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Abstract 

Background The spread of tau pathology closely correlates with the disease course and cognitive decline in Alzhei-
mer’s disease (AD). Tau-targeting immunotherapies are being developed to stop the spread of tau pathology and thus 
halt disease progression. In this post hoc analysis of the ADAMANT clinical trial, we examined the performance 
of AADvac1, an active immunotherapy targeting the microtubule-binding region (MTBR) of tau, in a subgroup of par-
ticipants with elevated plasma p-tau217, indicating AD-related neuropathological changes.

Methods ADAMANT was a 24-month, randomized, placebo-controlled, parallel-group, double-blinded, multi-
center, phase 2 clinical trial in subjects with mild AD. The trial participants were randomized 3:2 to receive six doses 
of AADvac1 or placebo at 4-week intervals, followed by five booster doses at 14-week intervals. The primary outcome 
was safety. The secondary outcomes were the Clinical Dementia Rating-Sum of Boxes (CDR-SB), the Alzheimer’s 
Disease Cooperative Study – Activities of Daily Living score for Mild Cognitive Impairment 18-item version (ADCS-
ADL-MCI-18), and immunogenicity. Volumetric MRI, plasma neurofilament light (NfL), and glial fibrillary acidic protein 
(GFAP) were exploratory outcomes. The inclusion criterion for this post-hoc analysis was a baseline plasma p-tau217 
level above the cutoff for AD.

Results Among 196 ADAMANT participants, 137 were positive for plasma p-tau217 (mean age 71.4 years, 59% 
women). AADvac1 was safe and well tolerated in this subgroup. AADvac1 reduced the rate of accumulation of log-
plasma NfL by 56% and that of GFAP by 73%. The treatment differences in the CDR-SB and ADCS-ADL-MCI-18 scores 
favored AADvac1 but were not statistically significant. AADvac1 had no effect on whole-brain volume but nonsig-
nificantly reduced the loss of brain cortical tissue in several regions. Importantly, the impact on the study outcomes 
was more pronounced in participants with higher anti-tau antibody levels.
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Conclusions These results suggest that AADvac1 tau immunotherapy can reduce plasma biomarkers of neurode-
generation and neuroinflammation. These findings and possible observations on brain atrophy and cognition are 
hypothesis-generating and warrant further evaluation in a larger clinical trial.

Trial registration EudraCT 2015–000630-30 (primary) and NCT02579252.

Keywords Alzheimer’s disease, Immunotherapy, Tau, Plasma phosphorylated tau 217, Plasma biomarkers, 
Neurofilament light (NfL), Glial fibrillary acidic protein (GFAP), AADvac1

Background
In Alzheimer’s disease (AD), neurofibrillary lesions 
strongly correlate with the severity and pattern of brain 
atrophy [1], and with the clinical phenotype and sever-
ity of cognitive impairment [2, 3]. The specific distribu-
tion of tau pathology determined by positron emission 
tomography (PET) is a strong indicator of the topog-
raphy of future atrophy [4] and longitudinal cognitive 
decline [5]. These observations support the notion that 
the tau pathogenic process is an important target for 
AD therapy.

AADvac1 is an active immunotherapy that targets 
pathological tau proteins [6, 8]. It was developed to 
reduce the accumulation and spread of neurofibrillary 
pathology in the brain and hence slow or halt the pro-
gression of AD [7]. The phase 2 ADAMANT trial with 
AADvac1 demonstrated favorable safety and tolerabil-
ity with the induction of high levels of IgG antibodies 
[8]. There was a strong positive effect on plasma neuro-
filament light (NfL), a marker of ongoing neurodegen-
eration [9–15], and a reduction in cerebrospinal fluid 
(CSF) tau biomarkers. However, there were no statisti-
cally significant effects on cognitive tests or volumet-
ric magnetic resonance imaging (vMRI) findings in the 
full study sample. The enrollment relied mostly on MRI 
atrophy and as a result 30% of participants were sus-
pected not to meet CSF biomarker criteria for AD [8, 
16].

Recent progress in the development of fluid bio-
marker assays has shown encouraging results, indicat-
ing the diagnostic utility of plasma biomarkers [17]. 
Tau species phosphorylated at Thr217 (p-tau217) have 
the strongest association with tau PET [18] and the 
highest diagnostic performance [19–22], as this meas-
ure reflects a combination of tau and amyloid pro-
teinopathies [23–29]. We used an analytically qualified 
ADx pTau217 Simoa assay to identify ADAMANT par-
ticipants who were above the cutoff value for AD in this 
assay (> 0.2  pg/mL). The aim of the present post hoc 
analysis was to evaluate the performance of AADvac1 
in plasma p-tau217 ‘positive’ AD participants on the 
primary, secondary and exploratory endpoints of the 
study.

