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Abstract 

Background Effective treatment for Alzheimer’s disease (AD) remains an unmet need. Thus, identifying patients 
with mild cognitive impairment (MCI) who are at high-risk of progressing to AD is crucial for early intervention.

Methods Blood-based transcriptomics analyses were performed using a longitudinal study cohort to compare 
progressive MCI (P-MCI, n = 28), stable MCI (S-MCI, n = 39), and AD patients (n = 49). Statistical DESeq2 analysis 
and machine learning methods were employed to identify differentially expressed genes (DEGs) and develop predic-
tion models.

Results We discovered a remarkable gender-specific difference in DEGs that distinguish P-MCI from S-MCI. Machine 
learning models achieved high accuracy in distinguishing P-MCI from S-MCI (AUC 0.93), AD from S-MCI (AUC 0.94), 
and AD from P-MCI (AUC 0.92). An 8-gene signature was identified for distinguishing P-MCI from S-MCI.

Conclusions Blood-based transcriptomic biomarker signatures show great utility in identifying high-risk MCI 
patients, with mitochondrial processes emerging as a crucial contributor to AD progression.
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Graphical Abstract

appear to reverse back to cognitively un-impairment [4, 
5]. Therefore, predicting the subtypes of patients with 
MCI in terms of the different trajectories that disease 
progression takes is crucial to aiding physicians with clin-
ical diagnosis, as well as with intervention trial design.

Transcriptomics analysis of human brains has been 
used previously to elucidate potential mechanisms 
behind neurodegenerative diseases. Using a transcrip-
tomic approach, one recent study identified three major 
molecular subtypes of AD that have specific signatures 
when postmortem brain tissues are investigated [6], 
and this has suggested that there are multiple different 
pathogenesis processes that can lead to the development 
of AD. However, most of such studies were based on 
transcriptomic datasets obtained from the postmortem 
brain tissues of AD patients, which limits their applica-
bility to clinical practice. Accordingly, blood-based bio-
markers that are able to identifying MCI and AD have 

Background
Alzheimer’s disease (AD) is a prevalent age-related neu-
rodegenerative disease. AD is responsible for 60% to 70% 
of age-related neurodegenerative disease [1]. In addi-
tion, it has been suggested that over 100 million people 
will have been diagnosed with AD worldwide by 2050 
[2]. Given that an effective treatment for AD is still lack-
ing, intervention at the disease’s early stage, namely mild 
cognitive impairment (MCI), has become a world prior-
ity. However, early diagnosis of AD by brain imaging and 
by β-amyloid (Aβ) measurement in cerebrospinal fluid 
[3] are not suitable for population screening due to their 
invasive nature and relatively high cost. It is important to 
note that many longitudinal studies have revealed that 
there is a substantial heterogeneity among MCI patients. 
A portion of patients with MCI rapidly advanced to AD, 
while others remained stable, sometimes even for more 
than 10  years; interestingly, a portion of patients also 
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the potential to be a more cost-effective approach and 
easily accessible tool; this approach should help to facil-
itate timely diagnosis [7]. For example, a single-cell tran-
scriptomic study of peripheral blood mononuclear cells 
(PBMCs) has revealed that differential patterns of gene 
expression in specific cell types appeared to correlate 
with AD pathology [8, 9]. However, robust and reliable 
biomarkers obtained from the peripheral blood that are 
able to predict the longitudinal outcome of patients with 
MCI remained an unmet clinical need.

In this study, we carried out a longitudinal study of 
a cohort of patients with either MCI or AD (between 
2012 and 2022). Patients with MCI were classified into 
two groups: (a) Progressive MCI (P-MCI), patients who 
were initially diagnosed with MCI who progress rapidly 
to AD within a three-year follow-up period. (b) Stable 
MCI (S-MCI), patients with MCI who either remained 
clinically stable for a minimum period of four years or 
reverted to a cognitively unimpaired state. We generated 
transcriptomics datasets from peripheral white blood 
cells (WBCs) of three groups of patients, namely P-MCI 
patients, S-MCI patients and AD patients. We analyzed 
the differentially expressed genes (DEGs) by DESeq2 
and adopted a machine learning approach to construct 
prediction models for discriminating the three disease 
classes. Furthermore, we carried out pathway analyses of 
the DEGs and the features (mRNAs) selected by machine 
learning in order to determine the potential roles of these 
genes in the molecular pathogenesis of AD and also used 
them to delineate the complex biological processes asso-
ciated with MCI heterogeneity.

Methods
Study subjects
A total of 116 patients were enrolled from Taipei Veter-
ans General Hospital (Taipei-VGH) to undergo RNA-
sequencing; these consisted of 49 patients with AD, 28 
patients classified as P-MCI, and 39 patients classified as 
S-MCI. Representative timelines for S-MCI and P-MCI 
cases are shown in Supplementary Figure  S1. MCI and 
AD were diagnosed at Taipei-VGH based on the criteria 
recommended by the National Institute on Aging/Alz-
heimer’s Association workgroups in 2011 [10]. Patients 
with frontotemporal dementia and vascular dementia 
were excluded. Furthermore, the patients with AD were 
all considered to be sporadic cases who were suffering 
from late-onset AD. MCI was diagnosed as a change in 
cognition involving impairment in one or more cogni-
tive domains, while preserving independence in the areas 
of social and occupational functioning [11]. Cognitive 
function was accessed using a set of cognitive perfor-
mance tests including the mini‐mental state examination 

(MMSE), the Wechsler memory scale-logical memory 
(WMS-LM) test, the Chinese version verbal learning test 
(CVVLT), the trail making test part B (TMT-B), the Tay-
lor complex figure test (TY-CFT), the Boston naming test 
(BNT) and the verbal fluency-animal (VF-animal) score 
test.

