyto-
skeleton organization, and lipid homeostasis, to explain 
AD-related phenotypes such as amyloid plaque forma-
tion, neuroinflammation, and phagocytosis. We inte-
grated patient-specific mutational backgrounds into the 
microglia network models and simulated them until they 
reached stable states. Subsequently, we applied cluster-
ing algorithms to the simulated results, which revealed 
subtypes of AD patients based on their combination 
of amyloid plaque formation, inflammation, and lipid 
homeostasis pathways. Network analysis allowed us to 
identify feedback mechanisms involving SPI1, CASS4, 
and MEF2C, which determined AD subtypes. Further-
more, network dynamics analysis suggested PICALM, 
MEF2C, and LAT2 as common therapeutic targets to 
restore a normal phenotype in several subtypes and pro-
vided explanations for previous contradictory experi-
mental results, which suggested both activation and 
inhibition of AKT or INPP5D could ameliorate AD. 
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(Fig. 1 explains the overall methodology presented in the 
paper)

In summary, we created a mathematical microglial 
network model to include major microglial functions. 
Subtyping AD patients using the constructed microglia 
network model allows us to uncover novel insights into 
the disease’s underlying heterogeneity and identify poten-
tial drug targets for personalized treatment approaches 
that have the potential to aid clinical decision-making.

Methods
Single-cell RNA-seq data preprocessing
We obtained public single-cell RNA expression data from 
the Synapse software platform from Sage Bionetworks 
under the project syn21438358 [41]. The dataset encom-
passes thirteen subjects, including those diagnosed with 
mild cognitive impairment or AD between Braak stages 
one and three.

We employed Cellranger version 5.0.2 by 10X Genom-
ics to process the downloaded raw sequencing data, uti-
lizing the human reference genome GRCh38 [42]. The 
output consisted of a cell-by-gene matrix, with each 
element (i, j) representing the unique molecular indices 
detected in cell i for gene j.

Subsequent analyses were conducted using Scanpy ver-
sion 1.6.0 within the Python environment [43]. To ensure 
data quality, we initiated basic filtering steps. Genes 
detected in fewer than three cells and cells expressing 
fewer than 200 genes were excluded. Additionally, we 
filtered out potential cell doublets and apoptotic cells 
by removing cells with over 2,000 expressed genes or 
more than 10% mitochondrial reads. These filtering steps 
resulted in a final dataset comprising 13,324 cells, down 
from the initial 14,339 cells.

In order to infer core transcription factors and their 
interactions, the obtained filtered cells × genes matrices 
were concatenated into a single matrix and were used as 
the input for the pySCENIC package version 0.11.0 [44]. 
Given the stochastic nature of pySCENIC, we performed 
ten runs and retained transcription factor-target gene 
(TF-TG) pairs that were directly annotated and appeared 
at least eight times in these ten runs. The obtained 
TF-TG pairs, along with the cells by genes matrices, were 
utilized to quantify regulon activity using the AUCell 
module within the pySCENIC pipeline. Each regulon was 
binarized using a Gaussian mixture model to facilitate 
downstream analysis.

Network construction
We conducted an extensive survey of experimental and 
analytical data to identify genetic risk factors associated 
with AD in microglial cells. Our study focused on the 
phagocytotic/endocytotic and microglial activation path-
ways, which are recognized as core functions of microglia 

in AD [20]. We utilized core transcription factors and 
established connections using single-cell RNA sequenc-
ing data to establish a comprehensive network linking the 
identified genetic risk factors.

The initial step involved creating a gene regulatory net-
work that incorporated the risk factors and transcription 
factors within one degree of separation from the identi-
fied risk factors. To ensure robust network construction, 
we removed self-loops to prevent the logic from being 
influenced by the initial state. Transcription factors that 
formed a weakly connected component were retained, 
while those transcription factors not associated with 
genetic risk factors and with an in-degree of zero were 
excluded. For each regulon, if the in-degree exceeded 12, 
we selected the top 12 links based on the highest average 
importance value obtained from the GRNBoost2 module 
of the pySCENIC pipeline. This selection was made due 
to computational constraints during the logic inference 
process. The remaining connections served as the foun-
dational structure for our regulatory network.

Using the network structure and binarized regulon 
activities, we established Boolean logic for each tran-
scription factor. Initially, the Boolean logic for the gene 
regulatory network was determined using the Quine-
McCluskey algorithm, assuming that each cell was in a 
steady state. These inferred logics were then adjusted 
to create monotonic Boolean functions that optimized 
accuracy. In instances where the logic for a specific regu-
lon resulted in either TRUE or FALSE values and the reg-
ulon was not a risk factor, the corresponding node was 
removed. Additionally, links absent in the resulting logic 
were removed, and isolated transcription factors were 
excluded from the final network.

Subsequently, we conducted extensive surveys to 
gather regulatory information regarding genes and pro-
teins associated with the nodes in the gene regulatory 
network and the risk factors. Proteins forming complexes 
to activate downstream targets were connected using 
“AND” logic gates, while logics for risk factors obtained 
from different experiments or contexts was fit with “OR” 
logic gates. The validity of our network model was con-
firmed by ensuring that it accurately replicated patholog-
ical input-output relationships of microglia.