Methods
Study design, participants and intervention
ADAMANT was a 24-month, phase 2, randomized (3:2), 
placebo-controlled, parallel-group, double-blinded, mul-
ticenter clinical trial on AADvac1, sponsored by Axon 
Neuroscience SE [8]. The trial enrolled 196 participants 
at 41 sites across Europe (June 2016 and May 2019), 
with 193 participants composing the full analysis set 
(FAS) under the modified intention-to-treat principle. 
The inclusion criteria included a diagnosis of mild AD 
according to the 2011 NIA-AA criteria [30], an age range 
of 50–85 years, Mini-Mental State Examination (MMSE) 
score ≥ 20 and ≤ 26 (defining mild dementia), evidence 
of either medial temporal lobe atrophy or a positive cer-
ebrospinal fluid (CSF) AD biomarker profile [8].

The subjects initially received 6 subcutaneous doses of 
AADvac1 or placebo at 4-week intervals, followed by 5 
booster doses of AADvac1 or placebo at 14-week inter-
vals [8]. Patients were randomized via an interactive web-
based response system (Cenduit GmbH, Switzerland).

The ADAMANT study protocol was approved by the 
appropriate ethics committees and competent authorities 
[8]. The study complied with the applicable International 
Council for Harmonization of Technical Requirements 
for Pharmaceuticals for Human Use guidelines and the 
Declaration of Helsinki. The study is registered under 
EudraCT 2015–000630-30 (primary record) and 
NCT02579252.

ADx pTau217 Simoa assay
The immunoassay for plasma p-tau217 was developed 
by ADx NeuroSciences using a Homebrew Simoa Assay 
Kit (Quanterix) with a hybridoma-based mouse mono-
clonal antibody (mAb) (RD-084; ADx NeuroSciences) 
that specifically binds phospho-tau Thr217 (capture 
Ab) combined with a recombinantly expressed mouse 
mAb (RD-073; ADx Neurosciences) that recognizes 
an epitope in the N-terminus of Tau (detector Ab, 
biotinylated). Its performance in patient samples was 
evaluated using discovery cohort I (42 CSF-confirmed 
AD patients in the prodromal or dementia stage and 
35 healthy spouse controls) [31] and discovery cohort 
II, which included 40 CSF-confirmed AD-dementia 
patients and 40 age-matched healthy volunteers [32] 
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(see Methods in the Supplement). A cutoff value of 
0.2 pg/mL for indicating AD neuropathology was iden-
tified with the aim of avoiding non-AD individuals and 
conferring ≥ 95% specificity in the two cohorts (Supple-
mentary material Figure S1). The ADx pTau217 Simoa 
assay was shown to perform on par with other plasma 
p-tau217 assays in a round robin study [33]. The cut-
off of 0.2 pg/mL correlates with the upper cutoff point 
(0.219 pg/mL) selected for an algorithm constructed for 
the identification of Aβ-positive, high tau-PET individ-
uals [34].

For this post hoc analysis, all ADAMANT plasma 
samples were measured in one batch. The samples were 
thawed at room temperature and centrifuged before 
analysis for 8 min at 10,000xg.

Safety (primary outcome)
Safety was the primary outcome in the ADAMANT 
phase 2 study and the prespecified analyses included 
comparisons of the overall incidence of adverse events 
(AEs) and serious AEs (SAEs) between the treatments, 
comparisons of the incidence of AEs for each system 
organ class (SOC), and comparisons of the expected 
injection site reactions (ISRs) [8]. In this work, we rep-
licated these analyses in the post-hoc defined plasma 
p-tau217 ‘positive’ and ‘negative’ subgroups (see Meth-
ods in the Supplementary material).

Cognitive and functional assessment and immunogenicity 
(secondary outcomes)
The secondary outcomes of the ADAMANT trial 
included the Clinical Dementia Rating—Sum of Boxes 
(CDR-SB, range 0–18), the Alzheimer’s Disease Coop-
erative Study – Activities of Daily Living Score adapted 
for Mild Cognitive Impairment 18-item version (ADCS-
ADL-MCI-18, range 0–53), and immunogenicity. The 
cognitive outcomes were assessed at weeks 0, 12, 24, 38, 
52, 66, 80, 94, and 104. Computerized versions of the 
CDR-SB and ADCS-ADL-MCI-18 scales were employed 
(MedAvante Virgil platform, MedAvante, NJ, USA). The 
tests were administered and scored by site raters [8].

For immunogenicity, the geometric mean antibody 
response at each postbaseline visit was calculated (see 
Methods in the Supplementary material).

