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Abstract 

Background Blood‑derived mitochondrial DNA copy number (mtDNA‑CN) is a proxy measurement of mitochondrial 
function in the peripheral and central systems. Abnormal mtDNA‑CN not only indicates impaired mtDNA replication 
and transcription machinery but also dysregulated biological processes such as energy and lipid metabolism. How‑
ever, the relationship between mtDNA‑CN and Alzheimer disease (AD) is unclear.

Methods We performed two‑sample Mendelian randomization (MR) using publicly available summary statistics 
from GWAS for mtDNA‑CN and AD to investigate the causal relationship between mtDNA‑CN and AD. We estimated 
mtDNA‑CN using whole‑genome sequence data from blood and brain samples of 13,799 individuals from the Alz‑
heimer’s Disease Sequencing Project. Linear and Cox proportional hazards models adjusting for age, sex, and study 
phase were used to assess the association of mtDNA‑CN with AD. The association of AD biomarkers and serum 
metabolites with mtDNA‑CN in blood was evaluated in Alzheimer’s Disease Neuroimaging Initiative using linear 
regression. We conducted a causal mediation analysis to test the natural indirect effects of mtDNA‑CN change on AD 
risk through the significantly associated biomarkers and metabolites.

Results MR analysis suggested a causal relationship between decreased blood‑derived mtDNA‑CN and increased 
risk of AD (OR = 0.68; P = 0.013). Survival analysis showed that decreased mtDNA‑CN was significantly associated 
with higher risk of conversion from mild cognitive impairment to AD (HR = 0.80; P = 0.002). We also identified sig‑
nificant associations of mtDNA‑CN with brain FDG‑PET (β = 0.103; P = 0.022), amyloid‑PET (β = 0.117; P = 0.034), CSF 
amyloid‑β (Aβ) 42/40 (β=‑0.124; P = 0.017), CSF t‑Tau (β = 0.128; P = 0.015), p‑Tau (β = 0.140; P = 0.008), and plasma NFL 
(β=‑0.124; P = 0.004) in females. Several lipid species, amino acids, biogenic amines in serum were also significantly 
associated with mtDNA‑CN. Causal mediation analyses showed that about a third of the effect of mtDNA‑CN on AD 
risk was mediated by plasma NFL (P = 0.009), and this effect was more significant in females (P < 0.005).
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Background
Mitochondria are double-membrane organelles and 
the site of many vital cellular processes, including the 
generation of ATP through oxidative phosphorylation 
(OXPHOS), apoptosis, lipid metabolism, and maintain-
ing calcium homeostasis [1, 2]. Human mitochondria 
have ~ 16.6 kb-long circular DNA (mtDNA) encoding 2 
rRNAs, 22 tRNAs, and 13 OXPHOS proteins. A human 
cell can contain 0–600,000 mitochondria and each 
mitochondrion contains 1–10 copies of mtDNA [3, 4]. 
mtDNA copy number (mtDNA-CN) is cell-type-specific 
and developmental-stage-specific, depending on cellular 
energy demand. Thus, mtDNA-CN is also a proxy meas-
urement of mitochondrial function. Abnormal mtDNA-
CN not only indicates impaired mtDNA replication and 
transcription machinery [5, 6], but also suggests dysregu-
lated biological processes, leading to mitochondrial dys-
function. Low blood-derived mtDNA-CN is a risk factor 
for several peripheral diseases, including cardiometa-
bolic disease, type 2 diabetes, chronic kidney disease, and 
dementia [5, 7–10].

Late-onset Alzheimer disease (AD) is the most com-
mon cause of dementia. It is estimated that 6.5 million 
people aged 65 and older have AD in the United States, 
and this number will increase to 13.8 million by 2060 
[11]. The role of β-amyloid (Aβ) and tau proteins in AD 
pathogenesis have been intensively studied in the past 
few decades, but their underlying mechanisms remain 
unclear [12]. Mitochondrial dysfunction has also been 
extensively studied and may become a novel therapeu-
tic target for AD [13, 14]. One feature of mitochon-
drial dysfunction is disturbed mitochondrial genome 
homeostasis, which is in part reflected by abnor-
mal mtDNA levels [6, 13]. Decreased mtDNA-CN in 
pyramidal neurons from AD cases compared to cogni-
tively normal (CN) individuals has been observed [15]. 
Similarly, lower mtDNA-CN was found in peripheral 
mononuclear blood cells from AD and mild cognitive 
impairment (MCI) patients compared to CN subjects 
[16]. These findings suggest that mtDNA-CN may be 
a marker of mitochondrial dysfunction in a preclinical 
stage of AD. However, the metabolic mediators of mito-
chondria and mechanistic connection between blood 
mtDNA-CN and AD remain unknown. Yang et  al. 
observed that genes whose expression was significantly 

associated with blood mtDNA-CN were enriched in 
neurodegenerative disease pathways in multiple tis-
sues [5]. A direct connection of mtDNA-CN to AD 
was established by a genome-wide association study 
(GWAS) of blood mtDNA-CN which identified signifi-
cant associations with genes involved in Aβ clearance 
[17].

In this study, we employed multiple analytical 
approaches to evaluate the association of AD with 
mtDNA-CN estimated from whole genome sequence 
(WGS) data from more than 13,000 participants of the 
Alzheimer’s Disease Sequencing Project (ADSP) and to 
determine the causal relationship between mtDNA-CN 
and AD using publicly available GWAS summary statis-
tics. We also examined the association of mtDNA-CN 
with a panel of proteins and metabolites measured in 
the Alzheimer Disease Neuroimaging Initiative (ADNI) 
participants. Finally, we investigated possible mediation 
by proteins and metabolites of the association between 
mtDNA-CN and AD.

Methods
Overview of analysis design
As depicted in Fig.  1, we assessed associations of 
mtDNA-CN with AD and pertinent covariates includ-
ing age, sex, APOE4 status, and ancestry in WGS data 
derived from brain and blood tissue of ADSP partici-
pants. Analyses were performed separately for each 
ancestry group because the heritability of mtDNA-CN 
varies among populations and associations of mtDNA-
CN with other traits is influenced by environmental 
factors [18]. The effect of mtDNA-CN level on conver-
sion of CN to MCI and MCI to AD was assessed by sur-
vival analysis. Next, we tested the hypothesis that low 
blood mtDNA-CN is a causal factor to AD using Men-
delian Randomization (MR). We also evaluated asso-
ciations of blood mtDNA-CN with AD biomarkers and 
metabolites in ADNI datasets using linear regression 
models. AD status-stratified and sex-stratified analyses 
were performed to investigate how these associations 
change across AD stages and between genders. Causal 
mediation analysis was also conducted to identify 
which biomarkers and metabolites mediate the associa-
tion between blood mtDNA-CN and AD.

Conclusions Our study indicates that mtDNA‑CN measured in blood is predictive of AD and is associated with AD 
biomarkers including plasma NFL particularly in females. Further, we illustrate that decreased mtDNA‑CN possibly 
increases AD risk through dysregulation of mitochondrial lipid metabolism and inflammation.

Keywords Mitochondria DNA copy number, Biomarkers, Whole genome sequencing, Alzheimer’s disease, Serum 
metabolites, Mendelian randomization, Causal mediation
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Subjects and whole genome sequencing
Study participants were selected from cohorts assem-
bled by the ADSP for whole genome sequencing. Details 
of subject ascertainment, diagnostic procedures, and 
WGS methods using DNA obtained from blood or brain 
tissue for the ADSP Release 3 (R3) dataset contain-
ing 16,774 individuals are described elsewhere [19–21]. 
The Genome Center for Alzheimer’s Disease (GCAD) 
quality control (QC) working group performed quality 
checks of variants and genotypes and samples [19]. Indi-
viduals with unknown AD status (n = 2,774) and unex-
pected genetic duplicate records (n = 286) were excluded, 
yielding a sample of 13,799 individuals for subsequent 
analyses (Additional file  2: Table  S1). Individuals in the 
pre-filtered R3 dataset were clustered into population 
ancestry groups using a Gaussian Mixture model applied 
to principal component analysis performed with the 
GENESIS R package [22]. 2,930, 3,027, and 7,842 indi-
viduals were identified to be genetically similar to Afri-
can Americans (AA), Caribbean Hispanics (CH), and 
Europeans (EA) respectively. Some of the subjects in this 
dataset were members of multiplex families (compris-
ing two or more individuals affected with AD). The R3 
dataset included 1,575 participants in multiple phases of 
ADNI (ADNI-1, ADNI-GO, ADNI-2) which is a multi-
center longitudinal study of MCI and AD that performs 

cognitive and neuroimaging exams and measures AD 
biomarkers derived from CSF and blood [23]. WGS for 
the ADNI samples was performed in two batches several 
years apart using different sequencing platforms. The dis-
tribution of ADNI subjects according to diagnosis and 
study phase is shown in Table 1.