Obtaining risk alleles
To identify the risk alleles associated with AD pathogene-
sis within the constructed microglial network, we utilized 
the NHGRI-EBI-GWAS catalog [45]. A keyword search 
for ‘Alzheimer’ was employed to filter traits linked to the 
risk genes incorporated in our network. The variants 
within these genes were further categorized based on 
their statistical significance, as indicated by p-values. Our 
analysis concentrated on the top-ranking variants, and 
from the top three variants for each gene, we selected 
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Fig. 1  Overall schematic of the methodology. The overall process of a microglia network-based patient classification. A microglia network including 
known genetic risk factors is constructed using single-cell RNA sequencing data along with literature surveys. The constructed microglia network, along 
with a perturbation probability obtained from SNP data, is utilized to create a subject-specific network model. Using probabilistic Boolean simulations, 
node activity analysis is performed for subject classification, and subtype-specific potential therapeutic targets are obtained using network simulations
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the variant with the highest risk allele frequency. This 
approach ensured that the chosen variants held strong 
potential for impacting AD risk.

To determine the number of risk alleles for each sub-
ject, we obtained whole-genome sequencing data from 
the Religious Orders Study and Rush Memory and Aging 
Project (ROSMAP), and the Mount Sinai Brain Bank 
(MSBB) projects. In order to obtain the effect of how 
risk allele affects gene expression, we examined whether 
these alleles led to increased or decreased gene expres-
sion. If no data was present, we identified whether the 
gene expression was increased or decreased in AD 
patients compared to their control counterparts. If a gene 
expression for a provided risk allele was increased in AD 
patients, we assumed increased gene expression would 
lead to increased AD risk.

Probabilistic boolean simulations
To incorporate the impact of risk alleles and their quan-
tity within the network, we introduced a probabilistic 
Boolean framework capable of accommodating both 
gene expression upregulation and downregulation. For 
risk variants associated with decreased gene expression, 
we calculated a probability by multiplying the count of 
risk alleles by a predefined value (0.05). We employed 
this probability to switch the node state to FALSE. 
Conversely, for risk variants linked to increased gene 
expression, we computed a probability using the same 
multiplication approach and set the node to an ON state 
with the derived probability. Nodes APOE and CLU were 
set to a TRUE logic unless inhibited by the risk allele 
count, as we assumed such genes were considered exter-
nal factors. In cases not falling into these categories, we 
updated the gene’s state according to the provided Bool-
ean logic synchronously.

Our simulations were initiated by generating 1,000,000 
random initial states, aiming to capture the diverse 
microglial states within a single patient. Subsequently, we 
simulated the network dynamics over 500 discrete time 
steps, with our analysis primarily focusing on the average 
node expression levels during the final time steps (401 to 
500) to reveal stable states and patterns within the net-
work. This probabilistic Boolean framework enabled us 
to comprehensively consider the intricate interplay of 
risk alleles and their consequent effects on gene expres-
sion, providing insights into the network’s behavior 
under diverse conditions.

Subject classification
Utilizing the average node expression data obtained from 
our probabilistic Boolean simulations, we employed Uni-
form Manifold Approximation and Projection (UMAP) 
to visualize the high-dimensional gene expression space. 
Subsequently, we applied Leiden clustering to partition 

subjects into distinct clusters based on their node expres-
sion profiles.

To unravel the node expression underpinnings of the 
obtained clustering, we employed the scikit-learn deci-
sion tree classifier to identify up to four risk variants that 
were pivotal in determining cluster assignments. The 
decision tree classifier was used using the assigned clus-
ter with the Gini impurity as the splitting criterion and 
with a max depth of four. Such resulted in a classification 
accuracy of 86.9%. The three most pivotal genes in clas-
sification were selected.

The risk variants identified through the decision tree 
classifier were key components in constructing the 
expanded Boolean network. The expanded network 
aimed to elucidate regulatory relationships among risk 
genes and their connections that defined the clusters. 
During this process, inputs not produced by microglia 
cells, such as CX3CL1 or GF, were assumed to be fixed 
to a TRUE value. Expanded network analysis was used to 
explore dynamic behaviors and feedback loops involved 
in risk genes in AD-associated clusters. Using avail-
able clinical data, including cognitive diagnosis, Braak 
stage, CERAD score data, and APOE4 allele count, sta-
tistical analysis using analysis of variance was performed 
between clusters.

Identifying reversion targets for each subtype
In order to elucidate interventions that could restore the 
AD-associated phenotype to a non-AD state, we utilized 
a computational model for each subtype. Each subtype 
used 1,000,000 random initial states to assess the aver-
age expression of phenotype nodes, including phagocy-
tosis, autophagy, pro-inflammatory cytokines (TNFα, 
IL1), anti-inflammatory cytokines (IL4, TGFβ), and amy-
loid beta tangle formation. For each cluster, we deter-
mined the most frequent allele count for each variant in 
both AD and non-AD subjects. The “nominal non-AD 
state” was defined as a state where no genetic perturba-
tions were present, while an “AD state” for each cluster 
was characterized by the differences in the most frequent 
allele count.

To evaluate potential reversion targets, we employed 
deterministic Boolean simulations utilizing the Boolnet 
package in R [46]. We calculated an AD score to quantify 
the effectiveness of each control target. The AD score was 
defined as the sum of the absolute differences between 
the nominal node expression and the average node 
expression post-perturbations, divided by the sum of the 
absolute differences between the AD node expression 
and the nominal node expression. An AD score close to 
zero indicates that the control target effectively reversed 
the phenotype node expression to that of a non-AD state, 
suggesting a promising reversion candidate. In contrast, 
an AD score close to one signified that the control target 
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was ineffective in restoring the phenotype to a non-AD 
state, reflecting a limited therapeutic potential. While an 
AD score higher than one may suggest an unknown third 
state, such a state deviates significantly from the desired 
nominal state and is thus irrelevant in the context of 
reversion.

We systematically assessed potential control targets 
by fixing nodes to TRUE or FALSE values and evaluated 
single and double targets. The targets with the lowest AD 
scores were identified as the most promising reversion 
candidates for each AD subtype and represent possible 
key interventions that have the potential to reverse the 
AD-associated phenotype towards a non-AD state.