Biomarker assessment (exploratory outcomes)
The plasma and imaging biomarkers were exploratory 
outcomes in the ADAMANT trial. The concentrations 
of NfL in plasma were measured by single molecule array 
(Simoa) digital ELISA, using an HD-1 Analyzer (v1.5) 
and the NF-Light Advantage assay kit (Quanterix) [8]. 
Plasma GFAP is a biomarker for astrocytosis [35, 36], and 
its increasing levels are associated with increasing tau 

tangle load [37]. It was measured using a Simoa GFAP 
Discovery Kit (Quanterix).

CSF biomarker measurements were described previ-
ously [8].

MRI data were collected at 3 T field strength with the 
whole brain as area of acquisition [8]. 3D T1 scans were 
normalized, and regional cortical volumes, lateral ventri-
cles, and the whole cortex were subsequently extracted 
and analyzed. Whole brain volume loss was calculated 
with SIENA 2.6. For volume estimates, images were auto-
matically processed with the longitudinal stream in Free-
Surfer v.6.0 [8].

Statistical analysis
All analyses of efficacy endpoints presented in this work 
were performed on plasma p-tau217 ‘positive’ subgroup 
using a mixed model for repeated measures (MMRM), 
with study visit treated as a categorical variable. The 
model was fit via restricted maximum likelihood esti-
mation and an unstructured correlation matrix, and was 
adjusted for treatment status, baseline values of out-
come, age, sex, years of education, baseline plasma NfL 
 (log10 -transformed), baseline MMSE, ApoE4, meman-
tine use and geographical  region. Interaction effects 
were included between the categorical time variable and 
all covariates to account for the possibility that covari-
ates may not be perfectly randomized in the selected 
biomarker-positive subgroup. Least-squares mean (LSM) 
changes from the baseline of individual outcomes were 
subsequently calculated, and the treatment on the out-
come was determined at the 104-week study visit and at 
intermediate visits.

To analyze the relationship between the levels of AAD-
vac1-induced IgG antibodies and the trial endpoints, the 
AADvac1-treated plasma p-tau217 ‘positive’ study par-
ticipants were categorized into low responders (below 
the 75th percentile, n = 60) or high responders (above the 
75th percentile, n = 22) on the basis of the anti-tau peptide 
IgG antibody levels at week 24 [8], after completion of the 
initial the six-dose regimen when antibody levels reached 
the maximal value. The endpoint analyses were repeated 
on these subgroups each compared with the entire plasma 
p-tau217 ‘positive’ placebo group. Two participants who 
discontinued before week 24 could not have their antibody 
levels evaluated and were excluded from this analysis.

All the statistical analyses were performed using R 
(v4.0.5) and GraphPad Prism (v8.4.3) with a significance 
level of 0.05 and without correction for multiple compar-
isons due to the exploratory nature of the analyses.

The percent slowing relative to placebo was calculated 
by dividing the LSM change from baseline treatment dif-
ferences by the LSM change from baseline with placebo 
and multiplying by 100.
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Results
Identification of ADAMANT study participants with plasma 
p‑tau217‑supported AD diagnosis
The demographics of the entire phase 2 ADAMANT 
clinical trial and participant flow have been previously 
published [8]. The disposition of the participants in the 
subgroup presented in this post hoc analysis is shown in 
Fig. 1. Out of 196 participants randomized in the ADA-
MANT trial 46 provided CSF samples either at screen-
ing or baseline. Analysis of CSF Aβ42 and p-tau181 levels 
revealed that only 32 participants (70%) fulfilled the 
inclusion criteria of p-tau181 positivity (cutoff > 60  pg/
mL) [8], indicating that approximately 30% of all trial 
participants might not suffer from neurodegeneration 
caused by AD pathogenic processes.

To evaluate the treatment effect of AADvac1 in par-
ticipants with confirmed AD neuropathology, the levels 
of plasma tau species phosphorylated at Thr217 were 
measured with the ADx pTau217 Simoa assay, with a 
positivity cutoff of 0.2  pg/mL. Among 196 randomized 

participants, 137 (70%) had p-tau217 levels above the 
cutoff, indicating a dysregulated tau and amyloid metab-
olism and the presence of AD neuropathological changes. 
In the p-tau217 biomarker-positive AD subgroup, 84 
patients received AADvac1 and 53 received placebo 
(Supplementary material Figure  S1B). Compared with 
the dichotomized CSF p-tau181 values, which were used 
as the evidence of the presence of tau pathology in the 
ADAMANT samples collected at screening or baseline 
(n = 46), the ADx pTau217 Simoa assay showed a sensi-
tivity of 78% (95%CI 64–92%, a specificity of 79% (95%CI 
57–100%); the positive predictive value (PPV) of 0.893 
(96%CI 0,78–1,00) and the negative predictive value 
(NPV) of 0.611 (95%CI 0,39–0,84) (Supplementary mate-
rial Figure S1C).