Estimation of mtDNA‑CN
We developed a custom pipeline to estimate mtDNA-CN 
from WGS data in CRAM files. Genome Analysis Toolkit 
version 4.0 was used to separate mtDNA read align-
ments from nuclear read alignments in each CRAM file 
(Additional file 1: Fig. S1). Paired-end reads that mapped 
to two different chromosomes were discarded. To effi-
ciently estimate autosomal DNA coverage, we randomly 
sampled 3,000 1,000-bp regions that meet the following 
criteria for estimation: (1) no overlap with telomeres, 
centromeres, gaps, and low complexity regions, and (2) 
matched average GC content with mtDNA. The mito-
chondrial control region and both ends with an average 
read length of the non-control region were excluded from 
mtDNA coverage estimation for each sequencing library 
due to their low mapping quality. Mosdepth software was 
used to count base coverage for both autosomal DNA 
and mtDNA [24]. mtDNA-CN was estimated as

Fig. 1 Analysis design. mtDNA‑CN = mitochondria DNA copy number; ADSP = Alzheimer’s Disease Sequencing Project; WGS = whole 
genome sequencing; AD = Alzheimer disease; EA = European Ancestry, AA = African American, CH = Caribbean Hispanic; ADNI = Alzheimer’s 
Disease Neuroimaging Initiative; MCI = mild cognitive impairment; GWAS = genome‑wide association study; * Covariates include 
age, sex, genetic ancestry group, APOE ε2 and ε4 dosage, sequencing center, and PCR. ** Covariates include age, sex, and original 
study phase; *** Covariates include age, sex, original study phase, and AD diagnosis; # Cox proportional hazards regression model: 
log h(t)∼adjusted blood mtDNA− CN + age + sex + original study phase
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We compared our customized pipeline with fastMitoC-
alc [25] by leveraging the 39 technical replicates derived 
from blood samples. These replicates included three 
subjects sequenced 9 times (n = 27) and two subjects 
sequenced 6 times (n = 12). As shown in Fig.  S2 (Addi-
tional file  1), the mean mtDNA-CN that was estimated 
using our pipeline (mean = 220.3) was significantly less 
compared to the mean estimated using fastMitoCalc 
(mean = 231.2; ANOVA P = 9.61 ×  10−9).

Preprocessing/Normalization of blood mtDNA‑CN 
and calculation of polygenic risk scores
Previous studies reported that leukocytes and platelets 
counts are major confounding factors in the estimation 
of mitochondrial genome copy number per cell [5, 17, 26, 
27]. To adjust for the effect of blood cell type composi-
tion on blood mtDNA-CN level estimated in the ADNI 
dataset, PRSice-2 was used [28] to calculate polygenic 
risk scores (PRS) by leveraging summary statistics of 
blood cell count GWAS recently published by Chen et al. 
[29]. Variants with association p-values < 5 ×  10−5 and 
minor allele frequency > 0.01 from each blood cell count 
trait GWAS for individuals with European ancestry were 
selected and then LD-clumped (r2 < 0.1) for the PRS cal-
culation. PRS of neutrophils (P = 1.53 ×  10−6), lympho-
cytes (P = 0.15), and platelets (P = 0.007) and a binary 
variable of whether the sequencing library was PCR 
amplified (P = 7.96 ×  10−65) were selected using stepwise 

2×
mean base coverage of mtDNA

mean base coverage of autosomes

regression in both directions and included as covariates 
in a linear regression model with mtDNA-CN as the 
outcome. Standardized and inverse normal transformed 
residuals from linear regression were used as adjusted 
mtDNA-CN for all subsequent association analyses using 
ADNI data.

AD biomarker, serum metabolite and plasma protein 
measurements
Baseline measurements of AD biomarkers including 
fluorodeoxyglucose (FDG) and amyloid-β (Aβ) measured 
by positron emission tomography (PET) scan and plasma 
and CSF measures of Aβ42, Aβ40, total tau (t-tau), phos-
phorylated-tau181 (p-tau), and neurofilament light (NFL) 
for ADNI participants were downloaded from the Labo-
ratory of Neuro Imaging (LONI) website (https:// ida. 
loni. usc. edu). Measurement protocols are documented 
in the LONI website and were previously described [30, 
31]. Data for a panel of 187 metabolites consisting of 
lipids, amino acids, and biogenic amines were quanti-
fied in serum samples collected from ADNI-1/GO/2 
participants at the baseline visit by the Alzheimer’s Dis-
ease Metabolomics Consortium (ADMC) [32], as well as 
for another panel of 190 proteins that were measured in 
plasma samples collected at baseline from ADNI-1 par-
ticipants by the Biomarkers Consortium Plasma Prot-
eomics Project were downloaded from the LONI website.

Statistical analysis methods
Two‑sample mendelian randomization analysis
To test the hypothesis that lower mtDNA-CN in blood 
is causally related to increased risk of AD, we performed 
two-sample MR analyses using summary statistics from 
two independent GWAS because data for multiple traits 
were unavailable for the same cohort. We selected 26 
single nucleotide polymorphisms (SNPs) as instrument 
variables from a blood mtDNA-CN GWAS focused on 
mitochondria disorder-related traits [10]. Summarized 
results were also obtained for 24 of these SNPs from a 
large AD GWAS [33]. Data from the two GWAS were 
harmonized to align the effect allele for each SNP. A syn-
onymous variant, rs62641680, in the DGUOK loci was 
found to largely influence causal effect estimate in the 
leave-one-out analysis using MR-Egger (Additional file 2: 
Table  S2) and therefore was excluded, which resulted 
in 23 SNPs in the final analysis. MR analysis was per-
formed using several approaches including inverse vari-
ance weighted (IVW), median weighted, MR-Egger, and 
robust adjusted profile score (RAPS), which models plei-
otropy to overcome the bias caused by violation of the 
exclusion restriction assumption [34–37], that are imple-
mented in the R package “TwoSampleMR” (version 0.5.6) 
[38]. MR-PRESSO and HEIDI methods, implemented in 

Table 1 Demographic characteristics of unrelated ADNI 
participants with European ancestry

SD Standard deviation, CN Cognitively normal, MCI Mild cognitive impairment, 
AD Alzheimer’s Disease, ADNI the Alzheimer’s Disease Neuroimaging Initiative

Cohorts ADNI‑1 ADNI‑GO ADNI‑2

Total, No. 585 109 661

Age, mean (SD), y 74.8 (6.8) 71.5 (7.6) 72.4 (7.1)

Female, No. (%) 233 (39.8%) 47 (43.1%) 307 (46.4%)

Baseline Diagnosis, No. (%)
 CN 161 (27.5%) ‑ 238 (36.0%)

 MCI 301 (51.5%) 109 (100%) 300 (45.4%)

 AD 123 (21.0%) ‑ 123 (18.6%)

Progression from CN to MCI, 
No. (%)
 Yes 38 (26.2%) ‑ 25 (11.7%)

 No 107 (73.8%) ‑ 189 (88.3%)

Progression from MCI to AD, 
No. (%)
 Yes 155 (57.2%) 12 (14.6%) 77 (30.8%)

 No 116 (42.8%) 70 (85.4%) 173 (69.2%)

https://ida.loni.usc.edu
https://ida.loni.usc.edu
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R packages “MRPRESSO” and “gsmr” respectively, were 
used to detect global heterogeneity and pleiotropic outli-
ers [39, 40]. The intercept term of MR-Egger regression 
was used to determine directional horizontal pleiotropy. 
The MR Steiger method in “TwoSampleMR” package was 
used to evaluate the directionality of causality [41].