Results
Construction of a microglia molecular regulatory network
We sought to construct a comprehensive model of 
molecular interactions within microglia to elucidate the 
intricate processes contributing to the diverse patho-
logical traits observed in AD. To capture the essential 
functions of microglia implicated in AD pathogenesis, 
we specifically focused on the phagocytotic, inflamma-
tory, and anti-inflammatory pathways known to be core 
functions of microglia. In order to systematically analyze 
the crosstalk between the multiple pathways, we recon-
structed a Boolean model for a molecular network of 
microglia based on published literature and TF-TG rela-
tionships based on single-cell RNA sequencing data (See 
Supplementary Information 1 for comprehensive infor-
mation about the nodes, links, and Boolean logical rules 
governing the node states.). We inferred and selected 
key transcriptional factors, including BHLHE41, CHD2, 
IKZF1, SF1, XBP1, and YY1, for inclusion in the network 
(Supplementary Information 2). Additionally, we incor-
porated known AD risk factors into the microglial net-
work to explore their effects on microglial pathways.

The constructed microglial network comprises 63 
nodes and 214 links, each node labeled by its corre-
sponding gene name where applicable (Fig.  2). Nine 
input nodes (amyloid beta, growth factors, APOE, TGFβ, 
TNFα, CLU, CX3CL1, and interleukins 1,6 and 4,10) rep-
resent various stimuli, activating different network model 
pathways. Additionally, seven output nodes (TNFα, 
TGFβ, interleukins 1/6, 4/10, autophagy, phagocytosis, 
and amyloid beta plaques) represent the phenotypes and 
cytokines generated by the network model.

To validate the inferred network links, we first checked 
the correlations between the source and target genes 
of each link in the microglia network using the original 
dataset. These correlations were much more significant 
than those between random gene pairs (Supplementary 
Information 3 A, Fig. S1, S2). We then checked whether 
the links in the microglia network were also inferred from 
other independent datasets. For this, we constructed two 

additional networks using single-cell RNA sequencing 
data: one from the Human Brain Cell Atlas and another 
from previously published literature which presents sin-
gle-nucleus RNA sequencing data from iPSC-derived 
microglia-like cells, using the same methods as the origi-
nal microglia network [14, 47]. When we checked the 
overlap of the links in these networks with the microglia 
network, we found that almost all the links in the microg-
lia network were present in the newly constructed net-
works. These results indicate that the microglia network 
is robust and reliable (Supplementary Information 3B, 
Table S1).

To validate the accuracy of our constructed network, 
we conducted simulations by updating random initial 
states using Boolean logical rules using an unperturbed 
network state to emulate normal aging conditions. We 
compared this state to a network configuration that sim-
ulates AD by manipulating amyloid beta levels. By using 
known experimental results, perturbation simulations 
on nodes were performed, and changes in the model and 
experimental results were compared to ensure the appro-
priateness and fidelity of our network model (Supple-
mentary Information 3B, Table S2).

Effects of multiple risk factors in probabilistic boolean 
simulations
Standard deterministic Boolean networks use fixed Bool-
ean functions to determine the next state of each node, in 
contrast to probabilistic Boolean networks, which incor-
porate randomness by assigning probabilities to transi-
tions between states. Deterministic Boolean networks 
are limited in their use of considering risk alleles due to 
the fact that the count of risk alleles for each risk factor 
ranges from zero to two, which cannot be implemented 
in deterministic Boolean models. Furthermore, due to 
their deterministic properties in deterministic Boolean 
models, combinations of risk factors are abrogated. To 
address this challenge, we devised three illustrative toy 
models, each implemented with both deterministic and 
probabilistic Boolean models.

The first toy model illustrated the combinatorial effect 
of two risk genes on a downstream node (c), where the 
logic gate “OR” determined the node’s state based on 
the inputs from upstream nodes (a) and (b). In the sce-
nario where a risk factor upregulated one of the upstream 
nodes, the deterministic network struggled to discrimi-
nate the presence of an additional risk factor. However, 
the probabilistic framework demonstrated its ability 
to discern another risk factor’s presence by altering the 
output node’s average node activity (Fig.  3A). The sec-
ond toy model showed the influence of two risk genes 
on a downstream node (c) but employed the logic gate 
“AND” for node determination. Here, the determinis-
tic network faced difficulty distinguishing the number 
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of risk factors when a downregulating risk factor was 
introduced into the system. In contrast, the probabilistic 
Boolean network exhibited greater flexibility in account-
ing for the impact of risk alleles, even in the presence of 
downregulation (Fig. 3B). The third toy model introduced 
a cascading three-node network, where the signal from 
an upstream node (a) propagated to nodes (b) and (c). In 
this setup, the deterministic Boolean network overlooked 

the effect of the upper-risk allele, leading to both net-
works producing identical outcomes (Fig. 3C).

In a scenario where a feedback loop is present between 
two nodes (a) and (b), each with a downregulating risk 
factor, and an upregulating risk factor, deterministic 
simulations fix the average node expression levels to zero 
or a value of one (Fig. 3D). In deterministic simulations, 
node (c) would be in an “OFF” state and would lead to 
limited signal transduction, which would be unrealistic 

Fig. 2  Microglia network model with risk factors. The constructed microglia network model was plotted using PowerPoint software. The network con-
tains nine input nodes and eight output nodes. The color of the node indicates the pathway of the corresponding node. The input node is indicated with 
a white square, while the output node is represented by a hexagon. The color or shape of the arrow indicates the direction of the interaction. The final 
network contains 63 nodes and 214 links. The risk factors included in the network are represented in bold
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due to risk alleles rarely having deleterious effects on the 
corresponding risk genes.