The baseline levels of plasma p-tau217 correlated with 
CSF tau phosphorylated at Thr217 (Spearman r = 0.595, 
P = 0.017), total tau (r = 0.615, P = 0.013) and tau phos-
phorylated at Thr181 (r = 0.602, P = 0.015), in 16 CSF 
samples that were collected at baseline (Supplementary 

Fig. 1 Participant flow in this post hoc study on plasma p-tau217 ‘positive’ subgroup.aPatients who failed screening did commonly present 
with multiple reasons for screening failure. bSafety set, includes all subjects who have received at least one dose of study treatment and who have 
at least one postbaseline value for safety
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material Figure S2). This plasma marker did not correlate 
with CSF Aβ42 (r = 0.185, p = 0.49) or the Aβ42/40 ratio 
(r = −0.227, p = 0.40).

The baseline demographics and clinical characteristics 
of the plasma p-tau217  ‘positive’ participants revealed 
that the treatment subgroups are balanced in most of 
the relevant baseline characteristics (Table  1). The sub-
groups differed only in the ADCS-ADL-MCI-18 score 
(P = 0.042), with a mean of 39.11 (SD, 7.77) points for 
AADvac1 and 36.04 (SD, 9.65) points for the placebo.

Safety in the plasma p‑tau217 ‘positive’ participants
In the plasma p-tau217 ‘positive’ subgroup, treatment-
emergent adverse events (AE) were observed in 86% 
of the participants treated with AADvac1, and 85% of 
participants treated with placebo (logistic regression 
odds ratio 1.19, P = 0.57). Treatment-emergent seri-
ous adverse events (SAE) were nominally less common 
in participants treated with AADvac1 (18%, 22 events 

in 15 participants) than in the placebo group (25%, 20 
events in 13 participants, logistic regression odds ratio 
0.75, P = 0.49). A trend toward a greater incidence of 
general disorders and administration site conditions was 
observed in the AADvac1 group (AADvac1 52%, placebo 
36%, logistic regression odds ratio 1.90, P = 0.055), which 
was primarily due to injection site reactions (ISRs) being 
more common in the AADvac1 group. No statistically 
significant differences in the incidence of adverse events 
or serious adverse events were observed at the SOC or 
MedDRA preferred term level (Supplementary material 
Tables S1 and S2). The previously reported difference in 
the incidence of confusion [8] was not significant in this 
subgroup. The dropout rate was 13% (11 out of 84) in the 
AADvac1 group and 19% (10 out of 53) in the placebo 
group.

No differences in safety profile between the plasma 
p-tau217 ‘positive’ and ‘negative’ (Supplementary mate-
rial Tables S3 and S4) subgroups were observed.

Table 1 Baseline demographics and clinical characteristics of the plasma p-tau217 ‘positive’ and ‘negative’ subsets of the trial 
participants

a All participants were concomitantly treated with an approved acetylcholinesterase inhibitor
b p = 0.009
c The plasma p-tau217 ‘positive’ AADvac1 group contains an outlier with an impossibly high plasma p-tau217 value of 48.35 pg/mL. The two treatment groups 
are otherwise balanced (Median (25%, 75%)), AADvac1: 0.417 pg/mL (0.329 pg/mL, 0.617 pg/mL), Placebo: 0.412 pg/mL (0.306 pg/mL, 0.635 pg/mL), see also 
Supplementary material Figure S1B

Plasma p‑tau217 ‘positive’ Plasma p‑tau217 ‘negative’

Characteristic Placebo
(n = 53)

AADvac1
(n = 84)

Placebo
(n = 24)

AADvac1
(n = 32)

Age, mean (SD) 72.28 (6.71) 70.79 (8.26) 73.62 (7.23) 69.78

Sex, n (%)

Women 31 (58.5) 50 (59.5) 14 (58) 11 (34)

Men 22 (41.5) 34 (40.5) 10 (42) 21 (66)

Years of education,
mean (SD)

12.00 (3.06) 12.99 (3.45) 12.71 (3.88) 12.72 (3.66)

Ethnic origin White (100%) White (100%) White (100%) White (100%)

Concomitant memantine treatment, n (%) a 10 (19) 21 (25) 5 (21) 7 (22)

Apo E4 alleles, n (%):

0 16 (30) 29 (34) 10 (42) 18 (56)

1 30 (57) 46 (55) 9 (37) 10 (31)