Association analyses
We evaluated the association of inverse-normal-trans-
formed mtDNA-CN with age, sex, AD status, genetic 
ancestry, and APOE ε2 and ε4 dosage, using a linear 
regression model adjusting for sequencing centers and a 
binary term of whether the sequencing library was PCR-
amplified. Analyses included only unrelated individuals 
and were performed separately for mtDNA-CN derived 
from brain and blood. Additional models were tested for 
mtDNA-CN measured in blood for each ancestry group. 
A sensitivity analysis including terms for AD diagnosis 
and covariates measured at baseline in ADNI participants 
was also performed to overcome the confounding effects 
from time interval between age when the blood sample 
was drawn for WGS and age at AD diagnosis and blood 
cells composition. The effect of blood-derived mtDNA-
CN on conversion from CN to MCI and conversion from 
MCI to AD in the ADNI cohort was assessed using a Cox 
proportional hazards model including covariates for age 
at baseline, sex, and study phase implemented in the R 
package “survival” (version 3.3-1, https:// cran.r- proje ct. 
org/ web/ packa ges/ survi val/ index. html). Comparison of 
the rates of conversion from CN to MCI and from MCI 
to AD between low and high mtDNA-CN levels defined 
by the median of adjusted mtDNA-CN was evaluated 
by Kaplan-Meier survival analysis using R package “sur-
vminer” (version 0.4.9). We investigated the associations 
between mtDNA-CN and AD brain imaging markers 
measured by PET and established AD biomarkers meas-
ured in CSF and plasma. Associations of inverse normal-
transformed biomarkers, metabolites, and proteins levels 
with the adjusted mtDNA-CN was evaluated using mul-
tiple linear regression models including covariates for age 
at baseline, sex, original ADNI study phase, and diagnosis 
at baseline. Analyses were also performed in subgroups 
stratified by sex or diagnosis at baseline.

Causal mediation analysis
We performed causal mediation analysis to meas-
ure the potential role of biomarkers and metabolites 
as mediators of the association of mtDNA-CN (i.e. 
exposure variable) with AD or both AD and MCI con-
sidered jointly (i.e. outcome variable) using a natural 
effect model that included covariates for age, sex, and 
study phase. This approach models the unobservable 
counterfactual diagnostic outcome if one was exposed 

to a mtDNA-CN level that is different than his/her 
real-world measurement and enables decomposition of 
the total effects of mtDNA-CN on AD risk into natural 
direct effect (NDE) and natural indirect effect (NIE). 
The model is implemented as follows. Let Y (x, M(x)) 
denote the AD diagnosis outcome observed when the 
mtDNA-CN is at level x and biomarker/metabolite is 
at level M(x) . In this situation, NDE captures the effect 
of one standard deviation increase in mtDNA-CN on 
AD or MCI risk with covariates at baseline levels C if 
one intervenes to set a biomarker or metabolite to a 
fixed level it would have been as if mtDNA-CN level 
is unchanged, which can be expressed as an odds ratio 
using counterfactual notation as

By contrast, NIE captures the effect of mtDNA-CN on 
AD or MCI risk only due to the effect of one standard 
deviation increase in mtDNA-CN on the biomarker or 
metabolite, which can be expressed as

Data were analyzed using a logistic regression model 
including both exposure, mediator, and covariates as pre-
dictors to obtain estimates for the outcome model. Next, 
10 hypothetical exposure levels were randomly drawn for 
each individual from a linear model for exposure, con-
ditioned on all covariates, and were fit in the outcome 
model along with the baseline levels of mediator and all 
covariates to impute the unobserved counterfactual out-
come. Finally, this ten-fold expanded dataset was fit in 
the natural effect model to obtain the estimates of natu-
ral direct, indirect, and total effects using the R package 
medflex (version 0.6-7) [42].

Results
mtDNA‑CN in brain and blood are associated with AD
In the ADSP WGS sample, we observed an average 
mtDNA-CN of 2,152.0 ± 1249.0 in DNA derived from 
brain (Additional file 1: Fig. S3A). Participants diagnosed 
with AD had a significantly lower brain mtDNA-CN than 
cognitively normal controls (β = -0.189, P = 0.002, Addi-
tional file 1: Fig. S3B). Brain mtDNA-CN was positively 
associated with age (β = 0.020, P = 2.20 ×  10−8, Addi-
tional file  1: Fig. S3C) and APOE ε2 dosage (β = 0.265, 
P = 3.88 ×  10−4, Additional file  1: Fig. S3F), but not with 
ε4 dosage (P = 0.46) or sex (P = 0.76, Additional file  1: 
Fig. S3D). EA individuals had a significantly greater brain 

ORNDE =
odds{Y (x + 1,M(x)) = 1|C}

odds{Y (x,M(x)) = 1|C}
.

ORNIE =
odds{Y (x,M(x + 1)) = 1|C}

odds{Y (x,M(x)) = 1|C}
.

https://cran.r-project.org/web/packages/survival/index.html
https://cran.r-project.org/web/packages/survival/index.html
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mtDNA-CN compared to AAs (P = 0.006, Additional 
file 1: Fig. S3E).

The average mtDNA-CN is 193.0 ± 107.4 in DNA 
derived from blood (Additional file  1: Fig. S4A), much 
lower than brain mtDNA-CN. Similar to the asso-
ciation findings in brain samples, blood mtDNA-CN 
was significantly lower in AD cases than controls (β = 
-0.130, P = 1.33 ×  10−9, Additional file  1: Fig. S4B) and 
positively associated with APOE ε2 dosage (β = 0.072, 
P = 0.029, Additional file  1: Fig. S4F). However, differ-
ent from associations with brain mtDNA-CN, blood 
mtDNA-CN was negatively associated with age (β = 
-0.008, P = 1.81 ×  10−11, Additional file  1: Fig. S4C) and 
significantly higher in females than males (β = 0.212, 
P = 2.45 ×  10−24, Additional file  1: Fig. S4D). Addition-
ally, AA individuals had significantly more copies of 
mtDNA than EAs (β = 0.170, P = 1.80 ×  10−9) and sig-
nificantly fewer copies of mtDNA than CH individuals 
(β = -0.252, P = 7.77 ×  10−14, Additional file  1: Fig. S4E). 
In ancestry-specific analyses, mtDNA-CN measured in 
blood was associated with lower age in EA (β = -0.011, 
P = 4.16 ×  10−12) and CH (β = -0.012, P = 1.40 ×  10−4) 
individuals and was significantly higher in females than 
in males in all three ancestry groups (Additional file  2: 
Table  S3). mtDNA-CN was significantly smaller in 
AD cases compared to controls in the EA (β = -0.211, 
P = 3.58 ×  10−12) and CH (β = -0.263, P = 1.70 ×  10−6) 
groups.

 Sensitivity analyses conducted to consider confound-
ing effects from blood cells composition and WGS tech-
nical differences revealed that AD cases had significantly 
lower mtDNA-CN than MCI cases (β = -0.202, P = 0.002) 
and controls (β = -0.257, P = 2.72 ×  10−4). However, 
mtDNA-CN was not different between MCI cases 
and controls (Fig.  2A). Lower blood mtDNA-CN was 
inversely associated with age (β = -0.018, P = 1.34 ×  10−7) 
(Fig.  2B) and mtDNA-CN level was higher in females 
than males (β = 0.426, P = 2.04 ×  10−18) (Fig.  2C). These 
results are consistent with findings from our analysis of 
all blood samples (Additional file  1: Fig. S4) and other 
studies [43].

Blood mtDNA‑CN is associated with conversion from MCI 
to AD
Among 1,355 genetically unrelated ADNI participants 
of European ancestry, 63 CN individuals and 244 MCI 
cases converted to MCI and AD, respectively, during 
the follow-up period. The mean follow-up time was 5.2 
years among those who converted from CN to MCI, 
and 3.6 years for those who converted from MCI to AD. 
We found that lower blood mtDNA-CN estimated at 
baseline visit was significantly associated with a higher 
risk of conversion from MCI to AD (HR = 0.80, 95% 

CI = 0.69–0.92, P = 0.002). However, mtDNA-CN was 
not associated with conversion from CN to MCI. These 
observations are consistent with findings from survival 
analysis showing a higher probability of MCI cases with 
low mtDNA-CN to develop AD (P < 0.0001; Fig. 2D), but 
no effect of mtDNA-CN on the conversion from CN to 
MCI (P = 0.28; Fig. 2E).