Sample collection and RNA extraction
Fasting peripheral blood was drawn using EDTA-coated 
vacuum tubes. After centrifugation at 4  °C and 3,000  g 
for 10 min, the samples were processed in order to obtain 
white blood cells (WBCs) using RBC lysis buffer. Isola-
tion of RNA from WBCs was performed using TRI Rea-
gent (T9424, Sigma-Aldrich) and the phenol/chloroform 
method. The isolated RNA was stored at − 80  °C until 
analysis. The quality of the total RNA was measured by 
RNA Integrity Number (RIN) and samples with RIN val-
ues higher than 8 were used for RNA sequencing.

RNA sequencing and analysis of DEGs
The library preparation and sequencing were conducted 
by the Cancer Progression Research Center at National 
Yang Ming Chiao Tung University. Paired-end sequenc-
ing was performed using a NovaSeq 6000 sequencing 
system (Illumina Inc.), which generated a sequencing 
depth of at least 20 million reads for each sample. Low-
quality reads (Q < 20) were filtered out, and trimmed 
clean reads were mapped onto the human reference 
genome GRCh38. Transcripts per million (TPM) and 
expected counts for each gene were calculated using the 
RNA-Seq by Expectation Maximization (RSEM) soft-
ware package version 1.3.3 [12]. Pseudogenes or non-
annotated genes were excluded from further analysis. To 
remove noise, all genes with TPM values below 4 were 
considered to be not expressed (background) and were 
set to zero. Other remaining genes in TPM values had 
4 subtracted from them before machine learning analy-
sis. For differential expression analysis using DESeq2 
version 1.36.0 [13], expected counts of genes were used. 
A total of 11,406 genes were retained after filtering for 
expressed genes (minimal count of the expected counts 
being ≥ 40 for the gene and the gene was detected in 
at least 50% of samples). Gender-stratified differential 
expression analyses were conducted using DESeq2. For 
each gender-specific cohort, we performed pairwise 
comparisons across three groups (P-MCI versus S-MCI; 
AD versus P-MCI; and AD versus S-MCI). Differentially 
expressed genes (DEGs) were identified using a nominal 
p-value threshold of 0.05. Additional analyses, incorpo-
rating age as a covariate, were performed to evaluate the 
potential impact of age on the differential expression 
results.
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Machine learning analysis of the RNA‑seq data
The machine learning approach was conducted as illus-
trated in Supplementary Figure S2. Because of the limited 
number of samples, the transcriptome datasets of males 
and females are combined together. For each leave-one-
out cross-validation (LOOCV) iteration, independent 
t-tests were used for initial feature screening. Age, gen-
der, and mRNA features exhibiting a p-value < 0.05 in the 
following comparisons were utilized for each classifica-
tion model: (a) P-MCI vs. S-MCI, (b) AD vs. S-MCI, and 
(c) AD vs. P-MCI. For each binary classification task, the 
dataset was partitioned into a 90% training set and a 10% 
validation set during the feature selection process. The 
Lasso [14], support vector machine (SVM) [15], and the 
random forest (RF) [16] algorithms were employed to 
rank the informative features. This process was repeated 
100 times, and the top 20 features were selected by com-
puting the selection frequency across the three feature 
selection methods. The final set of selected features 
was determined to be those consistently ranked within 
the top 20 across all LOOCV iterations. SVM, Logistic 
regression (LR) and RF algorithms were used to construct 
the prediction models, and to assess the accuracy as well 
as the area under the receiver operating characteristic 
curve (AUC). The above assessments of the binary clas-
sification tasks were calculated via stratified five-fold 
cross-validation.

Our performance evaluation revealed that the SVM-
based prediction models have slightly lower performance 
metrics compared to LR and RF classifiers across all three 
comparison groups. Accordingly, we selected the models 
with the best performance for our final analysis: (a) LR 
for P-MCI vs. S-MCI; (b) RF for AD vs. S-MCI; (c) LR 
for AD vs. P-MCI. Data processing and feature selec-
tion were conducted in R (v3.6.3) using various packages 
including data.table (v1.14.2), dplyr (v1.1.4), doParallel 
(v1.0.15), randomForest (v4.6.14), e1071 (v1.7.3), glmnet 
(v4.1.4), pROC (v1.16.1), and cvAUC (v1.1.0). Model con-
struction and cross-validation were performed in Python 
(v3.7) using pandas (v1.3.5), numpy (v1.21.2), and scikit-
learn (v1.0.2).