2 7 (13) 9 (11) 5 (21) 4 (13)

CDR-SB, mean (SD) 4.88 (2.62) 4.35 (2.06) 3.79 (1.74) 4.44 (2.14)

MMSE, mean (SD) 23.23 (1.93) 22.71 (1.89) 23.12 (2.03) 23.81 (1.69)

ADCS-MCI-ADL 18-item, mean (SD) b 36.04 (9.65) 39.11 (7.77) 39.92 (7.01) 36.0 (8.78)

Plasma p-tau217 [pg/mL], mean (SD) c 0.54 (0.42) 1.08 (5.23) 0.12 (0.04) 0.11 (0.06)

Plasma NfL [pg/mL],
mean (SD)

22.64 (9.21) 22.59 (8.94) 22.27 (24.68) 18.45 (11.72)

Plasma GFAP [pg/mL], mean (SD) 529.8 (198.5) 582.1 (286.8) 378.0 (134.9) 335.2 (170.8)
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Cognitive and functional endpoints in plasma p‑tau217 
‘positive’ participants
The AADvac1 treatment in plasma p-tau217 ‘positive’ 
participants marginally influenced the rate of decline in 
the CDR-SB score that was observed after 104 weeks, the 
treatment difference in the least-squares mean (LSM) 
change from baseline was −0.63 points (standard error 
[SE], 0.546; P = 0.25) in favor of AADvac1 (Fig. 2A).

The sensitivity analysis of study completers, i.e. par-
ticipants who completed the study and had an evaluation 
of the CDR-SB score at 104  weeks (n = 72 with AAD-
vac1, n = 42 with placebo), suggested a stronger effect of 
AADvac1. The treatment difference in the LSM change 
from baseline at 104 weeks was −0.97 points (SE, 0.543; 
P = 0.08; slowing of decline by 19% [95% CI, −1.8 to 39.9]) 
(Fig. 2B).

Fig. 2 Changes in key secondary endpoints (CDR-SB, ADCS-ADL-MCI-18) in plasma p-tau217 ‘positive’ participants after AADvac1 treatment. 
A mixed model for repeated measures (MMRM) analysis for the CDR-SB and ADCS-ADL-MCI-18 endpoints in the plasma p-tau217 ‘positive’ 
ADAMANT participants. (A) and (C), analysis of participants from the full analysis set (“FAS”, n = 137). (B) and (D), analysis of participants who had 
the CDR-SB (n = 114) and ADCS-ADL-MCI-18 scores (n = 115) evaluated at 104 weeks (‘Completers’). All models were adjusted for the baseline 
and time-interaction effects of age, sex, geographical region, baseline MMSE score, baseline plasma NfL, and APOE status. Higher CDR-SB values 
and lower ADCS-ADL-MCI-18 values indicate worsening. The error bars indicate the standard error. The dotted line indicates the baseline
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Analysis of functional status assessed by the ADCS-
ADL-MCI-18 score revealed a nonsignificant difference 
in the LSM change from baseline between the treatment 
groups at 104  weeks, which was 2.2 points (SE, 1.77; 
P = 0.22) in favor of AADvac1 (Fig. 2C).

The benefits of AADvac1 on the ADCS-ADL-MCI-18 
score were possibly greater for study completers, the dif-
ference at 104  weeks was 2.9 points (SE, 1.84; P = 0.12; 
nominal slowing of decline by 22% [95% CI, −5.2 to 49.6]) 
(Fig. 2D).

Antibody response to AADvac1 in plasma p‑tau217 
‘positive’ participants
The AADvac1-induced antibody response reached a 
geometric mean IgG titer of 1:17,494 (95% CI, 11,989 to 
25,528) at week 24 (after the initial six doses) in plasma 
p-tau217 ‘positive’ participants, and 1:16,985 (95% CI, 
10,178 to 28,342) in the ‘negative’ subgroup (Supple-
mentary material Figure S3). The response rate at week 
24 was 97% for both the p-tau217 ‘positive’ and p-tau217 
‘negative’ subgroups.

Analysis of neuroimaging biomarkers in plasma p‑tau217 
‘positive’ participants
In plasma p-tau217 ‘positive’ participants, no difference 
between in the LSM change in vMRI from baseline to 
104 weeks was detected in the whole-brain volume (1.5 
 mm3 [SE, 3.4], P = 0.66) (Fig.  3A). Differences in favor 
of AADvac1, although not statistically significant, were 
observed in the cortical regions, including the whole 
brain cortex (the difference was 6.6  cm3 [SE, 4.31]; nom-
inally slowing the atrophy rate by 29% [95% CI, −8.4 to 
66.7]; P = 0.13), the temporal cortex (difference, 2.3  cm3 
[SE, 1.18]; nominally slowing atrophy by 27% [95% CI, 
−0.6 to 55.4]; P = 0.06), the frontal cortex (difference, 1.9 
 cm3 [SE, 1.51]; nominally slowing atrophy by 32% [95% 
CI, −17.6 to 81.0]; P = 0.21) (Fig. 3B, C, D, respectively), 
and the occipital cortex (difference, 0.8  cm3 [SE, 0.49], 
slowing atrophy by 38% [95% CI, −7.4 to 84.1]; P = 0.10) 
(Supplementary material Figure S4).