Decreased blood mtDNA‑CN is genetically causal to higher 
AD risk
After initial analyses using four two-sample MR meth-
ods, a synonymous variant, rs62641680, in the DGUOK 
loci was found to largely influence causal effect estimate 
in the leave-one-out analysis (Additional file 2: Table S2) 
and therefore was excluded, which resulted in 23 SNPs in 
the final analysis. Results obtained using three of the four 
methods indicate that decreased blood mtDNA-CN is 
causal to higher AD risk (IVW: β= -0.356, P = 0.044; MR-
Egger: β = -0.738, P = 0.041; RAPS: β = -0.390, P = 0.012; 
Table 2). There was no evidence of heterogeneity assessed 
using Cochran’s Q test for MR-Egger (Q = 28.1, P = 0.14) 
or IVW (Q = 30.4, P = 0.11), additional outliers, global 
horizontal pleiotropy (P = 0.13), or directional horizontal 
pleiotropy assessed using intercept of MR-Egger regres-
sion (P = 0.20). The MR Steiger test of directionality indi-
cated a valid causal direction from mtDNA-CN to AD 
(P = 1.93 ×  10−45).

Blood mtDNA‑CN is associated with AD biomarkers 
in females and serum metabolites
In the total ADNI dataset, mtDNA-CN was nominally 
associated with CSF Aβ42 level (P = 0.048), but not 
with any other AD biomarkers (Fig. 3, Additional file 2: 
Table  S4). Amyloid-PET level was positively associated 
with mtDNA-CN in controls only (β = 0.199, P = 0.002). 
mtDNA-CN was inversely associated with lower CSF 
Aβ42 in individuals with MCI (β = -0.102, P = 0.038) 
and with higher CSF NFL level in AD cases (β = 0.281, 
P = 0.015). Among females, mtDNA-CN was associ-
ated with FDG-PET, amyloid-PET, CSF t-tau and p-tau, 
and plasma NFL levels, whereas no significant asso-
ciations were observed in males. In the total sample, 
mtDNA-CN was significantly associated (Padj < 0.05) 
with 26 lipid, amino acid, and biogenic amine species 
(Fig.  4, Additional file  2: Table  S5). Significant associa-
tions were found for 14 of these metabolites, 11 of which 
are acylcarnitines, among individuals with MCI, but not 
in controls or AD cases. Among males, mtDNA-CN was 
significantly associated with long-chain acylcarnitines, 
sphingomyelins, glycine, and taurine, whereas only a neg-
ative association with hydroxyvalerylcarnitine (C5-OH, β 
= -0.225, Padj = 0.013) was identified in females. Analyses 
of plasma protein levels revealed negative associations 
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with matrix metalloproteinase 10 (MMP10) in MCI cases 
(β = -0.170, P = 0.044) and matrix metalloproteinase 
9 (MMP9) in males (β = -0.201, P = 0.009) (Additional 
file 2: Table S6).

AD biomarkers and metabolites mediate the association 
of blood mtDNA‑CN with AD
We found a significant natural indirect effect (NIE) of 
mtDNA-CN on risk of MCI or AD mediated by FDG-
PET, amyloid-PET, and plasma NFL (P < 0.05 for all). 
However, among these three biomarkers, a signifi-
cant total effect of mtDNA-CN was observed only for 
plasma NFL (P = 0.039). A natural direct effect (NDE) 
of mtDNA-CN on risk of MCI or AD was not evident 
for any mediators. In a model including only CN and 
AD participants, we observed very similar patterns 
of NIE of mtDNA-CN on AD risk mediated by FDG-
PET and amyloid-PET, but the significance of NIE was 
attenuated. On the contrary, the NIE mediated through 

Fig. 2 Partial residuals plots showing the relationships between blood mtDNA‑CN from ADNI and AD diagnosis (A), age (B), sex (C). Residuals were 
calculated after fitting a liner model where mtDNA‑CN was the dependent variable and age, sex, cohort, and AD diagnosis were the independent 
variables. Kaplan‑Meier plot to visualize the probability of (D) MCI participants at ADNI baseline free from converting to AD and (E) CN patients free 
from converting to MCI for low mtDNA‑CN group and high mtDNA‑CN group. mtDNA‑CN was dichotomized by the median

Table 2 Estimation of causal effect of blood mtDNA‑CN on AD 
using two‑sample mendelian randomization methods

SE Standard error, 95% CI 95% confidence interval

Method OR 95% CI P‑value

Robust adjusted profile score 0.677 0.498–0.920 0.013
MR Egger 0.478 0.246–0.928 0.041
Weighted median 0.746 0.494–1.125 0.162

Inverse variance weighted 0.700 0.495–0.991 0.044
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plasma NFL became more significant (OR = 0.89, 95% 
CI = 0.82–0.96, P = 0.002). No significant indirect effect 
of mtDNA-CN was observed in a model including only 
MCI and AD participants in the analysis. The same 
results were also observed in the female subgroup, 

but the NIEs was larger than the total sample analysis 
(Table 3, Additional file 2: Table S7).

Among serum metabolites, we identified nominal 
NIE of mtDNA-CN on risk of MCI or AD mediated 

Fig. 3 P‑value and effect size plot to visualize the association between blood mtDNA‑CN and classic AD biomarkers for all ADNI participants, each 
sex and AD diagnosis strata. * P < 0.05; ** P < 0.01. CN = cognitively normal; MCI = mild cognitive impairment; AD = Alzheimer disease

Fig. 4 Adjusted P‑value and effect size plot to visualize the association between blood mtDNA‑CN and serum metabolites for all ADNI participants, 
each sex and AD diagnosis strata. Padj< 0.1; * Padj < 0.05; ** Padj <0.01
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by two acylcarnitine species, C5-OH (OR = 0.95, 95% 
CI = 0.92–0.99, P = 0.005) and octadecadienylcarni-
tine (C18:2: OR = 0.98, 95% CI = 0.96-1.00, P = 0.044), 
and glycine (OR = 1.02, 95% CI = 1.00-1.04, P = 0.042). 
The NIE of mtDNA-CN was mediated by serotonin 
(OR = 0.97; 95% CI = 0.94-1.00, P = 0.048) in a model 
including only CN and AD participants. Among 
females, the NIE of mtDNA-CN on risk of MCI or 
AD was mediated only by C5-OH (P = 0.007), whereas 
nominally significant NIE through C18:2 (P = 0.045) 

and glycine (P = 0.042) was observed in males (Table 3, 
Additional file 2: Table S8).

Discussion
This study leveraged whole genome sequence data 
obtained from a large sample of ADSP participants to 
measure mtDNA-CN that is relatively difficult to quantify 
by traditional genotyping methods [44, 45]. We observed 
that participants with AD diagnoses had lower mtDNA-
CN levels in both brain and blood samples compared to 
cognitively normal individuals, which is consistent with 

Table 3 Mediating effects of AD biomarkers and metabolites on the association of mtDNA‑CN with AD. (To be placed at line 374, page 
18) 

NIE Natural indirect effect, NDE Natural direct effect, TE Total effect, CN Cognitively normal, MCI Mild cognitive impairment, AD Alzheimer disease, OR Odds ratio, CI 
Confidence interval, NFL Neurofilament light

NDE NIE TE
Group Mediator N OR (95% CI) P‑value OR (95% CI) P‑value OR (95% CI) P‑value
(MCI + AD) vs CN
Total Plasma NFL 1157 0.901 (0.784, 1.039) 0.145 0.950 (0.914, 0.987) 0.009 0.856 (0.740, 0.994) 0.039

Hydroxyvalerylcarnitine 963 0.969 (0.824, 1.137) 0.698 0.950 (0.917, 0.985) 0.005 0.920 (0.785, 1.079) 0.306