These findings highlighted the limitations of deter-
ministic Boolean simulations, as they fell short in rep-
resenting the complex interplay of risk alleles in AD. In 
contrast, the probabilistic Boolean network emerged as 
a more promising approach, capable of considering both 
the location of risk genes and the count of risk alleles, 
thus offering a more accurate portrayal of the intricate 
relationships between risk factors in AD. This distinction 
is crucial, especially considering that the number risk 
alleles is known to elevate the risk of AD, and that risk 
alleles rarely induce complete inhibition or activation of 
its corresponding risk genes. The toy model signifies the 

importance of adopting a probabilistic framework for a 
more comprehensive understanding of AD pathogenesis.

Risk variant identification and patient-specific probabilistic 
boolean network simulations
In our study, we obtained risk alleles for each subject and 
obtained perturbation probabilities. We then perturbed 
corresponding risk genes to create subject-specific net-
work models, as the construction and simulation of 
subject-specific network models allow the identifica-
tion of differences in network dynamics. These networks 
were then subjected to probabilistic Boolean simula-
tions to identify the specific combinations of risk fac-
tors influencing the cytokine profiles and phenotypes of 
microglia. Our investigation encompassed a total of 20 

Fig. 3  Probabilistic Boolean networks are able to discriminate the types of risk factors. Deterministic Boolean simulations produce the same results, 
regardless of a second Boolean activating risk allele (above). Probabilistic Boolean simulations provide distinct results and distinguish the presence of the 
second risk factor. (A) An example of when a third node is tied with the “OR” logic. (B) An example of when the third node is tied with the “AND” logic. (C) 
Three cascading nodes with two risk alleles in the upstream nodes. (D) A toy network model and its deterministic/probabilistic simulation results. Each 
risk allele is assumed to activate or inhibit the corresponding node by 50%
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risk factors, well-established for their impact on AD risk 
(Table 1). Information regarding these factors, including 
risk allele location, frequency, odds ratio, risk allele iden-
tity, and reference allele, were sourced from the NHGRI-
EBI-GWAS catalog [45]. Among these factors, CLU and 
APOE are exogenous agents not naturally produced by 
microglia but were included as input nodes within the 
microglia network model, given their significant influ-
ence on AD risk.

Subsequently, we generated subject-specific networks 
with varying logic, incorporating data on the number of 
risk alleles obtained from VCF files originating from the 
ROSMAP and MSBB projects (Supplementary Informa-
tion 3 C) [74, 75]. We then incorporated an activation or 
inhibition ratio of 5% multiplied by the risk allele count 
for risk genes for the subject-specific networks. For 
example, if a risk gene has one risk allele, the activation 
or inhibition probability would be 5%, while if a risk gene 
has two risk alleles, the probability would be set to 10%. 
The selection of a 5% probability was guided by its abil-
ity to differentiate clusters without fixing average node 
activity to binary values of 0 or 1. APOE, owing to its sig-
nificant role in AD risk, was assigned a higher probabil-
ity of 15% for its regulatory effects during probabilistic 
network simulations. This approach, featuring upregu-
lation or downregulation ratios, offered greater preci-
sion, acknowledging that risk alleles often induce partial 
increases or decreases in the expression of risk genes.

After setting the activation or inhibition probabilities, 
risk genes were stochastically updated based on one of 

the two logics within our probabilistic Boolean modeling 
framework. In the case of inhibitory risk alleles, the prob-
ability of inhibition was set at 10% when two risk alleles 
were present. With this defined probability, the risk node 
had a 10% chance of being turned into a FALSE value in 
the subsequent update step. Otherwise, the risk node fol-
lowed the original logic of the node.

Leveraging probabilistic simulations allowed us not 
only to account for the count of risk alleles but also 
to simultaneously consider multiple risk genes. We 
employed 1,000,000 initial states for 500 steps of syn-
chronous updates, with the average node expression 
at time steps 401 to 500 selected as a suitable measure, 
signifying sufficient convergence of network expression 
levels (Supplementary Information 3D, Fig. S3). Such 
simulations enabled the identification of combinations of 
risk factors influencing microglial phenotypes and cyto-
kine production.

Classification of subjects based on subject-specific 
network dynamics
The classification of subjects based on network dynam-
ics hinges on genetic alterations, constituting the most 
significant source of heterogeneity within microglia, 
consequently impacting their transcriptional signatures. 
Hence, for precision medicine, it becomes imperative 
to perform subject classification that incorporates the 
genetic backgrounds of individuals, which is possible 
using network simulations (Fig. S4).

Table 1  Risk genes included in the network and information used risk variants
Gene SNP p-value Odds ratio