Marginal, statistically nonsignificant, treatment differ-
ences were observed for the parietal cortex (difference, 
1.1  cm3 [SE, 0.99], P = 0.29) and the left and right entorhi-
nal cortices (0.06  cm3 [SE, 0.038], P = 0.12, and 0.049  cm3 
[SE, 0.041], P = 0.23, respectively). No differences were 
detected for the left and right hippocampi (Supplemen-
tary material Figure S4).

Analysis of plasma biomarkers in plasma p‑tau217 
‘positive’ participants
In the biomarker-positive subgroup, AADvac1 showed 
a benefit on plasma NfL, as the difference between the 
treatment groups in the LSM change from baseline 

 (log10-transformed values) at 104  weeks was −0.139 
(SE, 0.046; P = 0.003) (Fig.  3E). This treatment differ-
ence corresponded to a decrease in the accumulation of 
plasma NfL by 56% (95% CI, 19.4 to 93.1, the difference 
in the untransformed values was −4.1 pg/mL [SE, 1.381]; 
P = 0.004; Supplementary material Figure S5A).

The treatment difference in the LSM change in 
plasma GFAP from baseline  (log10-transformed values) 
at 104  weeks was 0.135 (SE, 0.055; P = 0.02) (Fig.  3F), 
which corresponded to a mean treatment difference of 
73% (95% CI, 14.2 to 131.5, the difference in the untrans-
formed values was −77.6 pg/mL [SE, 38.8]; P = 0.05; Sup-
plementary material Figure S5B).

The treatment differences in the study endpoints are 
summarized in a forest plot in Fig. 4.

Relationship between trial endpoints 
and AADvac1‑induced antibody levels
To evaluate the dose effect of the AADvac1-induced 
anti-tau antibodies on the trial endpoints, the AADvac1-
treated plasma p-tau217 ‘positive’ participants were split 
into high- and low-responder subgroups on the basis of 
the AADvac1-induced antibody levels at week 24 (see the 
Methods section), and each subgroup was compared with 
the entire placebo (one example each of clinical, vMRI 
and plasma endpoints is shown in Fig. 5, and the remain-
ing data are shown in Supplementary material Figure S6).

In the high-responder subgroup, the difference from 
the placebo subgroup in the LSM change from baseline 
in CDR-SB at 104  weeks was −0.97 points (SE, 0.962; 
P = 0.32) (Fig.  5A). In the low responder subgroup, the 
difference was −0.69 points (SE, 0.594; P = 0.25).

The difference between the treatments in the volume 
loss of the temporal cortex at 104 weeks was 3.6  cm3 (SE, 
1.76; P = 0.05; nominal slowing atrophy by 46% [95% CI, 
1.8 to 89.8]) in the high-responder subgroup, and 1.9  cm3 
(SE, 1.36; P = 0.16; 24% slowing [95% CI, −9.2 to 56.6]) in 
the low-responder subgroup (Fig. 5B).

The difference between the high-responder subgroup 
and placebo in plasma NfL  (log10-transformed) was 0.19 
(SE, 0.076; P = 0.01; slowing of accumulation by 87% [95% 
CI, 19.4 to 154.9]), and between the low-responder sub-
group and placebo it was 0.13 (SE, 0.05; P = 0.01; 57% 
[95% CI, 13.3 to 101.1]) (Fig.  5C). The treatment differ-
ence between the high-responder subgroup and pla-
cebo in the changes of  log10-transformed plasma GFAP 
(Fig. 5D) was 0.25 (SE, 0.087; P = 0.006; slowing accumu-
lation by 126% [95% CI, 39.3 to 212.5]), while the differ-
ence between the low-responder subgroup and placebo 
was 0.11 (SE, 0.053; P = 0.04; slowing accumulation by 
66% [95% CI, 2.5 to 130.4]) (Fig. 5D).

The treatment differences in the high- and low-
responder subgroups in other endpoints including the 
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ADCS-MCI-ADL-18 score, whole-brain volume, and 
entire cortex, are shown in Supplementary material Fig-
ure S6.

