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Abstract 

Background  Early detection of Alzheimer’s disease (AD) is essential for timely management and consideration 
of therapeutic options; therefore, detecting the risk of conversion from mild cognitive impairment (MCI) to AD is cru-
cial during neurodegenerative progression. Existing neuroimaging studies have mostly focused on group differences 
between individuals with MCI (or AD) and cognitively normal (CN), discarding the temporal information of conversion 
time. Here, we aimed to develop a prognostic model for AD conversion using functional connectivity (FC) and Cox 
regression suitable for conversion event modeling.

Methods  We developed a prognostic model using a large-scale Alzheimer’s Disease Neuroimaging Initiative dataset, 
and it was validated using external data obtained from the Open Access Series of Imaging Studies. We considered 
individuals who were initially CN or had MCI but progressed to AD and those with MCI with no progression to AD 
during the five-year follow-up period. As the exact conversion time to AD is unknown, we inferred this information 
using imputation approaches. We generated cortex-wide principal FC gradients using manifold learning techniques 
and computed subcortical-weighted manifold degrees from baseline functional magnetic resonance imaging data. 
A penalized Cox regression model with an elastic net penalty was adopted to define a risk score predicting the risk 
of conversion to AD, using FC gradients and clinical factors as regressors.

Results  Our prognostic model predicted the conversion risk and confirmed the role of imaging-derived manifolds 
in the conversion risk. The brain regions that largely contributed to predicting AD conversion were the heteromodal 
association and visual cortices, as well as the caudate and hippocampus. Our risk score based on Cox regression 
was consistent with the expected disease trajectories and correlated with positron emission tomography tracer 
uptake and symptom severity, reinforcing its clinical usefulness. Our findings were validated using an independent 
dataset. The cross-sectional application of our model showed a higher risk for AD than that for MCI, which correlated 
with symptom severity scores in the validation dataset.

Conclusion  We proposed a prognostic model predicting the risk of conversion to AD. The associated risk score may 
provide insights for early intervention in individuals at risk of AD conversion.
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Background
Alzheimer’s disease (AD) is a fatal neurodegenerative dis-
ease that affects memory and disrupts cognitive and bod-
ily functions [1]. The neurodegenerative process begins 
before the clinical symptoms of AD are evident and is 
likely to progress through mild cognitive impairment 
(MCI) [2]. Conversion from MCI to AD is a pressing con-
cern, with almost 80% of patients with MCI converting 
to AD over six years [3]. Despite the significant global 
health implications of AD [4], curative treatments remain 
elusive, highlighting the need for developing reliable bio-
markers to assess the risk of conversion to AD.

Neuroimaging studies have been widely conducted 
to identify imaging markers that provide early indica-
tions of AD onset [5–10]. It has been shown that early 
AD manifestations were linked to functional abnor-
malities in the hippocampus and cortical atrophy in the 
memory-related network [11–13], notably the default 
mode network, which has been found to have decreased 
metabolism in the early stages of AD [14]. In addition, 
cortical thinning in the posterior cingulate and inferior 
parietal regions [15], and reductions in the subcortical 
volumes of the hippocampus, amygdala, thalamus, and 
putamen becoming more pronounced over time cor-
relate with cognitive impairment [16, 17]. Studies using 
resting-state functional magnetic resonance imaging (rs-
fMRI) have found decreased functional connectivity (FC) 
in the default mode network of patients with AD [18–20]. 
In particular, changes in FC between the hippocampi in 
the medial temporal lobes and posterior cingulate cortex 
indicate early neurodegeneration in individuals suscep-
tible to AD [21, 22]. The previous work suggested that 
vascular dysregulation plays a key role in the early stages 
of the disease, subsequently leading to amyloid-β deposi-
tion, metabolic dysfunction, functional impairment, and 
structural atrophy [10]. Although fMRI measures the 
consequences of molecular-level alterations, it is a pow-
erful imaging modality that can assess functional brain 
organization by assessing inherently changing functional 
dynamics of the brain in vivo. These findings underscore 
the feasibility of using FC as a tool for identifying early 
AD biomarkers.

Despite extensive research, most studies have primar-
ily focused on the differences between individuals with 
MCI (or AD) and cognitively normal (CN) individuals 
[23, 24] or the differences between AD converters and 
non-converters, typically involving group-level compari-
sons at either baseline or follow-up imaging evaluations 
[25, 26]. These studies are important for understanding 
the differences between AD and CN but lack evidence 
of time-related changes in brain dynamics during dis-
ease progression. For example, the current approach to 
comparing AD converters and non-converters tends to 

overlook temporal information, such as varying conver-
sion times (e.g., three years vs. five years). Furthermore, 
these approaches often do not consider right-censored 
data, which is common in longitudinal studies. Therefore, 
a more comprehensive understanding of the temporal 
aspects of patient conversion from MCI (or CN) to AD 
is required.

Recently, connectome gradient approaches have been 
proposed to capture the functional organization of the 
human brain [27, 28]. This technique quantifies gradual 
transitions in connectivity and provides comprehensive 
hierarchical information about the brain by projecting 
high-dimensional connectivity data onto a low-dimen-
sional manifold space. The principal gradient expands 
from the transmodal to the unimodal areas, whereas the 
second gradient differentiates between the visual and 
somatomotor cortices. Furthermore, subcortico-cortical 
functional interactions have been explored by situating 
changes in subcortico-cortical pathways in the macro-
scale context of cortico-cortical connectivity [29, 30]. 
It has been shown that AD a  is disease involving hier-
archical brain disorganization [31]. Thus, we hypoth-
esized that the gradient techniques applied to fMRI data, 
besides perfusion imaging, could identify changes in the 
functional brain hierarchy of individuals at risk of con-
version to AD, helping early diagnosis of AD.