Functional enrichment analysis
The DEGs from DESeq2 or important features (mRNAs) 
that had selected by machine learning were analyzed by 
Ingenuity Pathway Analysis (IPA) (http:// www. ingen uity. 
com). Significant canonical pathways with a p-value < 0.05 
and a |z-score|≥ 1 were grouped based on their func-
tional categories; a bubble plot was used to present the 
relationship between the three numeric variables. Gene 
set enrichment analysis (GSEA) was conducted using 
normalized count data obtained from DESeq2 using 
GSEA software version 4.3.2. The KEGG pathway gene 

sets were predefined and obtained from the Molecular 
Signatures Database (MSigDB v5.0).

Statistical analysis and data visualization
Partial least-squares discriminant analysis (PLS-DA) 
among the selected groups was carried out by EZinfo 
(Umetrics, version 3.0.3). Bar charts, bubble plots, Chi-
square tests, and ANOVA were conducted using Graph-
Pad Prism v9.0. Heatmaps were created by uploading 
log-transformed data into Multi Experiment Viewer 
(MEV) 4.9 software [17]. ANCOVA with age as a covari-
ate was performed using SPSS software version 24.

Results
Clinical characteristics of the study subjects
After a 10-year follow-up, a total of 116 patients enrolled 
from Taipei-VGH that had available good quality total 
RNA, which had been isolated from their WBC, were 
selected for RNA-sequencing. Of the subjects, 39 
patients (33.6%) were classified as S-MCI, 28 patients 
(24.1%) were classified as P-MCI, and 49 patients (42.3%) 
were classified as having AD (Fig. 1A). The demographic 
characteristics of the patients with either MCI or AD 
are shown in Table  1; these include age, gender, educa-
tion, APOE ε4 and a variety of cognition evaluation tests. 
There is no significant difference in terms of gender, 
years of education, and percentage of APOE ε4 carriers 
between the different groups of patients, namely S-MCI, 
P-MCI, and AD patients. However, the mean age in the 
S-MCI group (69.9 ± 6.0 years old) is significantly younger 
than that of the P-MCI group (75.8 ± 8.0  years old) and 
AD group (75.8 ± 7.4 years old) groups. Notably, the vari-
ous cognitive assessments revealed the following results: 
(1) both the P-MCI and AD groups were significantly dif-
ferent from the S-MCI group across a number of cogni-
tive measurements, namely MMSE, WMS-LM, CVVLT 
recall, TY-CFT recall, and VF-animal scores. (2) When 
the P-MCI group was compared to the S-MCI group, no 
significant differences were found for BNT, TMT-B time 
and TMT-B lines scores. (3) When comparing the AD 
group with the P-MCI group, the AD group was found 
to have a significant lower performance regarding MMSE 
scores, TMT-B times, and BNT scores than the P-MCI 
group. Supplementary Figure S3 illustrates the demo-
graphic characteristics stratified by gender using bar and 
dot plots.

Gender‑specific differences in DEGs and pathways 
enriched in P‑MCI
We integrated two methodologies, namely DESeq2 and 
a machine learning approach, to analyze the transcrip-
tomic datasets and to identify biomarkers and molecu-
lar signatures that are able to differentiate the S-MCI, 

http://www.ingenuity.com
http://www.ingenuity.com
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Fig. 1 Integrated study by statistical analysis using DESeq2 and machine learning methods to discover biomarker signatures that allow 
identification of MCI patients at high risk of AD. A During the 10-year longitudinal study, patients with MCI were classified as stable MCI 
(S-MCI, ≥ 4y) or progressive MCI (P-MCI, < 3y progressing to AD). Independently, 36 patients with AD were also selected. All subjects underwent 
whole transcriptome profiling of white blood cells via RNA-seq. B Schematic flow chart for identification of key genes derived from the RNA-seq 
data. Differential gene expression analysis was conducted by DESeq2 using the expected counts as inputs. For machine learning, count data are 
transformed into TPM values for feature selection and model construction. C, D Volcano plots showing significant upregulated and downregulated 
genes of P-MCI versus S-MCI based on DESeq2 analyses of males (C) or females (D). E Heatmap for 501 genes (204 upregulated and 297 
downregulated) that differentially modulated in male P-MCI group. F Heatmap for 879 genes (440 upregulated and 439 downregulated) 
that differentially modulated in female P-MCI group. G A Venn diagram comparing significantly regulated genes found in male and female patients 
defined as P-MCI compared with S-MCI patients. H A Venn diagram comparing significantly dysregulated pathways found in male and female P-MCI 
patients compared with S-MCI patients. MCI, mild cognitive impairment; DEG, differentially expressed gene; IPA, ingenuity pathway analysis
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P-MCI, and AD groups (Fig. 1B). Since patients classified 
in the P-MCI group have a high-risk of rapid progres-
sion towards AD, we thus prioritized our study to target 
the comparison between P-MCI and S-MCI. To mitigate 
potential gender-related confounding effects, we strati-
fied the patients by gender and conducted a comparative 
analysis of their gene expression profiles by DESeq2 in 
order to obtain statistical inferences with respect to dif-
ferences in DEGs. We used a Wald test (p-value < 0.05) 
to identify DEGs. In the P-MCI vs. S-MCI comparison, 
the results yielded 501 DEGs (204 up-regulated and 297 
down-regulated) in the male group and 879 DEGs (440 
up-regulated and 439 down-regulated) in the female 
group (Fig.  1C-F). Of the identified DEGs, seven genes 
remained significant after FDR correction using the Ben-
jamini–Hochberg procedure. These were: UVRAG in 
males and RGPD5, IL18RAP, WHRN, FCRL5, ZNF683, 
and TXNIP in females. Intriguingly, most of the DEGs 
identified in the males and females are different, with 
only a small portion of the DEGs overlapping (Fig. 1G). 
In addition, IPA analysis of the DEGs identified 20 path-
ways enriched in males and 98 pathways enriched in 
females; however, only two overlapping pathways were 
identified in both genders (Fig. 1H). These two pathways 
are the neutrophil degranulation pathway, and the patho-
gen induced cytokine storm signaling pathway (Fig. 2A).