Secondary and exploratory endpoints in plasma p‑tau217 
‘negative’ participants
The baseline characteristics of the plasma p-tau217 

Fig. 3 Changes in neurodegeneration and astrogliosis biomarkers in plasma p-tau217 ‘positive’ participants following AADvac1 treatment. 
The treatment differences in the change from baseline at week 104 in neuroimaging and plasma biomarkers in the plasma p-tau217 ‘positive’ 
participants were analyzed by MMRM: (A), 6% (95% CI, −20.9 to 33.3, P = 0.66) in the whole brain volume; (B), 29% (95% CI, −8.4 to 66.7; P = 0.13) 
in the entire cortical tissue; (C), 27% (95% CI, −0.61 to 55.4; P = 0.06) in the temporal cortex; (D), 32% (95% CI, −17.6 to 81.0; P = 0.21) in the frontal 
cortex; (E), 56% (95% CI, 19.4 to 93.1, P = 0.003) in plasma NfL  (log10-transformed concentrations); (F), 73% (95% CI, 14.2 to 131.5, P = 0.02) in plasma 
GFAP  (log10-transformed concentrations). All the MMRM models were adjusted for variables as described in the Methods section. FAS, the positive 
participants were selected from the full analysis set. The error bars indicate the standard error. The dotted line indicates the baseline
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‘negative’ participants are shown in Table 1. In this ‘nega-
tive’ subgroup, AADvac1 had no effect on the secondary 
outcomes or plasma biomarkers (Supplementary mate-
rial Figure S7).

Discussion
This post hoc analysis of the ADAMANT trial revealed 
a reduction in the accumulation of plasma biomark-
ers of neurodegeneration (NfL) and reactive astrogliosis 
(GFAP) in AADvac1-treated mild AD participants posi-
tive for plasma p-tau217. From a safety standpoint, the 
vaccine was well tolerated in this subgroup and no clini-
cally significant adverse findings, except injection site 
reactions, were associated with AADvac1.

The findings, while hypothesis generating, may be par-
ticularly noteworthy, as it has been shown that p-tau217 
reflects the accumulation of both amyloid plaques and 
tau tangles in the brain and has the potential to become 
an excellent AD biomarker to identify Aβ and tau positiv-
ity comparable to key CSF- or PET-based measures [37–
40]. The use of p-tau217 for supporting diagnostics and 

clinical trials has been strengthened by extensive clinical 
research on Aβ-targeting immunotherapy [34, 41, 42].

Several monoclonal antibodies targeting the N-termi-
nal region of tau have failed to show benefit in the clini-
cal development [43–47], which prompted discussions 
regarding the selection of an adequate target region 
on tau [48]. Recently, the microtubule-binding region 
(MTBR) of tau has garnered attention as a new bio-
marker highly specific for tangle pathology and promis-
ing for the staging of sporadic AD [49, 50], which further 
emphasized the importance of the MTBR of tau for 
therapeutic interventions. The new biomarker MTBR-
tau243 offers support for the scientific rationale of the 
development of AADvac1 immunotherapy, which tar-
gets this region on pathological tau, inhibits tau aggre-
gation, prevents the spread of neurofibrillary pathology 
[51], facilitates the removal of extracellular tau via 
microglia [52], and thus might affect the course of AD 
[53]. The antibodies recognize four epitopes in the tau 
MTBR, thus targeting the full spectrum of tau pathology 
in the human AD brain [6, 54].

Fig. 4 Forest plot summarizing the effect of AADvac1 on outcomes in plasma p-tau217 ‘positive’ participants. A mixed model for repeated 
measures (MMRM) analysis was performed for changes in cognitive, volumetric and plasma biomarker outcomes at 104 weeks. Percent differences 
between the AADvac1 and placebo groups were plotted along with 95% CIs (error bars). Ctx, cortex
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This post hoc exploratory analysis of plasma p-tau217 
‘positive’ ADAMANT participants suggested that 
AADvac1 reduced neurodegeneration and neuroinflam-
mation in participants with AD, as measured by plasma 
NfL and GFAP, and might have an impact on cogni-
tion (CDR-SB), activities of daily living (ADCS-ADL-
MCI-18), and rates of cortical brain atrophy measured 
via vMRI. While most of these treatment differences are 
statistically nonsignificant and measured at 104 weeks, 
the described effect sizes (especially in study com-
pleters) are comparable to those of the anti-amyloid 
monoclonal antibodies (AAMAs), donanemab (23% on 
the CDR-SB, 23% on the ADCS-iADL at 76 weeks) and 

lecanemab (22% on the CDR-SB, 40% on the ADCS-
ADL-MCI at 78 weeks).