Here, we developed a prognosis model that considers 
AD conversion. We established the role of macroscale FC 
gradients in individuals at risk of conversion to AD before 
the progression occurred using baseline rs-fMRI data. By 
identifying these early biomarkers, we aimed to develop 
robust predictive models for AD risk, which could allow 
timely interventions, potentially slowing disease progres-
sion. Our comprehensive analysis included whole-brain 
FC with vulnerability to functional alterations linked to 
AD conversion. We used large-scale AD data contain-
ing both baseline and follow-up data obtained from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
[32] and validated the findings in an independent dataset 
from the Open Access Series of Imaging Studies (OASIS) 
database [33].

Methods
Study participants
i) ADNI dataset
Imaging and phenotypic data were obtained from the 
ADNI database (https://​adni.​loni.​usc.​edu/) [32]. ADNI 
was launched in 2003 as a public-private partnership led 
by principal investigator Michael W. Weiner. The primary 
goal of the ADNI is to test whether serial MRI, positron 
emission tomography (PET), other biological markers, 
and clinical and neuropsychological assessments can be 
combined to measure the progression of MCI and early 

https://adni.loni.usc.edu/
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AD. In the ADNI database, we considered participants 
who were initially categorized as CN or as having MCI 
but progressed to AD and censored individuals who did 
not convert to AD. We applied the following criteria to 
select participants at risk of progression to AD: (1) avail-
ability of multimodal imaging dataset (i.e., T1-weighted 
[T1w], rs-fMRI) with sufficient image quality (i.e., 
3  T), (2) head motion with mean framewise displace-
ment < 0.3  mm, and (3) participants diagnosed with AD 
within five years of the scan date (CN or MCI → AD) and 
individuals diagnosed as CN or with MCI during the five-
year follow-up period (CN → MCI or MCI → MCI, thus 
right-censored) and (4) excluded reversion cases (e.g., 
AD → MCI). The five-year limit of time to conversion 
was imposed so that the baseline MRI data might possess 
prognostic power for the conversion event that occurred 
later, as previously reported [34, 35]. This resulted in 
the selection of 68 unique participants from the ADNI-
GO/2/3 datasets who were at risk of conversion to AD. 
Due to the limited number of unique participants, we 
included one session from the study participants that 
revisited the study (e.g., 6 or 12  months), constitut-
ing a total dataset of 115 samples. The sample consisted 
of participants who were CN or with MCI (mean age, 
72.9  years; 51% male), and the median conversion time 
from baseline to AD was 1,277 days, with a 48% conver-
sion rate. In summary, each sample had a baseline scan 
and an associated conversion date; however, some sam-
ples were obtained from the same participant. We con-
sidered demographic and clinical variables, including 
age, sex, Mini-Mental State Examination (MMSE) score, 
apolipoprotein E4 (APOE4) status, and education level, 
as these factors are known to contribute to the complex 
etiology of AD. The discovery dataset was defined as the 
ADNI risk dataset, and the demographic information of 
the 115 samples is detailed in Supplementary Table 1.

ii) OASIS dataset
To validate our model, we constructed two external vali-
dation datasets from the OASIS3 database: the OASIS 
risk dataset and the OASIS diagnosis dataset. To con-
struct the OASIS risk dataset, we adopted the same par-
ticipant selection process as that used in the ADNI risk 
dataset. The OASIS risk dataset consisted of 33 unique 
participants curated to reflect the characteristics of the 
ADNI risk dataset. In addition, the OASIS diagnosis 
dataset included 803 unique participants, each labeled 
with their respective diagnoses. More details on these 
datasets are provided in Supplementary Table 2 and Sup-
plementary Table  3, respectively. Institutional Review 
Board (IRB) approvals were obtained from the original 
study depicting the ADNI and OASIS databases. In the 
ADNI dataset, consent forms were approved by each 

participating site’s IRB. The IRB of Washington Uni-
versity School of Medicine approved the OASIS study 
and written informed consent was obtained for all par-
ticipants. All ADNI and OASIS datasets have been fully 
anonymized, with no protected health information 
included.

Data acquisition
I) MRI data
Imaging data were acquired using 3  T GE, Philips, and 
Siemens scanners. In ADNI-GO/2 phases, T1w images 
were obtained using a 3D magnetization-prepared rapid 
acquisition gradient echo (MPRAGE) sequence (rep-
etition time [TR] = 6.8  ms; echo time [TE] = 3.2  ms, flip 
angle = 9°). The rs-fMRI data were acquired using a 2D 
echo planar imaging (EPI) sequence (TR = 3,000  ms; 
TE = 30  ms; flip angle = 80°; number of volumes = 140, 
and voxel size = 3.31 × 3.31 × 3.31 mm3). In ADNI-3 
phase, T1w images were obtained using a 3D MPRAGE 
sequence (TR = 2,300  ms; TE = 2.98  ms; flip angle = 9°), 
and rs-fMRI data were acquired using an EPI sequence 
(TR = 3,000  ms; TE = 30  ms; flip angle = 90°; number 
of volumes = 197; and voxel size = 3.4 × 3.4 × 3.4 mm3). 
Imaging data in OASIS3 were acquired using Siemens 
TIM Trio 3 Tesla scanners. T1w images were obtained 
using a 3D MPRAGE sequence (TR = 2.4 ms; TE = 3.2 ms; 
flip angle = 8°), and the rs-fMRI data were acquired using 
a 2D EPI sequence (TR = 2,200  ms; TE = 27  ms; flip 
angle = 90°; number of volumes = 164, and voxel size = 4 
× 4 × 4 mm3).