In males, the significantly enriched pathways in P-MCI 
compared with S-MCI are mainly related to immune 

response and signaling (Fig.  2A). Interestingly, GSEA 
revealed that P-MCI is positively associated with Alzhei-
mer’s disease (NES = 1.88; FDR = 0.026), but negatively 
associated with the B cell receptor signaling pathway 
(NES = -2.33; FDR < 0.001) (Fig. 2B). In females, the signifi-
cantly enriched pathways in P-MCI compared with S-MCI 
can be grouped into four major categories: (a) immune 
response, (b) signaling, (c) cell death, and (d) stress 
response (Fig. 2C). Notably, GSEA revealed three enriched 
pathways that are positively associated with P-MCI, 
namely the chemokine signaling pathway (NES = 1.91; 
FDR = 0.041), the natural killer cell-mediated cytotoxicity 
(NES = 1.85; FDR = 0.017), and the neurotrophin signaling 
pathway (NES = 1.71; FDR = 0.043) (Fig. 2D).

To summarize the remarkable gender-specific differ-
ence in the DEGs and to highlight the gender dimor-
phism of the enriched biological pathways, we created 
a schematic diagram to illustrate the pathway networks 
(Fig.  2E and F). In male P-MCI patients, B cell survival 
signaling and gonadotropin-releasing hormone (GnRH) 
signaling are significantly down-regulated compared with 
S-MCI patients (Fig. 2E). In female P-MCI patients, three 
pathways are identified, namely the LPS-TLR4, Insulin-
PI3K-AKT-FOXO, and IL-6-HIF1α pathways. Many of 
the DEGs involved in these pathways are up-regulated, 
while other DEGs are down-regulated, suggesting that all 
three pathways are dysregulated in P-MCI patients com-
pared with S-MCI patients (Fig. 2F).

Table 1 Characteristics of 116 samples defined as P-MCI, S-MCI or AD

Means ± standard deviation (SD) is shown for continuous variables; MMSE, Mini-Mental State Examination; WMS, Wechsler Memory Scale; CVVLT. Chinese Version 
Verbal Learning Test; TMT, Trail Making test; TY-CFT, Taylor Complex Figure Test; BNT, Boston Naming test; VF, verbal fluency; APOE, apolipoprotein E. Statistical 
significance for continuous variables among S-MCI, P-MCI and AD groups were determined by ANCOVA (age as a covariate) followed by Bonferroni post hoc test. For 
age, ANOVA was conducted. See Supplementary Figure S3 for box plots of each item stratified by gender. * p < 0.05; ** p < 0.01; *** p < 0.001. For gender and APOE e4 
carrier, p values are obtained from Pearson chi-square tests. ns, not significant

ANCOVA Post‑hoc comparison

Characteristic S‑MCI P‑MCI AD p value P‑MCI vs. S‑MCI AD vs. P‑MCI AD vs. S‑MCI

Sample (n) 39 28 49 -

Age (years) 69.6 ± 6.0 75.8 ± 8.0 75.8 ± 7.4 * ** ns ***

Female (%) 35.9 50.0 40.8 - ns ns ns

Education (years) 13.0 ± 3.8 11.8 ± 5.3 11.6 ± 4.2 ns - - -

MMSE score 27.7 ± 1.9 24.7 ± 1.6 21.5 ± 4.3 *** *** *** ***

WMS-III Logical
Memory Story A

6.7 ± 4.0 1.4 ± 2.2 0.9 ± 1.6 *** *** ns ***

CVVLT recall 6.5 ± 1.9 1.9 ± 2.2 1.1 ± 1.6 *** *** ns ***

TMT B time (sec) 55.4 ± 32.6 73.6 ± 36.8 98.2 ± 29.7 *** ns * ***

TMT B lines 13.4 ± 2.1 11.8 ± 3.5 10.0 ± 4.6 * ns ns *

TY-CFT copy 31.0 ± 3.8 30.6 ± 4.8 29.6 ± 6.6 ns - - -

TY-CFT recall 16.9 ± 6.9 5.3 ± 4.0 4.0 ± 4.7 *** *** ns ***

BNT (30 items) 27.9 ± 2.0 26.6 ± 2.5 22.8 ± 4.9 *** ns *** ***

VF-animal 15.8 ± 3.9 12.9 ± 4.3 10.8 ± 5.5 *** * ns ***

APOE ε4 carrier (%) 28.2 50.0 46.9 - ns ns ns
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Moreover, a previous study has shown that the immune 
microenvironment may have an impact on the etiol-
ogy and pathology of AD [18]. To elucidate a possible 

relationship between the transcriptomic changes and 
the abundance of each immune cell type, we employed 
CIBERSORT deconvolution analysis [19] to estimate 