The potential for AADvac1 to reduce neurodegen-
eration may be reflected through NfL, which also shows 
promise as a marker of disease progression in AD [12, 
55]. There have been contradictory results for plasma 
NfL with AAMAs. While lecanemab showed reduction 
compared with placebo after 18  months [56], there was 
no effect with donanemab [57]. In ADAMANT, there 
was a 56% reduction in the NfL accumulation rate in the 
AADvac1 group compared with the placebo group. This 
reduction may reflect slowing of the progression of neu-
rofibrillary pathology and neurodegeneration [11].

Fig. 5 Trial endpoints in plasma p-tau217 ‘positive’ participants with high and low AADvac1-induced antibody levels Analyses of changes 
from baseline in the CDR-SB (A), temporal lobe volume (B), and plasma NfL (C) and GFAP (D) levels performed on two subgroups of plasma 
p-tau217 ‘positive’ participants, those with high (‘High’, n = 22) and low (‘Low’, n = 60) AADvac1-induced antibody levels. Both responder subgroups 
were compared with the entire plasma p-tau217 ‘positive’ placebo (n = 53). The error bars indicate the standard error. The dotted line indicates 
the baseline. The results of the analyses of other endpoints are shown in Supplementary material Figure S6



Page 11 of 14Kovacech et al. Alzheimer’s Research & Therapy          (2024) 16:254  

Plasma GFAP emerged as a responsive biomarker in 
AAMA studies and represents a potentially informative 
biomarker for diagnostics and clinical trials. In cogni-
tively impaired patients, GFAP provides information on 
both tau pathology and Aβ deposition [37, 58]. GFAP 
demonstrated good individual prediction of Braak stag-
ing of neurofibrillary pathology, providing nonoverlap-
ping information with phospho-tau [59], and has been 
reported to be a predictive marker of future functional 
decline [60]. AADvac1 decelerated the increase in plasma 
GFAP levels by 73%, suggesting an effect on neurodegen-
eration and neuroinflammation. This conclusion is cor-
roborated by recent data indicating a direct link between 
early astrocyte reactivity and synapse damage [64].

The plasma biomarker outcomes of AADvac1 might be 
supported by the nominal slowing, although statistically 
nonsignificant, of brain cortical tissue loss as measured 
by vMRI, which was more pronounced in participants 
with higher antibody response. This is of potential inter-
est at a time when treatment effects with AAMAs are 
showing vMRI results indicating more atrophy and where 
the significance of that finding is uncertain [61, 62]. Our 
findings add to the characterization of MRI changes asso-
ciated with various forms of immunotherapy, and thus 
merit further investigation and confirmation in larger 
clinical trials. Furthermore, the outcomes of amyloid 
and tau therapies support the conclusion that combin-
ing an AAMA with a tau-targeted therapy, such as AAD-
vac1, could lead to an additive positive impact on clinical 
decline.

Finally, these findings support the potential utility of 
plasma p-tau217 in selecting participants for clinical tri-
als in early AD [34, 63], with active tau-targeted immu-
notherapy directed at the microtubule-binding regions.

These analyses have several important limitations. They 
are undertaken post hoc to the trial’s completion and 
must be considered hypothesis-generating. The number 
of participants who are evaluated in the subanalyses var-
ies and it is not possible to control for differences in the 
characteristics of the treatment arms while the available 
sample is smaller than the parent study. The participants 
were all white Europeans. The analyses we have under-
taken do not control for multiple comparisons and pro-
vide only nominal significance. The plasma biomarker 
concentrations were not corrected for the body-mass 
index or kidney function. The correlation analyses of 
plasma p-tau217 with CSF biomarkers suffer from a low 
number of samples. It is recognized that this plasma 
p-tau217 assay has yet to be fully validated against either 
amyloid or tau PET and that some of the subjects might 
not in fact be positive for tau neurofibrillary pathol-
ogy. Finally, we have not tested for additional patholo-
gies (Lewy bodies, TDP-43), which increase the disease 

progression rate and might cause an imbalance between 
the treatment arms.

Conclusions

In this study, we identified a subgroup of the phase 
2 ADAMANT study participants most likely suffer-
ing from AD neuropathological changes on the basis 
of elevated plasma p-tau217. Analyses of outcomes in 
this biomarker-confirmed AD subgroup revealed possi-
ble benefits of AADvac1 on the rate of accumulation of 
plasma NfL and GFAP. These findings were supported 
by a statistically nonsignificant slowing of cortical brain 
atrophy in subjects receiving AADvac1. The effects on 
the study outcomes were more pronounced in individuals 
with greater antibody response. These data merit further 
attention in larger clinical trials.
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