ii) PET data
For PET images from ADNI-GO/2/3, standardized 
dynamic protocols were applied. The amyloid-β PET 
consisted of AV45- and FBB-PET. For AV45-PET, a pro-
tocol lasting 50–70  min post-intravenous injection of 
370 MBq of [18F] Florbetapir was used, with a scan dura-
tion of 20 min divided into four 5-min frames. For FBB-
PET, the protocol lasted 90–110  min post-intravenous 
injection of 300 MBq of [18F] Florbetaben, with a 20-min 
scan divided into four 5-min frames. For FDG-PET, a 
30–60  min protocol post-injection of 185  MBq of [18F] 
Fludeoxyglucose was used, with a 30-min scan divided 
into six 5-min frames. For Tau-PET, a 75–105 min pro-
tocol post-injection of 370 MBq of [18F] AV-1451 (Flor-
taucipir) was applied, with a 30-min scan divided into 
six 5-min frames. All PET data we employed were from 
baseline tracer scores matched to the baseline fMRI ses-
sions. In the PET tracer comparison, only baseline ses-
sion PET data were used. If PET data were unavailable 
due to missing modality, they were excluded from the 
PET tracer score analyses.
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Data preprocessing
I) MRI data
MRI data preprocessing of the ADNI and OASIS data 
was performed using fMRIprep [36]. T1w images were 
corrected for intensity non-uniformity. A T1w-reference 
map was computed after the registration of multiple T1w 
images, and the skull was removed. Brain tissue seg-
mentation of the cerebrospinal fluid, white matter, and 
gray matter was performed on the brain-extracted T1w 
images using FSL. Volume-based spatial normalization 
to the standard MNI152 space was performed through 
nonlinear registration using ANTs [37]. Brain surfaces 
were reconstructed using FreeSurfer [38]. For each rs-
fMRI session, slice timing was adjusted, and the head 
motion was corrected by registering the volume of each 
time point to the reference volume of the middle time 
point. The reference time-point data were coregistered 
to the T1w-reference image using boundary-based reg-
istration and then registered onto the MNI152 template. 
Spatial smoothing with an isotropic Gaussian kernel of 
6  mm full-width half-maximum (FWHM) was applied, 
and removal of residual motion artifacts was performed 
using independent component analysis-based automatic 
removal of motion artifacts (ICA-AROMA) [39]. Finally, 
the non-steady first 10  s volumes were removed, and a 
bandpass filter was applied with a range of 0.008–0.1 Hz.

ii) PET data
The PET images were preprocessed as follows. Raw 
PET images were coregistered across different frames to 
reduce the motion effect, and then the frames over 5-min 
intervals were averaged. These images were reoriented to 
conform to a standard image grid of 160 × 160 × 96 matrix 
with 1.5 mm3 voxel size, and intensity normalization was 
performed. Spatial smoothing was applied with 8  mm 
FWHM. Further details are given on the ADNI website 
(https://​adni.​loni.​usc.​edu/​data-​sampl​es/​adni-​data/​neuro​
imagi​ng/​pet/). The PET images were coregistered to the 
corresponding T1w image with six degrees of freedom 
and subsequently nonlinearly registered onto the stand-
ard MNI space.

Imputation of time to conversion
The time taken to convert to AD can be considered the 
survival time commonly found in medical studies [34, 35, 
40]. In clinical trials and longitudinal studies, a subject 
may experience a particular event, such as death or dis-
ease onset. The longitudinal data collected by the ADNI 
are suitable for survival analysis, as the study was con-
ducted on the same subjects, and the time to conversion 
to AD can be utilized as a response variable. Identifying 
individuals at heightened risk of conversion to AD pre-
sents several research challenges, particularly the issue 

of precisely determining the timing of conversion to AD. 
Since the time to conversion to AD is interval-censored, 
we are certain that conversion occurred within the inter-
val between the date of the last MCI diagnosis and that 
of the first AD diagnosis. The time to conversion to AD 
was estimated based on the imputed survival times. A 
Weibull accelerated failure time (AFT) model with clini-
cal covariates was fitted using the icenReg R package [41]. 
After imputation, interval-censored data were converted 
into right-censored data so that conventional survival 
analyses could be applied.

Functional connectivity gradient estimation
We estimated cortex-wide FC gradients and subcortical-
weighted manifold degrees from baseline fMRI data. 
We used the Schaefer atlas with 200 parcels for the cor-
tex [42] and the Desikan-Killiany atlas for the subcortex 
[43]. First, FC matrices were generated by calculating 
Pearson’s correlations of the time-series signals between 
two distinct brain regions for each individual. Fisher’s 
r-to-z transformation was applied to the individual-level 
matrices. A group-level connectivity matrix for the ADNI 
samples was constructed by averaging the individual con-
nectivity matrices. This group connectivity matrix was 
subsequently thresholded, retaining only the top 10% of 
elements per row. An affinity matrix was then computed 
using a normalized angle kernel, which helped capture 
the similarity in connectivity patterns between cortical 
regions. We estimated low-dimensional eigenvectors (i.e., 
gradients) from the affinity matrix using diffusion map 
embedding [44], which is a nonlinear manifold learn-
ing technique. The diffusion map embedding algorithm 
is robust to noise and provides better computational 
efficiency than other nonlinear manifold learning tech-
niques [45, 46]. We followed the diffusion map param-
eter settings used in previous studies [30, 47]. After 
constructing the ADNI group-level gradients, we aligned 
them to the group-level gradients of an independent 
Human Connectome Project (HCP) database (https://​
github.​com/​CAMIN-​neuro/​camin​open/​tree/​master/​
gradi​ent_​align) [48], which was derived using the proce-
dure for the ADNI dataset. This further alignment miti-
gated the bias of demographic attributes specific to the 
ADNI dataset and stabilized the manifold [49]. The com-
puted group-level gradients were then used as templates 
for the individual-level gradient alignment. Alignment 
was accomplished using Procrustes rotation [50]. The 
entire gradient estimation process was performed using 
the BrainSpace toolbox (https://​github.​com/​MICA-​MNI/​
Brain​Space) [51]. For subcortical regions, we estimated 
subcortical-weighted manifolds through element-wise 
multiplication of subcortico-cortical functional connec-
tivity and cortical gradients [29, 30]. The nodal degree 