Fig. 2 Gender-specific differences in the biological pathways enriched in P-MCI patients compared to S-MCI patients. A Bubble plot depicting 
the significant canonical pathways based on male P-MCI vs. S-MCI DEGs. B GSEA shows enrichment of Alzheimer’s disease and B cell receptor 
signaling pathways in the male P-MCI vs. S-MCI. C Bubble plot depicting the significant canonical pathways based on female P-MCI vs. S-MCI 
DEGs. D GSEA shows enrichment of chemokine signaling pathway, natural killer cell-mediated cytotoxicity, and neurotrophin signaling pathway 
in the female P-MCI vs. S-MCI. E A schematic diagram of B cell survival signaling and GnRH Signaling pathways based on male P-MCI vs. S-MCI 
DEGs. F A schematic diagram of LPS-TLR4, Insulin-PI3K-AKT-FOXO, and IL-6-HIF1α pathways based on female P-MCI vs. S-MCI DEGs. All up-regulated 
DEGs are colored in red, while down-regulated are colored in blue. Black squares represent non-significant changes and grey squares demonstrate 
undetected gene expression. *, p < 0.05 in the DESeq2 analysis result with age as a covariate. GSEA, gene set enrichment analysis; NES, normalized 
enrichment score; ERAD, Endoplasmic Reticulum-Associated Degradation. MCI, mild cognitive impairment; P-MCI, Progressive MCI; S-MCI, Stable 
MCI
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the composition of 22 immune cell types based on the 
whole-transcriptome datasets. Our analysis revealed 
that the numbers of naive B cells and M1 macrophages 
(pro-inflammatory) are significantly lower in both the 
P-MCI and AD groups compared with the S-MCI group 
(p < 0.05); however, there is no significant difference 
between P-MCI and AD groups (Supplementary Figure 
S4). These results indicated that two cell types (naïve B 
cells and M1 macrophages) may have a slight influence 
on the DEGs. Alternatively, changes in the numbers of 

the two cell types could be a consequence of the differ-
ences in DEGs between P-MCI and S-MCI patients.

Construction of machine learning models to identify 
high‑risk patients with P‑MCI
We utilized age, gender, and mRNA transcripts of anno-
tated protein-coding genes as inputs for feature selection 
(Fig. 1B; Supplementary Figure S2). For each model, the 
optimal number of features was determined by choos-
ing the minimum feature number that is able to achieve 

Fig. 3 Machine learning models to differentiate MCI and AD, and identify high-risk P-MCI patients. A The top differentiating features ranked 
by selection frequency are shown for three different classification models: (i) P-MCI vs. S-MCI; (ii) AD vs. S-MCI; (iii) AD vs. P-MCI. B PCA score plot 
of all 174 features from joint selected genes of all three classifications. C ROC curves of three groups of classifiers: (i) P-MCI vs. S-MCI; (ii) AD vs. P-MCI; 
(iii) AD vs. S-MCI using optimal number of selected features by five-fold cross validation. The 95% confidence interval (CI) values are also indicated. 
D Performance assessment of all three classifiers: (i) P-MCI vs. S-MCI; (ii) AD vs. S-MCI; (iii) AD vs. P-MCI using the top selected features. For each 
classifier, results are shown for all subjects combined (♀ + ♂), for females only (♀), and for males only (♂). The results are presented as means. MCI, 
mild cognitive impairment; P-MCI, Progressive MCI; S-MCI, Stable MCI
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Fig. 4 Enriched pathways based on the top features selected by machine learning that are then used to discriminate between P-MCI, S-MCI, 
and AD. A, C, E Bubble plots representing functional enrichment of important/key mRNAs selected by P-MCI vs. S-MCI, AD vs. P-MCI, and AD vs. 
S-MCI models. B A representation of ABCB1, TSP1, and mitochondrial function-related mRNAs selected by machine learning during the P-MCI 
vs. S-MCI classifier. D A representation of mRNAs associated with chromatin remodeling and DNA repair, mitochondrial process, proteostasis, 
and transporters, identified by machine learning during the AD vs. P-MCI classifier. Figure created with BioRender.com
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high AUC and accuracy values (Fig.  3A). Notably, the 
result of PCA revealed that patients classified as P-MCI, 
S-MCI, and AD could be separated from one another 
using a combination of selected features (these were 62 
features for discriminating P-MCI vs. S-MCI, 74 features 
for discriminating AD vs. P-MCI, and 58 features for dis-
criminating AD vs. S-MCI). This indicates that these fea-
tures have a strong ability to be discriminative (Fig. 3B). 
Remarkably, our machine learning models also reveal 
a good performance when five-fold cross validation 
was carried out. The results were as follows: (1) a panel 
of eight features was able to achieve an accuracy rate of 
0.87 and an AUC of 0.93 when discriminating between 
P-MCI and S-MCI; (2) a panel of nine features was able 
to achieve an accuracy rate of 0.85 and an AUC of 0.94 
when discriminating between AD and S-MCI; and (3) a 
panel of ten features was able to achieve an accuracy rate 
of 0.88 and an AUC of 0.92 when discriminating between 
AD and P-MCI (Fig. 3C and D). The performance of the 
three machine learning models, including optimal fea-
ture number, sensitivity, specificity, accuracy, and AUC 
for each binary classifier, are presented in Fig.  3D. Our 
results revealed that the ML models maintain a robust 
predictive power across all patients when both sexes were 
analyzed, as well when the male and female subgroups 
were analyzed separately.