Octadecadienylcarnitine 1313 0.875 (0.753, 1.018) 0.082 0.980 (0.960, 0.999) 0.044 0.857 (0.738, 0.996) 0.044

Glycine 1313 0.841 (0.728, 0.966) 0.017 1.018 (1.001, 1.037) 0.042 0.857 (0.741, 0.984) 0.033

Serotonin 1268 0.874 (0.756, 1.009) 0.066 0.983 (0.965, 1.002) 0.073 0.859 (0.743, 0.993) 0.040

Male Plasma NFL 642 0.860 (0.705, 1.047) 0.135 0.980 (0.934, 1.029) 0.411 0.843 (0.689, 1.031) 0.097

Hydroxyvalerylcarnitine 746 0.881 (0.725, 1.072) 0.204 0.967 (0.934, 1.001) 0.054 0.852 (0.699, 1.038) 0.111

Octadecadienylcarnitine 746 0.881 (0.717, 1.080) 0.225 0.967 (0.935, 0.999) 0.045 0.852 (0.693, 1.045) 0.125

Glycine 746 0.824 (0.681, 1.005) 0.051 1.032 (1.001, 1.065) 0.042 0.850 (0.704, 1.037) 0.099

Serotonin 722 0.882 (0.731, 1.064) 0.189 0.991 (0.969, 1.015) 0.456 0.874 (0.723, 1.056) 0.163

Female Plasma NFL 515 0.954 (0.772, 1.183) 0.666 0.919 (0.868, 0.977) 0.005 0.877 (0.705, 1.099) 0.246

Hydroxyvalerylcarnitine 410 1.076 (0.848, 1.367) 0.547 0.897 (0.830, 0.970) 0.007 0.966 (0.760, 1.229) 0.775

Octadecadienylcarnitine 567 0.871 (0.703, 1.082) 0.211 0.997 (0.970, 1.028) 0.859 0.869 (0.702, 1.076) 0.198

Glycine 567 0.862 (0.694, 1.067) 0.176 1.008 (0.985, 1.031) 0.476 0.869 (0.700, 1.079) 0.205

Serotonin 546 0.864 (0.700, 1.091) 0.198 0.979 (0.949, 1.009) 0.165 0.846 (0.676, 1.057) 0.141

AD vs CN
Total Plasma NFL 609 0.848 (0.715, 1.008) 0.059 0.886 (0.822, 0.960) 0.002 0.751 (0.625, 0.911) 0.003

Hydroxyvalerylcarnitine 457 0.855 (0.683, 1.076) 0.177 0.975 (0.942, 1.007) 0.135 0.834 (0.666, 1.046) 0.114

Octadecadienylcarnitine 625 0.722 (0.595, 0.871) 0.001 0.992 (0.976, 1.010) 0.373 0.716 (0.591, 0.866) 0.001

Glycine 625 0.713 (0.597, 0.862) 3.25×10‑4 1.004 (0.982, 1.026) 0.709 0.716 (0.598, 0.866) 4.16×10‑4

Serotonin 611 0.744 (0.617, 0.905) 0.002 0.970 (0.941, 1.000) 0.048 0.722 (0.599, 0.879) 0.001

Male Plasma NFL 322 0.826 (0.662, 1.043) 0.099 0.958 (0.860, 1.065) 0.431 0.791 (0.613, 1.021) 0.072

Hydroxyvalerylcarnitine 331 0.767 (0.602, 0.996) 0.039 0.986 (0.954, 1.018) 0.393 0.756 (0.587, 0.974) 0.030

Octadecadienylcarnitine 331 0.767 (0.598, 0.983) 0.037 0.986 (0.955, 1.018) 0.382 0.756 (0.589, 0.970) 0.028

Glycine 331 0.751 (0.590, 0.965) 0.022 1.009 (0.974, 1.047) 0.623 0.757 (0.593, 0.979) 0.030

Serotonin 325 0.802 (0.625, 1.046) 0.094 0.979 (0.944, 1.016) 0.255 0.786 (0.607, 1.017) 0.067

Female Plasma NFL 287 0.882 (0.676, 1.139) 0.344 0.813 (0.724, 0.920) 0.001 0.717 (0.540, 0.950) 0.021

Hydroxyvalerylcarnitine 211 0.869 (0.607, 1.240) 0.440 0.936 (0.861, 1.024) 0.135 0.813 (0.573, 1.158) 0.249

Octadecadienylcarnitine 294 0.680 (0.504, 0.925) 0.013 0.998 (0.979, 1.019) 0.818 0.679 (0.502, 0.917) 0.012

Glycine 294 0.678 (0.513, 0.910) 0.008 1.001 (0.968, 1.037) 0.945 0.679 (0.510, 0.903) 0.008

Serotonin 286 0.683 (0.508, 0.935) 0.015 0.964 (0.913, 1.016) 0.173 0.658 (0.485, 0.893) 0.007
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previous findings [46, 47]. This finding was evident in the 
EA and CH groups, but not in AAs. MR analysis results 
suggest that decreased blood mtDNA-CN is causal to AD 
(OR = 0.68; P = 0.012). We also identified associations of 
AD biomarkers and metabolites with mtDNA-CN some 
of which showed sex- and AD status-specific patterns. 
Our study further characterized the mediators in the 
association of mtDNA-CN with AD/MCI, indicating the 
dysfunction of mitochondria for the disease.

In the total sample, mtDNA-CN was positively asso-
ciated with the APOE ε2 allele in both brain and blood 
samples. Longchamps et  al. also identified a positive 
association between blood-derived mtDNA-CN and the 
ε2 SNP (rs7412) [17]. This finding suggests a protective 
effect of APOE ε2 against mitochondrial dysfunction. 
Although we did not observe a significant association of 
mtDNA-CN with the APOE ε4 allele, another study of 
AD cases reported evidence of impaired mitochondria 
and oxidative stress in brain tissue from ε4 carriers [48, 
49].

We identified female-specific associations of blood 
mtDNA-CN with several AD biomarkers, including 
FDG-PET, amyloid-PET, CSF Aβ42/40, CSF t-Tau, CSF 
p-Tau, and plasma NFL. Previous studies reported sex 
differences in the association of AD with these biomark-
ers, except plasma NFL, and related metabolic pathways 
[50–53], suggesting that unidentified sex-specific fac-
tors modify the effect of mtDNA-CN on AD-related 
processes. However, in the causal mediation analysis, 
the natural indirect effect and total effect of mtDNA-
CN on AD were simultaneously significant when testing 
for plasma NFL, but not the other AD biomarkers, as a 
mediator. Plasma NFL has been proposed as a prognos-
tic biomarker for AD because of its association with 
AD risk, cognitive decline, and chronic inflammation 
[54–56]. It is shown that immune dysfunction, energy 
demands, inflammation and altered cell signaling link 
mitochondrial dysfunction in whole blood to chronic 
diseases especially cardiovascular diseases [57]. In addi-
tion, previous study of ADNI participants showed higher 
plasma NFL was predictive of brain glucose hypometabo-
lism, which is associated with mitochondrial dysfunction 
[58], in cognitively impaired and normal subjects [59]. 
These observations combined with our findings suggest 
low numbers of mitochondria probably do not respond 
well to the stressors of inflammation and vascular dis-
eases, leading to inefficient oxidative phosphorylation in 
mitochondria and AD pathogenesis.

The association findings for mtDNA-CN with amy-
loid are seemingly inconsistent. Whereas mtDNA-CN 
was nominally associated with lower CSF Aβ42 in the 
total sample, it was more significantly associated with 
increased amyloid-PET level in controls, but not in 

MCI or AD participants. The evidence for a relation-
ship between amyloid deposition and mtDNA-CN in 
brain is controversial. Decreased Aβ42 level along with 
reduced mtDNA-CN was observed in the cortex and 
hippocampus of an AD transgenic mice that express 
mitochondrial-targeted endonuclease Mito-PstI [60, 61], 
whereas another study reported a nominally significant 
negative association in the dorsolateral prefrontal cortex 
from post-mortem normal ageing and AD brains [46]. 
Because blood mtDNA-CN is not necessarily a proxy 
for brain mtDNA-CN, further investigation is needed to 
fully understand the interaction between amyloid and 
mtDNA.