https://adni.loni.usc.edu/data-samples/adni-data/neuroimaging/pet/
https://adni.loni.usc.edu/data-samples/adni-data/neuroimaging/pet/
https://github.com/CAMIN-neuro/caminopen/tree/master/gradient_align
https://github.com/CAMIN-neuro/caminopen/tree/master/gradient_align
https://github.com/CAMIN-neuro/caminopen/tree/master/gradient_align
https://github.com/MICA-MNI/BrainSpace
https://github.com/MICA-MNI/BrainSpace
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was then computed, which effectively reflected the sub-
cortico-cortical functional connectivity weighted by the 
cortical eigenvectors. We used the first two dominant 
cortical gradients, G1 and G2, along with the two corre-
sponding subcortical-weighted manifold degrees, S1 and 
S2.

PET‑SUVR estimation
PET scans enable the visualization of amyloid plaques 
and the assessment of glucose metabolism and tau 
spreading in the brain, offering information about the 
underlying pathological changes in AD. The standard-
ized uptake value ratio (SUVR) for PET images was 
calculated using the cerebellum or brainstem as the ref-
erence region. Voxel values corresponding to the regions 
of interest (ROIs) defined by the atlases, specifically the 
Schaefer atlas [42] for cortical regions and the Desikan-
Killiany atlas [43] for subcortical areas, were averaged 
and subsequently divided by the reference value. Follow-
ing previous studies [52, 53], the reference regions were 
defined as the whole cerebellum for AV45, FBB, and 
tau-PET, and the brainstem for FDG-PET. These values 
within each ROI yielded regional SUVR values. Addi-
tionally, to facilitate the comparability of AV45-PET and 
FBB-PET measurements, we transformed their SUVR 
into centiloid (CL) units using the established transfor-
mation formula (https://​adni.​loni.​usc.​edu/​wp-​conte​nt/​
themes/​fresh​news-​dev-​v2/​docum​ents/​pet/​ADNI%​20Cen​
tiloi​ds%​20Fin​al.​pdf ). Finally, we calculated the global 
PET tracer score by averaging the regional SUVR values 
across all ROIs.

Prediction of conversion to AD
We applied a penalized Cox regression model with an 
elastic net penalty to analyze the time to conversion to 
AD, using FC manifolds as regressors. In the survival 
analysis framework, we have data in the form (yi, xi, δi) , 
where yi is the observed survival time and δi is the indica-
tor variable for the censoring of the i th sample. Further, 
we assume t1 < t2 < · · · < tm be the increasing unique 
survival times. The common Cox proportional haz-
ards model [54] assumes a semiparametric form for the 
hazard:

where h0(t) is the baseline hazard at time t , 
x = (x1, x2, . . . , xp) is the column vector of the regression 
predictors, and β = (β1,β2, . . . ,βp)

T is the vector con-
sisting of the regression coefficients. The estimation of β 
is achieved by maximizing the partial likelihood,

(1)hi(t) = h0(t) exp βT
x ,

where Ri is the risk set at the time ti , consisting of 
indices j such that yj ≥ ti . The performance of the sur-
vival model was evaluated using the concordance index 
(C-index), which indicates how well the model pre-
dicts the ordering of times for a specific event. Because 
the estimated FC manifolds have high dimensionality, 
penalized models may be a more efficient approach. In 
penalized regression, the least absolute shrinkage and 
selection operator (LASSO) [55] method, characterized 
by an L1-penalty, along with the ridge [56] method using 
an L2-penalty, is typically employed. Ridge regression 
is particularly effective in addressing multicollinearity 
among features, whereas LASSO reduces dimensional-
ity by reducing regression coefficients to zero. An elas-
tic net [57] penalty combines the advantages of both 
LASSO and the ridge, providing an optimal solution. 
We estimated the β via the coordinate descent algorithm 
using the glmnet R package [58]. In our study, we denote 
x = (x(1), x(2)) where x(1) is the FC manifold vector, and 
x(2) indicates the clinical variable vector. To control for 
the potential effects of the demographic and clinical 
variables x(2) including age, sex, MMSE, APOE4 status, 
and education level, we considered these as additional 
covariates and imposed the penalty term only on the 
FC manifold x(1) . Accordingly, β(1) =

(
β1, . . . ,βq

)T and 
β(2) =

(
βq+1, . . . ,βp

)T are regression coefficients for the 
FC manifolds and the clinical variables, respectively. We 
defined a linear combination of βT

x as the risk score. In 
summary, we used FC manifolds (G1, S1, G2, and S2) and 
controlled for covariates as regression predictors. In our 
model, β can be estimated by maximizing the partially 
imposed penalized log partial likelihood l(β) = log(L(β))

,

where

The input feature scale is normalized using the mean 
and standard deviation. For model estimation, we imple-
mented a five-fold cross-validation to select hyperpa-
rameters: L1-ratio α and regularization parameter � . 
Hyperparameter selection was based on the highest 
C-index derived from the cross-validation procedure. 
This procedure was repeated 20 times, and the resulting 
outcomes were reported. For robustness, we averaged the 
estimated coefficients and risk scores from all optimally 

(2)L(β) =
∏m

i=1

e
βT

xj(i)