Interestingly, among the eight features discriminat-
ing between P-MCI and S-MCI, five genes (ARRDC4, 

TMEM187, RABEPK, ZC3H3 and MC1R) are signifi-
cantly up-regulated in P-MCI, while two genes (PRRC2A 
and RORC) are significantly down-regulated in P-MCI 
(Supplementary Figure S5). In addition, among the 
three panels of features, except for TMEM187, which is 
the only gene selected by more than one model, namely 
P-MCI vs. S-MCI, and AD vs. P-MCI, the remaining 
genes used for the three machine learning models do 
not overlap. The proteins and biological functions of 
the three panels of genes was shown in Supplementary 
Table S1.

Pathways associated with the transcriptomic features 
selected by machine learning
To explore the biological function associated with the 
three panels of features identified by machine learning, 
we performed pathway analysis based on the mRNA fea-
tures. Firstly, a total of 62 genes were identified when dis-
criminating P-MCI vs. S-MCI. Many of the selected genes 
are involved in mitochondrial processes, including com-
plex I assembly (NDUFAF1), electron transport chain 
(UQC), mitochondrial calcium ion transport (MICU2) 
and coenzyme Q biosynthesis (COQ7) (Fig.  4A and B). 
Notably, the drug transporter ABCB1 (rank 10) has been 
reported previously to be involved in the AD pathogen-
esis via its involvement in clearing Aβ from the brain 
into the blood circulation [20]. Furthermore, a secreted 
protein, TSP1 (rank 14), has been shown previously to be 

Fig. 5 Multifaceted biological processes and pathways that are identified to be associated with AD progression. Our study revealed that multiple 
biological pathways and processes appear to be involved in the rapid progression of high-risk patients from P-MCI to AD, and that an integrated 
investigation of DESeq2 and machine learning methods should accelerate the discovery of biomarker signatures that will reveal the multifaceted 
nature of the molecular pathogenesis during AD disease progression
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associated with mitochondrial dysfunction and may be 
involved in enhancing cell senescence and modulating 
the immune response [21, 22].

Secondly, a total of 74 features were identified when 
discriminating AD vs. P-MCI. The selected genes can 
be functionally categorized into four major groups 
(Fig.  4C and D). The first group consists of genes 
involved in chromatin remodeling and DNA repair. 
For example, INO80C (rank14) plays a crucial role in 
regulating chromatin structure through its ability to 
exchange histone variants and modulate nucleosome 
spacing [23]. Another example is BABAM2 (rank 63), 
which is a component of the BRCA1-A complex, and 
possesses deubiquitinase activity that targets histones 
H2A and H2AX at DNA lesions sites. The second 
group consists of genes involved in mitochondrial pro-
cess. For example, GATB (rank 40), NME4 (rank 64) 
and FDXR (rank 69), which are associated with mito-
chondrial biosynthesis and function, while NDUFAF1 
(rank 21) is involved in complex I assembly. The third 
group consists of genes involved in proteostasis. For 
example, PSMF1 (proteasome inhibitor subunit 1), 
UBC (ubiquitin c) and FBXL17 (substrate-recognition 
component of the SCF E3 ubiquitin ligase complex), all 
of which are involved in ubiquitin proteasome system. 
The final group of genes is made up of genes encoding 
transporters. For example, the transporters SLC2A8 
and SLC3A2, which are functionally involved in the 
transportation of glucose and amino acids during AD 
pathogenesis. These findings suggest there is a wide 
effect on a range of cellular processes and that these 
changes are associated with progression from P-MCI 
to AD.

Thirdly, a total of 58 features were identified when 
discriminating AD vs. S-MCI. However, in this case, 
we found no significant enrichment of mitochon-
drial process being associated with these genes. The 
enriched pathways are mainly associated with metabo-
lism and signaling (such as activation of NMDA recep-
tors and postsynaptic events), proteostasis, cell death 
and cell cycle, as well as autophagy (Fig. 4E).

New insights into the multifaceted biological processes 
involved in AD progression
Because of the limited numbers of study subjects, our 
machine learning approach was conducted using a com-
bined dataset of males and females. In order to compare 
the DEGs identified by DESeq2 and the features selected 
by machine learning, we performed additional DESeq2 
analysis using the pooled datasets of both genders. When 
P-MCI and S-MCI were compared, a total of 437 DEGs 
were identified by DESeq2. Among these DEGs, 30 
genes overlapped with the features selected by machine 

learning (Supplementary Figure S6A). Furthermore, IPA 
analysis revealed that there are 13 significant pathways 
associated with the 437 DEGs (Supplementary Figure 
S6B). However, no common pathway was found that was 
associated with the DEGs and features. DEGs obtained 
from the statistical model (DESeq2) are mainly related to 
signaling pathways and the immune response; while fea-
tures obtained from machine learning are mainly related 
to mitochondrial function, ABCB1 function, and TSP1 
function (Fig. 5). These results suggest that multiple bio-
logical pathways and processes are involved when there 
is rapid progression of high-risk patients from P-MCI to 
AD, and that an integrated study using both a statistical 
method (DESeq2) and machine learning models should 
help to accelerate the discovery of biomarker signatures 
and reveal the multifaceted nature of molecular patho-
genesis during disease progression of AD.