(beta)
Risk allele Risk allele frequency Reference Activation/

Inhibition
Reference for
Activation/
Inhibition

ABCA7 rs12151021 2E-37 1.1 A 0.336 [48] Inhibition [54]
ABI3 rs616338 3E-14 1.32 T 0.012 [48] Inhibition [55]
APOE rs429358 2E-30 5.24 C 0.210 [49] Inhibition [56]
BIN1 rs6733839 6E-118 1.17 T 0.389 [48] Activation [57]
CASS4 rs7274581 3E-8 1.36 T 0.917 [50] Activation [58]
CD2AP rs7767350 8E-22 1.08 T 0.271 [48] Activation [59]
CD33 rs3865444 2E-9 1.1 C 0.7 [51] Inhibition [60]
CLU rs9331896 3E-25 1.16 T 0.621 [50] Inhibition [61]
HLA_DR rs9271192 3E-12 1.11 C 0.276 [50] Activation [62]
INPP5D rs10933431 4E-18 0.93 G 0.234 [48] Activation [63]
MEF2C rs190982 2E-8 1.08 A 0.592 [50] Inhibition [64]
MS4A rs1582763 4E-42 0.91 A 0.371 [48] Activation [65]
PICALM rs561655 7E-11 1.15 A 0.66 [51] Activation [66]
PILRA rs1859788 2E-15 -7.93z A 0.31 [52] Inhibition [67]
PLCG rs12446759 1E-13 0.95 G 0.43 [48] Activation [68]
PTK2B rs73223431 4E-22 1.07 T 0.369 [48] Inhibition [69]
RIN3 rs71430765 1E-6 N/A G 0.163 [53] Inhibition [70]
SORL1 rs11218343 1E-21 0.84 C 0.039 [48] Activation [71]
SPI1 rs10437655 5E-14 1.06 A 0.399 [48] Activation [72]
TREM2 rs143332484 3E-25 1.41 T 0.013 [48] Inhibition [73]
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Our approach centered on evaluating the average activ-
ity of each node in subjects to facilitate their classifica-
tion. Based on these average node activities within the 
network, we successfully identified nine distinct subtypes 
among the subjects with different clinical phenotypes 
(Fig. 4A and B, Table S3).

These subtypes can be broadly categorized into two 
major groups. The first category encompasses subtypes 0, 
2, 3, 5, and 8 and is characterized by a pronounced associ-
ation with inflammatory signatures. Conversely, the sec-
ond category comprises subtypes 1, 4, 6, and 7, displaying 
non-inflammatory signatures (Fig. 4C). This classification 
aligns with earlier findings, which also reported a similar 
distribution of patients within these two groupings [76]. 
Of particular note, the high-inflammatory group exhib-
ited lower activity in phagocytosis nodes, higher activ-
ity in autophagy nodes, and relatively reduced levels of 
amyloid beta plaques. The average expression of amyloid 
beta plaques between the clusters correlated with Braak 
staging, showing that the clusters appropriately represent 
clinical phenotypes. (Supplementary Information 3E, Fig. 
S5)

Further observation of APOE4 allele count revealed 
that subtype 2 displayed a higher presence of APOE4 
alleles, and subtype 0 exhibited a lower presence of 
APOE4 alleles. However, other than the two subtypes, 
the overall impact of the APOE4 allele on subtype clas-
sification within the microglia network was relatively 
minor. The cognitive diagnosis score was highest AD 
in subtype 2 and lowest in subtype 8. Braak staging, on 
the other hand, was highest in subtype 8, while oth-
ers showed small differences. CERAD score was lowest 
in subtype 2 and high in subtypes 0 and 7. Such results 
show that the subtypes identified through simulations 
show distinct clinical phenotypes (Fig. 5). These findings 
are consistent with previous reports that Braak staging 
does not completely match with AD diagnosis [77].

To further validate our results, we compared the sub-
types identified by our method with those previously 
identified by Neff et al. using RNA-sequencing data 
[78]. Neff et al. identified five subtypes, each with dis-
tinct characteristics related to amyloid beta binding, tau-
related genes, and immune pathways. We found that our 
network dynamics-based classification results are largely 
consistent with previous classification results (Supple-
mentary Information 3 F), indicating the robustness and 
reliability of our subtypes based on genetic risk factors.

Network analysis using an expanded Boolean network 
reveals core feedbacks for each subtype
Our investigation led to the identification of core feed-
back mechanisms that underpin the classification of 
subjects within each subtype, with a particular focus on 
the involvement of risk genes. In this context, mutations 

commonly present and instrumental in classifying the 
subtypes were utilized to discern the feedback loops 
involving risk alleles using an expanded Boolean net-
work, which integrates the regulatory rules of each node 
in the original network (Fig. 6A and B) [79]. Three pivotal 
genes -SPI1, CASS4, and MEF2C- emerged as the key 
determinants in subject classification.

For subtypes 0, 2, and 3, risk alleles in the SPI1 gene 
were identified, while no risk variants in the CASS4 
gene were observed. It is noteworthy that SPI1 is a well-
known master regulator of the inflammatory response in 
microglia [72, 80, 81]. The presence of risk variants in the 
SPI1 gene played a central role in creating a positive feed-
back loop. This loop had cascading effects on key nodes 
within the microglial network, including ROS, XBP1, and 
NFκB. Consequently, it activated downstream inflamma-
tory nodes, such as IL1 and TNFα, while concurrently 
downregulating nodes associated with anti-inflamma-
tory processes, such as IL4 and autophagy. Importantly, 
the absence of risk variants in CASS4 correlated with an 
absence of expression increase in the CASS4 node. This 
lack of expression enhancement was linked to a decrease 
in SRC expression. Additionally, the upregulation of 
SPI1 further contributed to a positive feedback loop by 
downregulating SYK expression, leading to the inhibition 
of phagocytosis levels, a crucial microglial function. In 
subtype 3, which lacked risk variants in the ABI3 gene, a 
distinct positive feedback loop involving ABI3 was pres-
ent, and downregulated AKT expression was present. 
Simultaneously, increased activity in SPI1 led to elevated 
CD33 and PTPN6 node expressions while reducing SYK 
node expression. This decline in SYK expression further 
contributed to the positive feedback initiated by CASS4, 
SRC, LAT2, PLCG, and calcium ion nodes, further 
decreasing phagocytosis levels (Fig. 6C).