Several studies have identified associations of protein 
and metabolite levels with AD and cognitive decline in 
the ADNI cohort [32, 62, 63]. For example, it has been 
suggested that a combination of markers other than 
β-amyloid and tau measured in plasma and CSF could 
prove useful in predicting progression from MCI to AD 
[51]. Recently, Horgusluoglu et  al. showed that short-
chain acylcarnitines/amino acids and medium/long-
chain acylcarnitines are associated with episodic memory 
scores and disease severity [63]. Our study, which com-
pared mtDNA-CN with metabolites measured in the 
same blood sample, identified associations with several 
lipid species, amino acids, and biogenic amines. Most 
notably, lower mtDNA-CN was associated with levels of 
acylcarnitines (ACs). ACs have essential roles in mito-
chondrial metabolism because they transport fatty acids 
through mitochondrial membranes for β-oxidation. 
They shuttle across mitochondrial membranes and are 
recycled primarily by long-chain acyl-coenzyme A syn-
thetase, carnitine/acylcarnitine translocase, and carnitine 
palmitoyl-transferase 1 and 2 under normal physiologi-
cal conditions. We observed that AD cases had elevated 
levels of blood medium/long-chain ACs, which may be 
attributed to damaged mitochondria with reduced fatty 
acid oxidation rate [63]. Curiously, most of our observed 
associations of mtDNA-CN with ACs were evident 
primarily in MCI participants. Lack of association of 
mtDNA-CN with AC levels among AD cases combined 
with results from a previous study showing that AC lev-
els progressively decline with transitions from cognitively 
normal to AD [64] suggest there is a floor effect for the 
impact of the interaction of blood mtDNA-CN with AC 
levels on AD progression when cognitively declining indi-
viduals reach the AD stage. Our findings that mtDNA-
CN was associated with levels of four long-chain ACs 
in males and reduced level of the short-chain acylcarni-
tine C5-OH was associated with mtDNA-CN in females 
were supported by mediation analyses which showed that 
the indirect natural effects mediated by the C18:2 and 
C5-OH ACs were significant only in males and females, 
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respectively. Although sex differences in AC metabo-
lism have been previously reported [65, 66], mecha-
nisms underlying sex-specific relationships between AC 
levels and mtDNA-CN are unclear and require further 
investigation.

Although the association between blood mtDNA-CN 
and serotonin was not significant after FDR correction, 
the NIE of mtDNA-CN on AD mediated by serotonin 
was significant. Serotonin is a key neurotransmitter and 
its concentration in serum and urine is significantly lower 
in AD cases compared to controls. It has been suggested 
that the disruption of serotonergic signaling pathway is 
linked to enhanced amyloid pathology and, thus, seroto-
nin may be a potential therapeutic target [67]. Because 
mitochondria provide ATP which is essential to seroto-
nin signaling, mitochondrial dysfunction could result in 
serotonin dysregulation and subsequent neurodegenera-
tion, an idea that is consistent with our causal mediation 
analysis findings [68].

Sphingomyelin (SM) is the major type of sphingolipid 
in blood and has important biological functions includ-
ing cellular signaling and membrane stabilization. The 
hydrolysis of SM is the major source of ceramide, which 
can act as a second messenger and trigger mitochondrial 
apoptosis. Studies have indicated that Aβ induces apop-
tosis through SM/ceramide pathway and reduced SM 
levels have been observed in AD brains and plasma [69–
71]. The positive associations we observed between a few 
SM species and mtDNA-CN, might suggest the degrada-
tion of SM results in mitochondrial dysfunction. In addi-
tion, there is evidence that plasma SM concentrations 
are higher and increase faster with age in older females 
than males [72]. Mielke et al. reported that high plasma 
SM level is associated with increased AD risk in men, but 
is protective against AD in women [73]. Interestingly, we 
observed associations of mtDNA-CN with SMs in males 
only, suggesting the interaction between SM and mito-
chondria, especially SM hydrolysis-induced apoptosis 
pathway, differs between genders.

We also identified associations of blood mtDNA-CN 
with serum levels of ornithine, spermine, creatinine, 
and 2 lysophosphatidylcholine (lysoPC) species in the 
total sample, and with glycine and taurine in males only. 
Although altered levels of these metabolites have been 
implicated in mitochondrial dysfunction [74–80], there is 
little evidence linking them to AD.

Our study has several limitations. First, associa-
tion analyses of ADSP data included age at last exam 
for controls and age at symptom onset for AD cases, 
which are both disconnected from the age when the tis-
sue specimens were collected and, hence, for the cal-
culation of mtDNA-CN. Moreover, age at onset for AD 
cases is less than the age ascribed to mtDNA-CN derived 

from brain, but in most instances greater than the age 
ascribed to mtDNA-CN derived from blood. Second, 
we lacked information about and thus could not incor-
porate in our analyses the proportions of brain or blood 
cell types for all ADSP participants which is an impor-
tant source of confounding. Power for detecting asso-
ciation of AD with mtDNA-CN was considerably lower 
in the CH and AA groups compared to the much larger 
EA group. Complete blood count information was not 
available for ADNI participants which made it difficult to 
adjust mtDNA-CN estimates for blood cell composition, 
which has been recognized as an important confounder 
in large-scale mtDNA-CN GWAS [10, 17, 81]. Blood cell 
type proportions can be estimated from bulk RNA-seq 
data using cell-type enrichment analysis [82] or a decon-
volution approach [83], but these data were available for 
less than half of the ADNI participants. To address this 
problem, we leveraged ADNI WGS data to calculate a 
PRS for selected blood cell types as a proxy. Third, we 
evaluated the association of mtDNA-CN with biomark-
ers and metabolite levels at baseline only and thus could 
not assess association patterns over the course of cog-
nitive decline leading to AD. Lastly, the interpretation 
of the causal mediation analysis results may be imbal-
anced because data for some biomarkers and metabo-
lites were missing for varying proportions of the sample. 
Moreover, these analyses considered only the scenario 
where mtDNA-CN is the exposure and biomarkers and 
metabolites are mediators, but not vice versa. Elucidating 
the role of mitochondrial dysfunction in each metabolic 
pathway that is involved in AD pathogenesis will require 
future studies.