Discussion
This study produces several pivotal findings using a 
longitudinal study cohort and a 10-year follow-up. 
Firstly, using statistical analysis by DESeq2, we discov-
ered a remarkable gender-specific difference in DEGs 
that distinguish P-MCI from S-MCI. Pathway analy-
ses revealed that in male P-MCI, B cell survival sign-
aling and gonadotropin-releasing hormone signaling 
are significantly down-regulated. However, in female 
P-MCI, three pathways, namely the LPS-TLR4, Insu-
lin-PI3K-AKT-FOXO, and IL-6-HIF1α pathways, are 
highly enriched compared with S-MCI. Secondly, using 
machine learning methods, we established three pre-
diction models with good performance that can dis-
criminate between the three disease states; these are (a) 
P-MCI versus S-MCI (an accuracy rate of 0.87 and an 
AUC of 0.93), (b) AD versus S-MCI (an accuracy rate 
of 0.85 and an AUC of 0.94), and (c) AD versus P-MCI 
(an accuracy rate of 0.88 and an AUC of 0.92). Lastly, 
a panel of eight mRNA features (ARRDC4, PRRC2A, 
RORC, TMEM187, RABEPK, ZC3H3, MC1R, and 
TNNI2) emerged as a biomarker signature for distin-
guishing high-risk P-MCI from S-MCI. Pathway analy-
sis of the features highlights the fact that mitochondrial 
processes seem to be a crucial contributor to AD pro-
gression. These results demonstrate that transcriptomic 
signatures obtained from peripheral WBCs are of great 
utility for identifying MCI patients who are at high-
risk of accelerated progression to AD. We highlight 
the potential involvement of these genes in biological 
processes and pathways, the study of which should help 
us to gain insights into the complex mechanisms that 
underlie the heterogeneity of MCI.

A greater number of DEGs and pathways were iden-
tified in females than in males when comparing P-MCI 
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to S-MCI (Fig. 1). Most of the DEGs and pathways were 
unique to each gender. Notably, the GSEA results indi-
cate that immune response-related pathways are posi-
tively associated with P-MCI in females, whereas in 
males, these genes are regulated in a negative direction 
(Fig.  2). Previous studies have reviewed sex differences 
in AD pathogenesis and identified possible roles for sex 
hormones and sex chromosomes [24, 25]. Our findings 
support the hypothesis that there are gender-biased tran-
scriptome signatures in patients with MCI, and suggests 
a female-specific relationship between neuroinflamma-
tion and rapid AD progression. The opposite regulation 
trends of these immune-related genes are similar to a 
previous report where two female-specific genes were 
discovered in cerebral cortex, namely NCL and KIF2A; 
these showed up-regulation in females with AD, while 
being down-regulated in males with AD compared to 
their respective controls [26].

Dysregulation of the gonadotropin-releasing hormone 
(GnRH) signaling pathway was found to be specifically 
enriched in males who were defined as P-MCI. GnRH 
not only regulates reproductive function, but is also rec-
ognized as being involved in neurodegenerative disease 
like AD [27]. The potential differential effects of GnRH 
on AD pathology in males and females require further 
investigation. In females, the dysregulated insulin-PI3K-
AKT-FOXO signaling pathway was specifically enriched. 
Anti-inflammatory interventions and anti-diabetic drugs 
targeting insulin pathways have been considered as possi-
ble AD disease-modifying treatments [28, 29]. Our find-
ings suggest that the use of these treatments to reduce 
the risk of progression from MCI to AD may only work 
for the female gender. Interestingly, the machine learning 
models for P-MCI and S-MCI were built and were suc-
cessful when both genders were included. As gender is 
not represented in the feature panel, we hypothesize that 
our machine learning models utilized genes that allow for 
gender-independent classification.

Previously, many studies have suggested that biomark-
ers obtained by comparing AD to controls can be used 
to predict conversion from MCI to AD. However, recent 
studies have indicated that this change has a non-linear 
trajectory whereby cognitively unimpaired (CU) individ-
uals progress to MCI, and then further progressing to AD 
[30, 31]. Compared to AD, earlier stages, such as MCI or 
subjective cognitive decline (SCD), are generally believed 
to be more heterogeneous, possibly due to the slow pro-
gressive nature of neurodegenerative diseases. A recent 
imaging study found that molecular biomarkers pre-
dicting CU-to-MCI conversion are not as helpful for as 
they are for MCI-to-AD conversion [32]. To address this 
issue, we focused on patients with MCI and AD, exclud-
ing CU participants. Our study revealed the presence of 

dynamic regulation based on the following observations: 
(1) the three feature panels incorporated into our predic-
tion models were distinct, with few features consistently 
selected across all three models; and (2) the majority 
of the top-ranked genes displayed different regulation 
trends, with many genes significantly up-regulated in 
P-MCI, but remaining unchanged or even being down-
regulated in AD (Supplementary Figure S5). Collectively, 
these findings suggest that searching for additional bio-
markers that go beyond established AD biomarkers 
would be very useful for predicting conversion risk of an 
individual in the future. Our platform, which utilizes a 
panel of 8 mRNA biomarkers, may serve as a diagnostic 
tool for identifying patients who are at high-risk of devel-
oping AD.