Subtypes 5 and 8 exhibited an upregulation of CASS4 
and SPI1 due to the presence of risk alleles. Addition-
ally, PTPN6 displayed an upregulation driven by the cas-
cade of CD33 and PILRA. SRC exhibited an upregulation 
influenced by both PTPN6 and CASS4. The interplay 
among CASS4, SRC, and PTPN6 established a positive 
feedback loop that led to enhanced upregulation of the 
phagocytosis node. Furthermore, consistent with previ-
ous observations in other subtypes, the SPI1 feedback 
mechanism in subtypes 5 and 8 exerted inhibitory effects 
on autophagy and IL4 expression. Conversely, this same 
feedback loop activated the expression of inflammatory 
markers IL1 and TNF α (Fig. 6D).

In subtypes 1, 4, 6, and 7, no risk variants in the SPI1 
gene were detected. Consequently, both nodes were 
deactivated due to the positive feedback loop between 
SPI1 and NFκB. This deactivation had cascading effects 
on downstream nodes, leading to the deactivation of 
BIN1, INPP5D, IRF1, and IKZF1 nodes while activating 
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Fig. 4  Identified patient subtypes and their characteristics. (A) The result of UMAP clustering on the average node expressions, using a resolution of 0.1, 
and their corresponding disease status. Each point represents a single subject obtained using the average node activity post-simulation. (B) The number 
of APOE4 alleles and the number of AD subjects are presented for each patient subtype. (C) A heatmap of the expressions with hierarchical clustering. 
Each row represents the average node activity for each subject obtained via probabilistic Boolean simulations. The columns represent the nodes included 
in the network
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the IRF3 node. Specifically, in subtypes 4 and 6, where 
MEF2C risk alleles were absent, a cooperative effect 
between IRF3 and MEF2C was observed. Together, they 
activated the TGFβ node, initiating a positive feedback 
loop between TGFβ and MEF2C. This led to the deacti-
vation of downstream inflammatory nodes, such as IL1 
and TNF α, while activating the anti-inflammatory node 
IL4. In subtypes 6 and 7, where CASS4 risk variants 
were present, the activation of PTPN6 triggered a posi-
tive feedback loop involving CASS4, SRC, LAT2, PLCG, 
ERK, CD33, and PTPN6. This loop was further strength-
ened by the inhibition of PI3K, caused by the activation 
of PTPN6. Additionally, the inactivated SPI1 node led to 
the deactivation of the ROS node, which, in turn, further 
inhibited NFκB. This series of events reinforced the posi-
tive feedback loop centered around SPI1 (Fig. 6E).

To further verify the significance of the pivotal risk 
genes in subtype classification, we employed other inde-
pendent publicly available gene expression data obtained 
from 35 subjects to confirm whether the clustering using 
pivotal risk genes, including SPI1, CASS4, MEF2C, ABI3, 

and INPP5D, on RNA sequencing data shows similar 
phenotype patterns to our network-based subtypes [82]. 
We found that by using the pivotal risk genes, phenotype 
marker patterns for phagocytosis, autophagy, inflamma-
tion, and anti-inflammation show similar patterns to the 
corresponding predicted node activities. This indicates 
that the pivotal risk factors play an important role in sub-
ject classification (Supplementary Information 3G, Fig. 
S6).

Subtype classification analysis unveiled intricate feed-
back loops within the microglial network shaped by the 
combinations of specific risk variants associated with 
AD. These feedback loops exert influence on the inflam-
matory, anti-inflammatory, phagocytotic, and autophagy 
responses within microglia.

Identification of control targets for each subtype to restore 
AD to a normal phenotype
Based on the previous results, we embarked on the criti-
cal task of identifying control targets within the microg-
lial network that could potentially be manipulated to 

Fig. 5  Clinical phenotypes for each identified patient subtype. The clinical phenotypes, including CERAD score, Braak staging, and cognitive diagnosis, 
are represented (* p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001) for each phenotype. In the case of the APOE4 allele count, the significance levels 
between subtype 0 and all other subtypes are significant (p-value < 0.001) and are not represented in the diagram for simplicity
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restore a normal phenotype in the context of AD. Our 
approach was rooted in network perturbation analysis 
and the quantification of specific scores to gauge thera-
peutic effectiveness, which was shown in previous studies 

that network-based stratification is effective in predicting 
therapeutic responses.

To assess the impact of network perturbations, 
we employed a phenotype score that considered the 

Fig. 6  Expanded network representation of core feedbacks for distinguishing subtypes. (A) A toy Boolean model and its corresponding logic. (B) The 
constructed expanded network. If node 1 has an activating risk factor and node 5 has an inhibiting risk factor, the core feedback is represented in red. The 
dots in the network represent a composite node, in which all the upstream nodes must be in an “ON” state in order for the composite node to be turned 
on. Core feedbacks of (C) subtypes 0, 2, 3, (D) subtypes 5, 8, and (E) subtypes 1, 4, and 7 are presented
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average expression of output nodes (IL1, IL4, TGFβ, 
TNFα, phagocytosis, autophagy), which represent key 
phenotypic characteristics. The goal was to calculate a 
score that could indicate how close a perturbed state 
was to a nominal AD state (phenotype score close to 1) 
or to a nominal normal state (phenotype score closer to 
0). An AD state was defined for each subtype using the 
differences in risk allele count (Supplementary Informa-
tion 3 H). The phenotype score was calculated as the sum 
of the absolute differences between the average node 
expression of a nominal state, without any perturbations 
present, and the average node expression post-pertur-
bations, divided by the sum of the absolute differences 
between the AD node expression and the nominal node 
expression of the output nodes as shown below, where E_
normal, E_control, and E_AD represents the normal state 
node expression, node expression post control, and the 
node expression in an AD state respectively.

	
phenotype score =

∑
|E_normal − E_control|∑
|E_normal − E_AD|

We selected network perturbations with the smallest 
phenotype score, using up to two perturbations for each 
subtype (Fig. 7; Table 2). The network simulations identi-
fied the inhibition of PICALM as a single target and the 
dual inhibition of LAT2 and PICALM for a double-target 
approach for the largest subtype, subtype 0. These targets 
were chosen based on their potential to counteract the 
distinct characteristics of cluster 0. Compared to con-
trol subjects, individuals with AD in cluster 0 exhibited 
elevated levels of phagocytosis and amyloid beta plaques, 
two key pathological features associated with the disease. 
Both single and double-target strategies reduced phago-
cytosis and amyloid beta plaques, effectively reverting the 
phenotype towards a more normal-like state (Detailed 
data on the other clusters can be found in Supplementary 
Information 3I, Table S4, S5). A literature search on the 
identified targets verified their potential as therapeutic 
targets (Table S6).