In conclusion, we demonstrated that lower blood 
mtDNA-CN estimated from WGS data is causally asso-
ciated with greater AD risk. In addition, we identified 
association of mtDNA-CN with several AD biomark-
ers and serum metabolites, many of which are sex-spe-
cific. Causal mediation analyses revealed mediating 
effects of acylcarnitine, serotonin, and plasma NFL on 
the influence of blood mtDNA-CN on AD risk, suggest-
ing mitochondrial dysfunction affects multiple meta-
bolic pathways associated with AD and mtDNA-CN is a 
potential blood-based biomarker. Future analyses incor-
porating hematology data and longitudinal mtDNA-CN 
measurements may yield more robust and informative 
findings about the role of mitochondrial dysfunction in 
AD.
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Columbia University Hispanic Estudio Familiar de Influencia Genetica de 
Alzheimer (EFIGA) (RF1 AG015473), the University of Toronto (UT) (funded by 
Wellcome Trust, Medical Research Council, Canadian Institutes of Health 
Research), and Genetic Differences (GD) (R01 AG007584). The CHARGE cohorts 
are supported in part by National Heart, Lung, and Blood Institute (NHLBI) 
infrastructure grant HL105756 (Psaty), RC2HL102419 (Boerwinkle) and the 
neurology working group is supported by the National Institute on Aging 
(NIA) R01 grant AG033193. The CHARGE cohorts participating in the ADSP 
include the following: Austrian Stroke Prevention Study (ASPS), ASPS‑Family 
study, and the Prospective Dementia Registry‑Austria (ASPS/PRODEM‑Aus), 
the Atherosclerosis Risk in Communities (ARIC) Study, the Cardiovascular 
Health Study (CHS), the Erasmus Rucphen Family Study (ERF), the Framingham 
Heart Study (FHS), and the Rotterdam Study (RS). ASPS is funded by the 
Austrian Science Fond (FWF) grant number P20545‑P05 and P13180 and the 
Medical University of Graz. The ASPS‑Fam is funded by the Austrian Science 
Fund (FWF) project I904), the EU Joint Programme – Neurodegenerative 
Disease Research (JPND) in frame of the BRIDGET project (Austria, Ministry of 
Science) and the Medical University of Graz and the Steiermärkische 
Krankenanstalten Gesellschaft. PRODEM‑Austria is supported by the Austrian 
Research Promotion agency (FFG) (Project No. 827462) and by the Austrian 
National Bank (Anniversary Fund, project 15435. ARIC research is carried out as 
a collaborative study supported by NHLBI contracts (HHSN268201100005C, 
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HHSN268201100006C, HHSN268201100007C, HHSN268201100008C, 
HHSN268201100009C, HHSN268201100010C, HHSN268201100011C, and 
HHSN268201100012C). Neurocognitive data in ARIC is collected by U01 
2U01HL096812, 2U01HL096814, 2U01HL096899, 2U01HL096902, 
2U01HL096917 from the NIH (NHLBI, NINDS, NIA and NIDCD), and with 
previous brain MRI examinations funded by R01‑HL70825 from the NHLBI. CHS 
research was supported by contracts HHSN268201200036C, 
HHSN268200800007C, N01HC55222, N01HC85079, N01HC85080, 
N01HC85081, N01HC85082, N01HC85083, N01HC85086, and grants 
U01HL080295 and U01HL130114 from the NHLBI with additional contribution 
from the National Institute of Neurological Disorders and Stroke (NINDS). 
Additional support was provided by R01AG023629, R01AG15928, and 
R01AG20098 from the NIA. FHS research is supported by NHLBI contracts 
N01‑HC‑25195 and HHSN268201500001I. This study was also supported by 
additional grants from the NIA (R01s AG054076, AG049607 and AG033040 and 
NINDS (R01 NS017950). The ERF study as a part of EUROSPAN (European 
Special Populations Research Network) was supported by European 
Commission FP6 STRP grant number 018947 (LSHG‑CT‑2006‑01947) and also 
received funding from the European Community’s Seventh Framework 
Programme (FP7/2007‑2013)/grant agreement HEALTH‑F4‑ 2007‑201413 by 
the European Commission under the programme “Quality of Life and 
Management of the Living Resources” of 5th Framework Programme (no. 
QLG2‑CT‑2002‑ 01254). High‑throughput analysis of the ERF data was 
supported by a joint grant from the Netherlands Organization for Scientific 
Research and the Russian Foundation for Basic Research (NWO‑RFBR 
047.017.043). The Rotterdam Study is funded by Erasmus Medical Center and 
Erasmus University, Rotterdam, the Netherlands Organization for Health 
Research and Development (ZonMw), the Research Institute for Diseases in 
the Elderly (RIDE), the Ministry of Education, Culture and Science, the Ministry 
for Health, Welfare and Sports, the European Commission (DG XII), and the 
municipality of Rotterdam. Genetic data sets are also supported by the 
Netherlands Organization of Scientific Research NWO Investments 
(175.010.2005.011, 911‑03‑012), the Genetic Laboratory of the Department of 
Internal Medicine, Erasmus MC, the Research Institute for Diseases in the 
Elderly (014‑93‑015; RIDE2), and the Netherlands Genomics Initiative (NGI)/
Netherlands Organization for Scientific Research (NWO) Netherlands 
Consortium for Healthy Aging (NCHA), project 050‑060‑810. All studies are 
grateful to their participants, faculty and staff. The content of these 
manuscripts is solely the responsibility of the authors and does not necessarily 
represent the official views of the National Institutes of Health or the U.S. 
Department of Health and Human Services. The FUS cohorts include: the 
Alzheimer’s Disease Research Centers (ADRC) (P30 AG062429, P30 AG066468, 
P30 AG062421, P30 AG066509, P30 AG066514, P30 AG066530, P30 AG066507, 
P30 AG066444, P30 AG066518, P30 AG066512, P30 AG066462, P30 AG072979, 
P30 AG072972, P30 AG072976, P30 AG072975, P30 AG072978, P30 AG072977, 
P30 AG066519, P30 AG062677, P30 AG079280, P30 AG062422, P30 AG066511, 
P30 AG072946, P30 AG062715, P30 AG072973, P30 AG066506, P30 AG066508, 
P30 AG066515, P30 AG072947, P30 AG072931, P30 AG066546, P20 AG068024, 
P20 AG068053, P20 AG068077, P20 AG068082, P30 AG072958, P30 AG072959), 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) (U19AG024904), Amish 
Protective Variant Study (RF1AG058066), Cache County Study (R01AG11380, 
R01AG031272, R01AG21136, RF1AG054052), Case Western Reserve University 
Brain Bank (CWRUBB) (P50AG008012), Case Western Reserve University Rapid 
Decline (CWRURD) (RF1AG058267, NU38CK000480), CubanAmerican 
Alzheimer’s Disease Initiative (CuAADI) (3U01AG052410), Estudio Familiar de 
Influencia Genetica en Alzheimer (EFIGA) (5R37AG015473, RF1AG015473, 
R56AG051876), Genetic and Environmental Risk Factors for Alzheimer Disease 
Among African Americans Study (GenerAAtions) (2R01AG09029, 
R01AG025259, 2R01AG048927), Gwangju Alzheimer and Related Dementias 
Study (GARD) (U01AG062602), Hillblom Aging Network (2014‑A‑004‑NET, 
R01AG032289, R01AG048234), Hussman Institute for Human Genomics Brain 
Bank (HIHGBB) (R01AG027944, Alzheimer’s Association “Identification of Rare 
Variants in Alzheimer Disease”), Ibadan Study of Aging (IBADAN) 
(5R01AG009956), Longevity Genes Project (LGP) and LonGenity 
(R01AG042188, R01AG044829, R01AG046949, R01AG057909, R01AG061155, 
P30AG038072), Mexican Health and Aging Study (MHAS) (R01AG018016), 
Multi‑Institutional Research in Alzheimer’s Genetic Epidemiology (MIRAGE) 
(2R01AG09029, R01AG025259, 2R01AG048927), Northern Manhattan Study 
(NOMAS) (R01NS29993), Peru Alzheimer’s Disease Initiative (PeADI) 
(RF1AG054074), Puerto Rican 1066 (PR1066) (Wellcome Trust (GR066133/
GR080002), European Research Council (340755)), Puerto Rican Alzheimer 