∑
j∈Ri

e
βT

xj

,

(3)β̂ = argmaxβ
[
l(β)− �Pα

(
β(1)

)]
=

(
β̂(1), β̂(2)

)
,

(4)Pα

(
β(1)

)
=

(
α�|β(1)| +

1

2
(1− α)�β2

(1)

)
, (0 ≤ α ≤ 1).

https://adni.loni.usc.edu/wp-content/themes/freshnews-dev-v2/documents/pet/ADNI%20Centiloids%20Final.pdf
https://adni.loni.usc.edu/wp-content/themes/freshnews-dev-v2/documents/pet/ADNI%20Centiloids%20Final.pdf
https://adni.loni.usc.edu/wp-content/themes/freshnews-dev-v2/documents/pet/ADNI%20Centiloids%20Final.pdf
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identified models. To assess the effect size related to the 
conversion to AD, we calculated the region-wise sum of 
the absolute coefficients of the FC manifolds (G1 and G2 
or S1 and S2). This effect quantifies the extent to which 
an alteration in the functional connectivity of a region 
influences the likelihood of conversion to AD while con-
trolling for other covariates.

Survival analyses of conversion to AD
We stratified participants at risk of conversion to AD into 
fast and slow conversion groups based on a zero cutoff 
of the predicted risk score and assessed between-group 
differences between the two groups using a log-rank test. 
To further examine whether PET scores were different 
between the two groups, we compared averaged global 
amyloid-β positivity (i.e., CL), glucose metabolism, and 
tau accumulation derived from PET scans between the 
groups using the Wilcoxon rank-sum test.

Considering the longitudinal nature of the data, the 
trajectory of the conversion to AD was traced for each 
participant. We identified four potential trajectories for 
participants at risk of conversion to AD: CN to MCI, 
MCI to censored MCI, CN (or via MCI) to AD, and 
MCI to AD. We denoted the progression paths from 
the diagnosis at the time of the baseline scan to either 
AD conversion or the last follow-up with an arrow (e.g., 
MCI → AD). We used a t-test to compare differences 
between the groups based on diagnosis at the time of the 
scan and an analysis of variance (ANOVA) with a post 
hoc analysis based on the Tukey honest significant differ-
ence test to compare differences between the conversion 
trajectories. Finally, the associations between the risk 
scores and both the clinical dementia rating sum of boxes 
(CDRSB) and Alzheimer’s Disease Assessment Scale 
(ADAS) were explored. The CDRSB is a widely used tool 
that quantifies the severity of dementia symptoms across 
multiple domains, while the ADAS provides a compre-
hensive assessment of the cognitive and non-cognitive 
functions of AD.

Robustness analyses and external validation
To demonstrate the robustness of our findings, we con-
ducted sensitivity analyses using several methodologies. 
First, we considered the ridge penalty along with the 
elastic net penalty as an alternative to the penalized Cox 
regression model. Second, we separately fit the models 
using only the first (G1 and S1) and second (G2 and S2) 
manifolds. Third, while estimating the functional gradi-
ents, we applied different thresholds by retaining 5% and 
15% of the elements per row in the FC matrix.

We validated our findings using an external valida-
tion dataset obtained from the OASIS3 database [33]. 
The replication involved two external validation sets: (1) 

the OASIS risk dataset (longitudinal) and (2) the OASIS 
diagnosis dataset (cross-sectional). (1) The OASIS risk 
dataset was created using the same participant selection 
criteria as that used in the ADNI risk dataset and was 
designed for external validation purposes. (2) The OASIS 
diagnosis dataset contained labels (CN, MCI, and AD) 
based on the corresponding diagnoses. We estimated the 
FC gradients from both datasets using the same proce-
dure as that used for the ADNI risk dataset and aligned 
the individual gradients to the ADNI-to-HCP gradient 
template. Subsequently, the aligned FC gradients and 
subcortical-weighted manifold degrees were estimated. 
We then normalized the FC manifolds and demographic 
and clinical covariates using the mean and standard 
deviations derived from the ADNI risk dataset. We pre-
dicted the risk scores for the two external validation data-
sets from all identified models from 20 iterations and 
averaged the risk scores. For the OASIS risk dataset, we 
fit another Weibull AFT model using clinical covariates 
from the OASIS risk dataset and estimated the time to 
conversion to AD. We evaluated the C-index and strati-
fied the participants into fast and slow conversion groups 
using a zero threshold. We then examined their conver-
sion trajectories and risk scores. For the OASIS diagnosis 
dataset, we evaluated the risk score distribution for the 
CN, MCI, and AD groups and tested for significant dif-
ferences among them. We also analyzed the association 
between the risk scores and CDRSB.

Results
Whole‑brain functional connectivity gradients
To reveal the functional connectome organization of the 
brain, we applied dimensionality reduction techniques to 
the FC matrix and generated multiple low-dimensional 
eigenvectors, referred to as gradients [27, 59, 60]. The FC 
gradients exhibited smooth transitions along the cortical 
surface, where the first principal gradient (G1) presented 
a gradual axis with sensory and motor systems at one end 
and transmodal regions, such as the default mode and 
frontoparietal networks, at the other end (Fig.  1A). The 
second gradient (G2) differentiated the somatomotor 
regions from the visual system. The first two functional 
gradients (G1, G2) accounted for approximately 37.2% 
of the information in the input connectivity matrix, and 
a large eigengap was identified between the second and 
third components, indicating the first two gradients are 
dominant (Supplementary Fig. 1). In addition to the cor-
tico-cortical connectivity gradients, we generated two 
subcortical-weighted manifold degrees (S1 and S2) by 
projecting the strength of subcortical regions onto the 
cortical manifold space to assess connectivity changes in 
the subcortical regions (Fig. 1A) [29, 30].
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Prediction of conversion risk for AD
We leveraged penalized Cox regression with FC mani-
folds (i.e., cortical gradients and subcortical-weighted 

manifold degrees) to predict the overall prognosis of indi-
viduals at risk of conversion to AD. Progressive neurode-
generation was quantified using the regression coefficient 