Furthermore, our study explored the effects of targets 
such as AKT and INPP5D. While these targets were not 
identified as the optimal reversion targets in all clusters, 
our findings demonstrated that their upregulation or 
downregulation could effectively reduce amyloid beta 
plaques in different genetic backgrounds, which aligns 
with previous research indicating that inhibition and acti-
vation of specific factors reduced amyloid beta plaques in 
different contexts (Supplementary Information 3 J). This 
underscores the complexity of microglial network regu-
lation and the importance of considering network-based 
analysis when developing therapeutic strategies for AD.

Discussion
Treating AD remains a challenge despite recognizing the 
therapeutic potential of microglia-targeted therapies, 
either by restoring microglial cells or by drugs that tar-
get microglial pathways. The efficacy of these treatments 
differs greatly, and the underlying genetic heterogeneity 
among AD patients is known to play a significant role in 
such variability [2–4]. Molecular targeted therapies, how-
ever, are only known to be effective in a subset of patients 
or a particular genetic strain [5]. Therefore, for appropri-
ate AD precision drugs, patients must be subtyped by 
the source of heterogeneity, mainly by genetic variations. 
Existing AD classification methods predominantly rely 
on phenotypic markers, such as amyloid beta plaques, tau 
tangles, and synapse loss, or utilize gene expression data, 
and they often overlook the complex genetic risk factors 
that underscore the disease [78, 83–85]. Furthermore, 
subtyping methods that utilize genomic data lack a suffi-
cient explanation for the cause of the subtypes due to the 
use of deep neural networks, leading to difficulty in iden-
tifying therapeutic targets [86]. Therefore, it is necessary 
to establish a new method to subtype AD patients based 
on the complex mechanisms of pathogenesis using AD 
risk factors. To address this limitation, we have devised 
a probabilistic Boolean simulation method, which inte-
grates risk factor information to categorize AD patients 
into distinct subtypes. Furthermore, this approach aids in 
the identification of potential therapeutic targets aimed 
at restoring normal microglial phenotypes. Our simula-
tions have unveiled potential drug targets for subtypes, 
each substantiated through existing literature.

Utilizing systems biology approaches and computa-
tional simulations has proven instrumental in elucidating 
the intricate mechanisms underpinning complex biologi-
cal phenomena and holds significant promise in patient 
subtyping [86]. Prior simulations for subtyping and anal-
ysis have been performed using deterministic Boolean 
simulations or network propagations [87, 88]. Ordinary 
differential equation models, however, are limited in scale 
of the network due to the many parameters required 
to be fitted and insufficient data. Conversely, Boolean 
models offer computational feasibility for large-scale 
networks. Therefore, Boolean models are effective in 
large-scale networks due to being computationally com-
pliant whilst being able to sufficiently represent biologi-
cal phenomena [89, 90]. Deterministic Boolean models, 
as shown in the result section, are incapable of simulating 
the number of risk factors, which are not binary values. 
Furthermore, deterministic Boolean models abrogate 
upstream risk factors due to their deterministic binary 
properties, leading to the inability to consider multiple 
risk factors simultaneously. In response, our work intro-
duces a probabilistic Boolean network and illustrates that 
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probabilistic Boolean networks are capable of handling 
the dynamics of multiple risk factors.

We evaluated subtypes using 20 risk factors related to 
microglia because most of the risk factors are related to 

microglial functions or are expressed by microglial cells 
[91]. We computationally identified SPI1, CASS4, and 
MEF2C as pivotal risk factors that distinguish the nine 
subtypes. SPI1, which was found to separate the nine 

Fig. 7  AD scores and phenotype node activities for restoring a normal phenotype. (A) A bar plot showing the effectiveness of the restoration targets. A 
score close to 0 means that the phenotype was closer to that of a normal state. (B) The activities of the phenotype nodes for subtype 2 are represented in 
a radar chart. The phenotypes of an AD state (left), the effects of a single target (middle), and the effects of a double target (right) are presented, with the 
normal phenotype being represented in blue, and the AD phenotype and each phenotype after control being represented in red
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subtypes into two large groups, is known to affect inflam-
matory responses, which is consistent with previously 
known subtyping results of AD. SPI1 is known to be a 
master regulator in microglial development and activa-
tion, with minor changes affecting the microglial tran-
scriptome greatly, possibly suggesting why SPI1 is not 
identified in differentially expressed gene analysis [80, 
81]. CASS4, while little investigated, is known to interact 
with FAK, affecting cellular adhesion, migration, motility, 
and maintaining cellular homeostasis [92]. MEF2C is a 
myocyte enhancer factor expressed in the nervous system 
and is known to prime microglia and act as an immune 
checkpoint, which limits the overactivation of microglia 
[93]. The three main identified risk factors distinguish-
ing AD patients are highly related to microglial functions, 
with MEF2C and SPI1 being transcriptional factors.