In the present study we investigated the correla-
tion between blood-based transcriptomics obtained 
from WBCs and disease progression of patients from 
MCI to AD. Most deconvoluted immune cell types 
remained unchanged between these two groups, except 
for a reduction in the naïve B and M1 macrophage cell 
populations of P-MCI and AD individuals compared 
to S-MCI individuals. Previous studies have reported 
conflicting results regarding B cell populations in AD 
subjects [8, 9], which highlights the need for further 
research. The potential of variation in WBC-derived 
immune cell populations to predict progression from 
MCI to AD remains unestablished and requires thor-
ough investigation. To our knowledge, differences in 
immune cell-type proportions have not been reported 
for the various MCI subtypes based on blood tran-
scriptome. Given the compromised blood–brain bar-
rier in Alzheimer’s disease and the complex interaction 
between peripheral and central immune systems [18], 
increased neuroinflammation is thought to raise the 
risk of developing AD [33]. Notably, a portion of DEGs 
have been found to be common to both blood and brain 
in patients with AD and MCI, especially in the prefron-
tal cortex region [31]. Another study has shown that 
there is a striking similarity between peripheral and 
brain pathological mechanisms [34]. These findings 
suggests that the blood transcriptome could be used 
as a surrogate indicator for monitoring the progression 
and pathogenesis of AD, at least to some extent.

Regarding the biomarker signature of the eight mRNA 
features (ARRDC4, PRRC2A, RORC, TMEM187, 
RABEPK, ZC3H3, MC1R, TNNI2) used by the machine 
learning model to distinguish P-MCI vs. S-MCI, two 
genes, namely PRRC2A and RORC, seem to be directly 
associated with AD pathogenesis. PRRC2A is involved 
in the proliferation and cell fate determination of oli-
godendrocytes, and its deficiency in the brain leads to 
hypomyelination [35]. RORC, which encodes RORγt, 
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is a transcription factor known to control differentia-
tion of T help 17 cells [36]. At the pathway level, mito-
chondrial process changes are significantly enriched in 
P-MCI with; all of the features (mRNAs) associated with 
mitochondria-related genes being up-regulated in P-MCI 
compared to S-MCI (Fig. 4A and B). Given the important 
role of mitochondrial dysfunction in the pathogenesis of 
MCI and AD [37], one possible explanation is that this 
increase might reflect a compensatory response against 
impaired mitochondrial functions. Interestingly, in the 
comparison of AD vs. P-MCI, mitochondrial process 
was also identified to be significantly enriched and were 
among the features used by the machine learning model 
(Fig.  4C and D). Nevertheless, whether the up-regula-
tion of genes associated with mitochondrial function in 
WBCs indeed reflect a similar situation to that occurring 
in the brain and that this may precede the progression to 
AD, is of great interest and requires further investigation.

Limitations and future perspectives
There are several limitations to the present study despite 
the meticulous application of an integrated methodology 
of machine learning and statistical methods used to lever-
age the transcriptomics datasets in order to gain insights 
into disease progression. Firstly, the sample size of this 
longitudinal study is relatively limited compared with 
many other cross-sectional studies on MCI and AD. This 
is due to the requirement for long-term follow-up visits 
in order to define patients as S-MCI or P-MCI. Thus, the 
current small sample size may have constrained our statis-
tical power when detecting differences that might persist 
after multiple testing correction. Secondly, even though 
the machine learning models show a promising perfor-
mance in terms of accuracy rate of prediction and AUC, 
our findings need to be validated using a larger sample size 
and using more ethnically diverse external cohorts. This is 
essential so that the prediction models can be widely used 
on patients with MCI and AD for personalized medicine 
purposes. Thirdly, transcriptomic profiling of peripheral 
blood can be influenced by a number of confounding fac-
tors, such as comorbidities and medication, which were 
not considered here. Fourthly, lacking brain transcriptom-
ics datasets of the patients that form our cohort precluded 
an analysis to identify dysregulated genes and pathways 
common to white blood cells and brain tissue. Finally, 
the cause-and-effect relationship between the genes and 
pathways identified in this study need to be investigated 
using in vitro and in vivo approaches.

Conclusion
Our findings support the notion that a variety of specific 
pathways and biological processes can be identified as 
associated with cognitive decline. In particular, various 

mitochondrial process and the dysfunction of these 
appear to be associated with the conversion of high-risk 
patients to AD patients; this discovery was obtained via 
a machine learning approach. On the other hand, statisti-
cal models by DESeq2 revealed the dysregulation of the 
neuroinflammatory GnRH and PI3K-AKT-FOXO signal-
ing pathways, and these changes show prominent sexual 
dimorphism. Considering that machine learning and sta-
tistical models are very different in approach, combining 
these two methodologies should provide a more compre-
hensive approach to exploring the multifaceted nature of 
AD pathogenesis in patients with MCI.
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