Fig. 1  Functional connectivity manifolds and the conversion effects of AD. A Functional connectivity gradients (G1 and G2) 
and subcortical-weighted manifold degrees (S1 and S2) were estimated from the functional connectivity matrix computed from the resting-state 
functional MRI (rs-fMRI). B The conversion (CN/MCI to AD) effects estimated by penalized Cox regression are mapped on the cortical surface. 
We stratified the effects according to seven intrinsic functional communities and four cortical hierarchical levels. C The conversion effects 
of subcortical-weighted manifold degrees are displayed on each subcortical structure. Abbreviations: MRI, magnetic resonance imaging; CN, 
cognitive normal; MCI, mild cognitive impairment; AD, Alzheimer’s disease
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estimated by maximizing the partial likelihood function. 
We found altered FC manifolds in individuals at risk of 
conversion to AD. Pronounced conversion effects (i.e., 
regression coefficients) were observed in multiple corti-
cal regions, including the visual, frontoparietal, and tem-
poral regions (Fig. 1B), as well as in the subcortical areas 
of caudate and hippocampus (Fig.  1C). To recapitulate 
which brain regions showed higher conversion effects 
according to functional brain networks or cortical hier-
archical levels, we summarized the conversion effects 
according to seven functional communities, which show 
a comprehensive overview of the organizational princi-
ple of functional connectivity [61], and four hierarchi-
cal levels, indicating cortical hierarchy expanding from 
low-level sensory to higher-order cognitive control brain 
regions [62]. Our findings suggest that functional vulner-
ability notably impacts sensory/motor relay, cognitive 
control processing, memory, and emotional regulations.

Survival analysis based on the predicted conversion risk
To identify the effects of conversion to AD, we defined 
the risk score by calculating a linear combination of the 
regression coefficient, predictors of FC manifolds, and 
clinical variables. Based on the risk score, we determined 
the fast and slow conversion groups and compared sur-
vival probabilities between the groups. Notably, the two 
subgroups exhibited distinct conversion pathways for 
AD (log-rank test, p < 0.0001; Fig. 2A). The median con-
version date for the fast conversion group was 633 days 
(549–754  days; 95% confidence interval), whereas it 
exceeded five years for the slow conversion group. When 
we compared the FC manifolds between the slow and fast 
conversion groups, significant between-group differences 
were observed in the visual cortex and the putamen (Sup-
plementary Fig. 2), suggesting that the slow and fast con-
version groups exhibit distinct functional organizational 
profiles in the sensory regions.

PET tracer score comparison between the slow and fast 
conversion groups
We also compared the distributions of amyloid-β posi-
tivity, glucose metabolism, and tau accumulation 
derived from the PET tracer scans between the fast and 
slow conversion groups. We compared the averaged 
amyloid-β PET CL, FDG-PET SUVR, and tau-PET SUVR 
between the groups. We found significant differences 
in the amyloid-β PET CL (p = 0.006), FDG-PET SUVR 
(p = 0.005), and tau-PET SUVR (p = 0.014; Fig.  2B). The 
findings indicate that the groups defined using the pre-
dicted conversion risk show metabolically and pathologi-
cally different effects by PET.

Risk score‑based stratification of disease conversion 
trajectories
Although the risk score showed no significant difference 
based on the diagnosis at the time of the scan (p = 0.066), 
a distinct difference in the risk score was observed when 
the disease trajectory was segmented according to the 
longitudinal attributes of our dataset (p < 0.001; Fig. 2C). 
The group progressing from MCI to AD (MCI → AD) 
demonstrated a higher risk score than the group with 
MCI with no progression to AD (MCI → MCI). Further-
more, the MCI-to-AD group, with a more imminent 
conversion to AD than the CN-to-AD group (CN → AD), 
exhibited a higher risk score, even though both groups 
ultimately progressed to AD.

Clinical implications of the risk score
We associated the risk score with several clinical scores 
to assess whether it could be used as a surrogate marker. 
The predicted risk score was strongly correlated with 
the CDRSB (r = 0.535, p < 0.001), ADAS 11 (r = 0.425, 
p < 0.001), and ADAS 13 (r = 0.464, p < 0.001) scores 
(Fig. 2D). The results confirmed that the more severe the 
dementia symptoms, the higher the risk score.

Group‑level comparison of AD converters vs. 
non‑converters
Multivariate testing was conducted using a two-element 
manifold vector (i.e., G1 + S1, G2 + S2) between AD 
converters and non-converters after controlling for age, 
sex, MMSE score, APOE4 status, and education length 
to better understand our approach to integrating time 
information. We found that the visual cortex and stria-
tum showed significant between-group differences (Sup-
plementary Fig.  3). These regions were slightly different 
from the conversion effects, which may be explained by 
the fact that this group stratification approach did not 
effectively incorporate time-related information. In addi-
tion, such group comparisons require caution when set-
ting the group-level contrast, because if the time window 
for AD non-converters is extended, they could become 
converters.