Therapeutic interventions for each of the AD subtypes 
were also investigated. MEF2C, PICALM, and LAT2 
were a few of the targets commonly identified among 
the several subtypes. Upregulation of MEF2C and down-
regulation of PICALM, identified through simulations, 
are also known to be possible drug targets in treating AD 
[94]. LAT2 is known to be highly expressed in AD and is 
thought to be a potential drug target [95]. Interestingly, 
genes such as AKT or INPP5D, while not identified as the 
best targets for the clusters, were identified as reversion 
targets when upregulated in some clusters, while a rever-
sion target when downregulated in others. The simula-
tions of upregulation and downregulation of targets, such 
as AKT, resulted in reducing amyloid beta plaques, show-
ing that the targets depended greatly on the genetic back-
ground. These context-dependent findings are consistent 

with previous reports in which upregulation or downreg-
ulation of the targets in different strains resulted in dis-
tinct AD phenotype alterations [96, 97].

Our results can be leveraged to perform drug repur-
posing. First, our proposed subtype-specific core regu-
lators can be examined to see if they might be targeted 
by existing drugs. Interestingly, the core regulators such 
as MEF2C, PICALM, and LAT2 are known to have the 
potential to modulate AD pathology and microglial func-
tions. In addition, our microglia mathematical model can 
be used to quantitatively predict the impact of activat-
ing or inhibiting any of the nodes included in the model 
on the phenotype. By simulating the cellular response 
to various existing drugs with known targets, we might 
be able to identify the most promising drug candidates. 
Furthermore, by incorporating individual genetic varia-
tions for each patient into the model, we could suggest 
the optimal drug repurposing candidates tailored to each 
patient. These approaches present promising avenues for 
future research.

The presented method has assumptions and result-
ing limitations. In selecting the risk factors, only a single 
risk allele was selected for simplicity of computation and 
given identical upregulation and downregulation prob-
abilities. Multiple risk alleles are present for a single gene, 
and each risk allele affects AD differently. Such factors 
may be considered to create a probability that more accu-
rately reflects actual biological phenomena. The scale 
of the network may also be a factor that may affect the 
result of the classification of subjects. Other risk factors 
other than the 20 risk factors included in the microglia 
network may be included for more accurate results by 
expanding the network to encompass not only microglia 
but also other cell types. Additional analysis may be per-
formed using matched GWAS and gene expression sam-
ples to further validate the subject classification methods.

We created a microglia network that can explain pre-
viously known experimental results and can be used to 
predict phenotypes by simulating utilizing the network. 
The advantage of using a probabilistic Boolean network 
is that it may be applied to other diseases where mul-
tiple risk factors play a role in disease progression. By 
constructing a probabilistic Boolean network and per-
forming simulations, we demonstrated that the results 
could distinguish the numbers and the type of risk fac-
tors and classify subjects by their mechanisms. While our 
approach was applied to AD and microglia, probabilistic 
simulations may subtype other diseases or predict drug 
responses to discover other combinatorial therapeutic 
targets for each subject that restore the disease pheno-
type to a non-diseased state.

Table 2  Optimal single and double targets to restore a normal 
phenotype

Target 1 Target 1 
direction

Target 2 Target 2 
direction

Subtype 0_single PICALM Inhibition
Subtype 0_double PICALM Inhibition LAT2 Inhibition
Subtype 1_single PI3K Inhibition
Subtype 1_double GSK3b Inhibition INPP5D Inhibition
Subtype 2_single AKT Inhibition
Subtype 2_double ABCA7 Activation MEF2C Activa-

tion
Subtype 3_single MEF2C Activation
Subtype 3_double MEF2C Activation PICALM Inhibition
Subtype 4_single MS4A Activation
Subtype 4_double PICALM Inhibition PTK2B Activa-

tion
Subtype 5_single MEF2C Activation
Subtype 5_double MEF2C Activation PICALM Inhibition
Subtype 6_single LAT2 Inhibition
Subtype 6_double CD33 Activation LAT2 Inhibition
Subtype 7_single CD2AP Inhibition
Subtype 7_double BHLHE41 Activation RIN3 Inhibition
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Conclusions
In this study, we introduced a method for the classifica-
tion of AD patients using genetic risk factors by utiliz-
ing a microglia network. First, we constructed a network 
model of microglia through the integration of single-cell 
RNA sequencing data and a comprehensive literature 
search. We then employed subject-specific microglial 
networks derived from genetic risk allele counts and con-
ducted probabilistic Boolean simulations. This method-
ological framework allowed for the identification of nine 
distinct AD subtypes, each characterized by core feed-
back mechanisms instrumental in subtype determina-
tion. We pinpointed SPI1, CASS4, and MEF2C as central 
risk factors contributing to the delineation of AD patient 
subtypes. Employing perturbation simulations tailored to 
each subtype, we identified potential therapeutic targets 
capable of reinstating AD phenotypes to a normal state. 
These results not only offer a method for patient subtyp-
ing based on genetic risk factors but also highlight the 
prospect of subtype-specific treatment strategies for AD. 
Further studies are required to validate the subtypes and 
the proposed drug targets for AD treatment.

Data Availability
The datasets analyzed in the current study include 
the dataset from the ROSMAP study (adknowledge-
protal.synapse.org/syn11724057) and the dataset 
from the MSBB study (adknowledgeprotal.synapse.
org/syn11723899) which were used for subtyping AD 
patients. Microglia single-cell RNA sequencing datas-
ets (adknowledgeprotal.synapse.org /syn21438358) were 
used for creating the microglia network model. The code 
used for probabilistic Boolean simulations is available on 
GitHub at https://github.com/jhchoii/Microglia_PBN.
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