Disease Initiative (PRADI) (RF1AG054074), Reasons for Geographic and Racial 
Differences in Stroke (REGARDS) (U01NS041588), Research in African American 
Alzheimer Disease Initiative (REAAADI) (U01AG052410), the Religious Orders 
Study (ROS) (P30 AG10161, P30 AG72975, R01 AG15819, R01 AG42210), the 
RUSH Memory and Aging Project (MAP) (R01 AG017917, R01 AG42210Stanford 
Extreme Phenotypes in AD (R01AG060747), University of Miami Brain 
Endowment Bank (MBB), University of Miami/Case Western/North Carolina 
A&T African American (UM/CASE/NCAT) (U01AG052410, R01AG028786), and 
Wisconsin Registry for Alzheimer’s Prevention (WRAP) (R01AG027161 and 
R01AG054047). The four LSACs are: the Human Genome Sequencing Center at 
the Baylor College of Medicine (U54 HG003273), the Broad Institute Genome 
Center (U54HG003067), The American Genome Center at the Uniformed 
Services University of the Health Sciences (U01AG057659), and the 
Washington University Genome Institute (U54HG003079). Genotyping and 
sequencing for the ADSP FUS is also conducted at John P. Hussman Institute 
for Human Genomics (HIHG) Center for Genome Technology (CGT). Biological 
samples and associated phenotypic data used in primary data analyses were 
stored at Study Investigators institutions, and at the National Centralized 
Repository for Alzheimer’s Disease and Related Dementias (NCRAD, 
U24AG021886) at Indiana University funded by NIA. Associated Phenotypic 
Data used in primary and secondary data analyses were provided by Study 
Investigators, the NIA funded Alzheimer’s Disease Centers (ADCs), and the 
National Alzheimer’s Coordinating Center (NACC, U24AG072122) and the 
National Institute on Aging Genetics of Alzheimer’s Disease Data Storage Site 
(NIAGADS, U24AG041689) at the University of Pennsylvania, funded by NIA. 
Harmonized phenotypes were provided by the ADSP Phenotype Harmoniza‑
tion Consortium (ADSP‑PHC), funded by NIA (U24 AG074855, U01 AG068057 
and R01 AG059716) and Ultrascale Machine Learning to Empower Discovery 
in Alzheimer’s Disease Biobanks (AI4AD, U01 AG068057). This research was 
supported in part by the Intramural Research Program of the National 
Institutes of health, National Library of Medicine. Contributors to the Genetic 
Analysis Data included Study Investigators on projects that were individually 
funded by NIA, and other NIH institutes, and by private U.S. organizations, or 
foreign governmental or nongovernmental organizations. The ADSP 
Phenotype Harmonization Consortium (ADSP‑PHC) is funded by NIA (U24 
AG074855, U01 AG068057 and R01 AG059716). The harmonized cohorts 
within the ADSP‑PHC include: the Anti‑Amyloid Treatment in Asymptomatic 
Alzheimer’s study (A4 Study), a secondary prevention trial in preclinical 
Alzheimer’s disease, aiming to slow cognitive decline associated with brain 
amyloid accumulation in clinically normal older individuals. The A4 Study is 
funded by a public‑private‑philanthropic partnership, including funding from 
the National Institutes of Health‑National Institute on Aging, Eli Lilly and 
Company, Alzheimer’s Association, Accelerating Medicines Partnership, GHR 
Foundation, an anonymous foundation and additional private donors, with 
in‑kind support from Avid and Cogstate. The companion observational 
Longitudinal Evaluation of Amyloid Risk and Neurodegeneration (LEARN) 
Study is funded by the Alzheimer’s Association and GHR Foundation. The A4 
and LEARN Studies are led by Dr. Reisa Sperling at Brigham and Women’s 
Hospital, Harvard Medical School and Dr. Paul Aisen at the Alzheimer’s 
Therapeutic Research Institute (ATRI), University of Southern California. The A4 
and LEARN Studies are coordinated by ATRI at the University of Southern 
California, and the data are made available through the Laboratory for Neuro 
Imaging at the University of Southern California. The participants screening for 
the A4 Study provided permission to share their de‑identified data in order to 
advance the quest to find a successful treatment for Alzheimer’s disease. We 
would like to acknowledge the dedication of all the participants, the site 
personnel, and all of the partnership team members who continue to make 
the A4 and LEARN Studies possible. The complete A4 Study Team list is 
available on: a4study.org/a4‑study‑team.; the Adult Changes in Thought study 
(ACT), U01 AG006781, U19 AG066567; Alzheimer’s Disease Neuroimaging 
Initiative (ADNI): Data collection and sharing for this project was funded by the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of 
Health Grant U01 AG024904) and DOD ADNI (Department of Defense award 
number W81XWH‑12‑2‑0012). ADNI is funded by the National Institute on 
Aging, the National Institute of Biomedical Imaging and Bioengineering, and 
through generous contributions from the following: AbbVie, Alzheimer’s 
Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; 
BioClinica, Inc.; Biogen; Bristol‑Myers Squibb Company; CereSpir, Inc.; Cogstate; 
Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. 
Hoffmann‑La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; 
GE Healthcare; IXICO Ltd.;Janssen Alzheimer Immunotherapy Research & 
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Development, LLC.; Johnson & Johnson Pharmaceutical Research & 
Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.;Meso Scale 
Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis 
Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda 
Pharmaceutical Company; and Transition Therapeutics. The Canadian 
Institutes of Health Research is providing funds to support ADNI clinical sites 
in Canada. Private sector contributions are facilitated by the Foundation for 
the National Institutes of Health (www.fnih.org). The grantee organization is 
the Northern California Institute for Research and Education, and the study is 
coordinated by the Alzheimer’s Therapeutic Research Institute at the 
University of Southern California. ADNI data are disseminated by the 
Laboratory for Neuro Imaging at the University of Southern California; Estudio 
Familiar de Influencia Genetica en Alzheimer (EFIGA): 5R37AG015473, 
RF1AG015473, R56AG051876; Memory & Aging Project at Knight Alzheimer’s 
Disease Research Center (MAP at Knight ADRC): The Memory and Aging 
Project at the Knight‑ADRC (Knight‑ADRC). This work was supported by the 
National Institutes of Health (NIH) grants R01AG064614, R01AG044546, 
RF1AG053303, RF1AG058501, U01AG058922 and R01AG064877 to Carlos 
Cruchaga. The recruitment and clinical characterization of research 
participants at Washington University was supported by NIH grants 
P30AG066444, P01AG03991, and P01AG026276. Data collection and sharing 
for this project was supported by NIH grants RF1AG054080, P30AG066462, 
R01AG064614 and U01AG052410. We thank the contributors who collected 
samples used in this study, as well as patients and their families, whose help 
and participation made this work possible. This work was supported by access 
to equipment made possible by the Hope Center for Neurological Disorders, 
the Neurogenomics and Informatics Center (NGI: https://neurogenomics.
wustl.edu/) and the Departments of Neurology and Psychiatry at Washington 
University School of Medicine; National Alzheimer’s Coordinating Center 
(NACC): The NACC database is funded by NIA/NIH Grant U24 AG072122. NACC 
data are contributed by the NIA‑funded ADRCs: P30 AG062429 (PI James 
Brewer, MD, PhD), P30 AG066468 (PI Oscar Lopez, MD), P30 AG062421 (PI 
Bradley Hyman, MD, PhD), P30 AG066509 (PI Thomas Grabowski, MD), P30 
AG066514 (PI Mary Sano, PhD), P30 AG066530 (PI Helena Chui, MD), P30 
AG066507 (PI Marilyn Albert, PhD), P30 AG066444 (PI John Morris, MD), P30 
AG066518 (PI Jeffrey Kaye, MD), P30 AG066512 (PI Thomas Wisniewski, MD), 
P30 AG066462 (PI Scott Small, MD), P30 AG072979 (PI David Wolk, MD), P30 
AG072972 (PI Charles DeCarli, MD), P30 AG072976 (PI Andrew Saykin, PsyD), 
P30 AG072975 (PI David Bennett, MD), P30 AG072978 (PI Neil Kowall, MD), P30 
AG072977 (PI Robert Vassar, PhD), P30 AG066519 (PI Frank LaFerla, PhD), P30 
AG062677 (PI Ronald Petersen, MD, PhD), P30 AG079280 (PI Eric Reiman, MD), 
P30 AG062422 (PI Gil Rabinovici, MD), P30 AG066511 (PI Allan Levey, MD, PhD), 
P30 AG072946 (PI Linda Van Eldik, PhD), P30 AG062715 (PI Sanjay Asthana, MD, 
FRCP), P30 AG072973 (PI Russell Swerdlow, MD), P30 AG066506 (PI Todd 
Golde, MD, PhD), P30 AG066508 (PI Stephen Strittmatter, MD, PhD), P30 
AG066515 (PI Victor Henderson, MD, MS), P30 AG072947 (PI Suzanne Craft, 
PhD), P30 AG072931 (PI Henry Paulson, MD, PhD), P30 AG066546 (PI Sudha 
Seshadri, MD), P20 AG068024 (PI Erik Roberson, MD, PhD), P20 AG068053 (PI 
Justin Miller, PhD), P20 AG068077 (PI Gary Rosenberg, MD), P20 AG068082 (PI 
Angela Jefferson, PhD), P30 AG072958 (PI Heather Whitson, MD), P30 
AG072959 (PI James Leverenz, MD); National Institute on Aging Alzheimer’s 
Disease Family Based Study (NIA‑AD FBS): U24 AG056270; Religious Orders 
Study (ROS): P30AG10161,R01AG15819, R01AG42210; Memory and Aging 
Project (MAP ‑ Rush): R01AG017917, R01AG42210; Minority Aging Research 
Study (MARS): R01AG22018, R01AG42210; Washington Heights/Inwood 
Columbia Aging Project (WHICAP): RF1 AG054023;and Wisconsin Registry for 
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