Evaluation of model robustness
To demonstrate the robustness of our findings regard-
ing FC manifolds with respect to our methodologi-
cal choices, we performed several sensitivity analyses. 
We performed a penalized Cox regression using the 
ridge penalty instead of the elastic net penalty. When 
employing the ridge penalty, the conversion effect was 
pronounced in the visual and frontoparietal, attention 
networks as well as in the putamen and caudate  (Sup-
plementary Fig.  4). Additionally, we separately fitted 
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Fig. 2  Analysis of conversion risk scores. A Kaplan–Meier plot stratifying fast and slow conversion groups. B Comparison of PET tracer distributions 
between the two groups. C Differences in risk scores based on diagnosis at the time of scanning (left) and those according to the trajectory 
of the conversion to AD (right). D Associations between risk scores and clinical scores. Abbreviations: PET, positron emission tomography; CL, 
centiloid; SUVR, standardized uptake value ratio; FDG-PET, 18F-fluorodeoxyglucose-PET; tau-PET, 18F-Flortaucipir-PET; CN, cognitive normal; MCI, 
mild cognitive impairment; AD, Alzheimer’s disease; Tukey HSD, Tukey honestly significant difference; CDRSB, clinical dementia rating sum of boxes; 
ADAS, Alzheimer’s disease assessment scale
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the penalized Cox regression models using G1 + S1 and 
G2 + S2. The C-index was smaller when only the first 
or second FC manifold was considered compared with 
the combined FC manifolds (Supplementary Table  4). 
Our results underscore the value of employing com-
bined manifolds for enhanced performance and a holis-
tic understanding of the whole brain. Finally, when we 
changed the threshold values of FC to 5% and 15%, the 
spatial patterns of the gradients and the conversion effect 
were largely consistent, with spatial correlations between 
the main (i.e., 10% threshold) conversion effect and those 
of 5% and 15% thresholds being r = 0.61 and 0.74 (p < 0.05; 
Supplementary Figs. 5 and 6).

Validation using external datasets
Our findings from the ADNI risk dataset were success-
fully validated using external datasets, confirming that 
our FC manifolds can serve as prognostic biomarkers for 
AD. The median conversion date of the OASIS risk data-
set was 271 days, with a conversion rate of 66.6%. In the 
OASIS risk dataset, the prognostic accuracy achieved a 
C-index of 0.716 ± 0.015, and survival curves between the 
fast and slow conversion groups were significantly dif-
ferent (log-rank test, p = 0.019; Fig. 3A left). The median 
conversion dates for the fast and slow conversion groups 
were 89 and 1,166  days, respectively. Furthermore, the 
stratified trajectories demonstrated that the conver-
sion from MCI to AD posed the highest risk, whereas 
the conversion from CN to MCI posed the lowest risk 
(Fig.  3A right). These two trajectories (MCI → AD and 
CN → MCI) showed marginal differences (p = 0.052). In 
the OASIS diagnosis dataset, we observed significant 
between-group differences in risk scores among the CN, 
MCI, and AD groups (p < 0.001; Fig.  3B left). Notably, 
in the AD group, the risk score increased as the sever-
ity of dementia symptoms increased (r = 0.564, p < 0.001; 
Fig. 3B right).

Discussion
The identification of reliable biomarkers for the conver-
sion to AD from MCI or CN states is pivotal for timely 
therapeutic interventions. This study treated AD conver-
sion as a survival problem, incorporating time to con-
version and censorship. We found altered FC patterns 
across the cortical and subcortical regions in individuals 
vulnerable to AD conversion. The proposed risk score 
may serve as a biomarker for AD conversion because it 
correlates well with known disease trajectories, cerebral 
glucose metabolism, amyloid or tau pathology, and vari-
ous clinical phenotype scores for symptom severity. The 

results were validated using an independent dataset, indi-
cating the robustness of the proposed prognostic model.

We used connectome-manifold techniques to explore 
the progression of AD. This approach offers a robust 
and biologically interpretable perspective of the cortical 
axes, emphasizing the core components and facilitating 
analysis with essential information [27]. An FC gradient 
is a basis vector derived from a dimensionality reduction 
algorithm that can explain the original FC matrix well. 
A coefficient of arbitrary sign (positive or negative) is 
multiplied with the basis vector to actually represent the 
original FC. Thus, the sign of the gradients does not hold 
a specific meaning. Instead, the FC gradients should be 
understood as representing a continuous axis or dimen-
sion along which the FC varies. The purpose is to show 
the spatial organization of FC patterns rather than to 
indicate correlations or anti-correlations of functional 
time series. In addition, subcortico-cortical connectiv-
ity was assessed by projecting connectivity weights to 
cortical gradients [29, 30]. Using these FC manifolds, we 
identified the brain regions vulnerable to AD conversion. 
Notably, the sensory and frontoparietal cortices, cau-
date, and hippocampus were significantly affected. These 
areas are crucial for memory formation and navigation, 
and their decline is potentially due to amyloid deposition 
or neurofibrillary tangle formation [63–65]. It has been 
shown that dysfunction in the frontal-subcortical circuit, 
including the striatum, basal ganglia, and thalamus, is 
associated with neuropsychiatric disorders [66]. Indeed, 
dysconnectivity between the hippocampus and prefron-
tal cortex has been linked to cognitive decline in AD [67]. 
In addition, subcortical regions of the hippocampus and 
caudate affect memory systems, and their degradation 
may be linked to memory loss [68–72].

Interestingly, the conversion effects showed asymmet-
ric patterns between the left and right hemispheres. FC 
manifolds often exhibit similar values across the hemi-
spheres, yet in some cases, one side may have more influ-
ence. We applied penalized regression to FC manifolds 
where only one region would be selected if two regions 
across hemispheres exhibit similar trends. This is because 
of the high correlation of the features between the two 
hemispheres, leading to highly asymmetric conver-
sion patterns. We believe the asymmetry of the conver-
sion effects might partly come from our methodological 
choice of penalized regression. However, systematic anal-
yses exploring the inter-hemispheric asymmetry of FC in 
AD can be performed in future studies to unveil topolog-
ical underpinnings of AD connectopathology.

The potential clinical utility of the generated risk scores 
was validated in several respects. First, we defined fast 
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and slow conversion groups based on the risk score. The 
groups followed distinct pathways to AD, each character-
ized by different amyloid-β deposition, cerebral glucose 
metabolism, and tau accumulation patterns. Notably, 
fast converters exhibited more extensive tau pathology 
and higher amyloid-β plaque burden compared to slow 
converters. Indeed, a study highlights that cognitively 
unimpaired individuals with both amyloid-β plaques and 
tau tangles detected by PET imaging face significantly 
higher risks of cognitive decline and progression to mild 
cognitive impairment [73–75]. In addition, previous 

studies have shown that AD is associated with signifi-
cant glucose hypometabolism in the posterior cingulate 
cortex, which is predominantly affected by the disease 
[76–79]. The fast conversion group exhibited a greater 
reduction in cerebral glucose metabolism than the slow 
conversion group, indicating that the onset of hypome-
tabolism derived from FDG-PET can be used to predict 
AD conversion [80, 81]. Moreover, we observed varia-
tions in functional organization between the fast and 
slow conversion groups, suggesting that distinct mac-
roscale connectome architectures may correspond with 

Fig. 3  External validation results. A Kaplan–Meier plot stratifying fast and slow conversion groups (left) and the differences in risk scores according 
to the trajectory of the conversion to AD (right) in the OASIS risk dataset. B Risk score distributions based on the diagnosis (left) and the association 
between risk score and clinical dementia rating scales (right) in the OASIS diagnosis dataset. The color of the dots in the scatter plot is the same 
as the diagnosis group. Abbreviations: CN, cognitive normal; MCI, mild cognitive impairment; AD, Alzheimer’s disease; Tukey HSD, Tukey honest 
significant difference; CDRSB, clinical dementia rating sum of boxes
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their respective conversion rates to AD. These differences 
highlight the foundational role of functional connectivity 
in influencing the varying rates of conversions. However, 
more elaborate analyses are required to systematically 
evaluate between-group differences in FC between the 
fast and slow conversion groups.

Next, we segmented the conversion trajectories and 
found that individuals more vulnerable to AD conversion 
had higher risk scores. These findings suggest that FC 
manifolds and risk scores could be used as quantitative 
prognosis prediction markers in clinical practice, allow-
ing early diagnosis and the implementation of timely 
treatment plans. However, it should be noted that the 
ADNI risk dataset’s risk score of the MCI → MCI group 
and the CN → AD group did not show significant differ-
ences (p = 0.610; Fig. 2C right). Similarly, the OASIS risk 
dataset did not exhibit significant differences between 
the groups (p = 0.394; Fig. 3A right). Risk scores were not 
statistically different between individuals who remained 
stable in the MCI stage (MCI → MCI) and those who 
converted from CN to AD (CN → AD). The compara-
ble risk scores may indicate that participants in the MCI 
stage are heterogeneous, with some individuals at high 
risk of rapid progression (similar to CN → AD converters) 
and others with more resilience or compensatory mech-
anisms that keep them stable for longer periods. This 
observation suggests that there could be other factors 
influencing the progression from MCI to AD, including 
genetic predispositions. It highlights the need for a more 
detailed exploration of the diverse factors that determine 
the progression trajectories in AD. Moreover, clinical 
scores, such as the CDRSB and ADAS, which measure 
cognitive function [82], were significantly correlated with 
the risk score, again indicating a clinically reliable marker. 
Multiple sensitivity analyses and external data validation 
confirm the credibility of the proposed model.

In the current analysis, there are potential limitations. 
First, it has been shown that changes in vascular dys-
regulation (measured with arterial spin labeling [ASL] 
imaging) and amyloid-β deposition (measured with PET) 
might occur before fMRI-related changes [10]. How-
ever, limited samples with ASL imaging met our inclu-
sion criteria in the ADNI database hindered the analysis 
of vascular dysregulation. More delicate analyses should 
be performed in future works by integrating multiple 
imaging modalities to assess molecular and macroscale 
brain disorganization in AD. Second, our study may 
have included individuals assessed as CN or diagnosed 
with MCI before inclusion, leading to a left truncation. 
However, our analysis treated these individuals as if they 
had entered the study at the time of diagnosis, which 
may have led to an underestimation or overestimation of 
their time at risk. While our model is capable of handling 

right censoring, it does not explicitly account for left 
truncation. This limitation may have introduced biased 
estimates of the regression coefficients and survival prob-
abilities. Third, with limited samples, some samples taken 
after the initial scan of the same individual were assumed 
to be independent. However, these samples are likely 
to be correlated. In future studies, incorporating left-
truncated data and accounting for correlations between 
repeated measurements in a large study population will 
enhance the accuracy of survival estimates and provide 
a more comprehensive understanding of the risk factors 
associated with conversion to AD.

Conclusions
In the present study, we developed a prognostic model 
for predicting the risk of conversion from MCI (or CN) 
to AD by leveraging functional connectivity and Cox 
regression. With a high C-index, our model underscores 
the significance of whole-brain manifolds in AD conver-
sion. Furthermore, the risk score, which correlates with 
cerebral glucose metabolism, amyloid or tau pathology, 
and clinical phenotype scores, may be a promising tool 
for clinicians. Our risk score distinguished between the 
fast and slow conversion groups, and the association of 
this risk score with established cognitive function meas-
ures emphasized its potential clinical utility. Identifying 
reliable and high-performance biomarkers for predicting 
AD conversion allows earlier detection of at-risk individ-
uals with MCI or subjective memory concerns, enabling 
timely therapeutic interventions.
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