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Abstract 

Background Alzheimer’s disease (AD) is a progressive neurodegenerative disorder affecting millions worldwide, 
leading to cognitive and functional decline. Early detection and intervention are crucial for enhancing the quality 
of life of patients and their families. Remote Monitoring Technologies (RMTs) offer a promising solution for early detec‑
tion by tracking changes in behavioral and cognitive functions, such as memory, language, and problem‑solving skills. 
Timely detection of these symptoms can facilitate early intervention, potentially slowing disease progression and ena‑
bling appropriate treatment and care.

Methods The RADAR‑AD study was designed to evaluate the accuracy and validity of multiple RMTs in detecting 
functional decline across various stages of AD in a real‑world setting, compared to standard clinical rating scales. Our 
approach involved a univariate analysis using Analysis of Covariance (ANCOVA) to analyze individual features of six 
RMTs while adjusting for variables such as age, sex, years of education, clinical site, BMI and season. Additionally, we 
employed four machine learning classifiers – Logistic Regression, Decision Tree, Random Forest, and XGBoost – using 
a nested cross‑validation approach to assess the discriminatory capabilities of the RMTs.

Results The ANCOVA results indicated significant differences between healthy and AD subjects regarding reduced 
physical activity, less REM sleep, altered gait patterns, and decreased cognitive functioning. The machine‑learning‑
based analysis demonstrated that RMT‑based models could identify subjects in the prodromal stage with an Area 
Under the ROC Curve of 73.0 %. In addition, our findings show that the Amsterdam iADL questionnaire has high 
discriminatory abilities.

Conclusions RMTs show promise in AD detection already in the prodromal stage. Using them could allow for earlier 
detection and intervention, thereby improving patients’ quality of life. Furthermore, the Amsterdam iADL question‑
naire holds high potential when employed remotely.
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Background
Alzheimer’s disease (AD) is a progressive neurodegenera-
tive disease that affects memory, thinking, and behavior 
and is the leading cause of dementia in older adults [1]. 
Neuropathological characteristics of Alzheimer’s dis-
ease emerge 15 to 20 years prior to the onset of notice-
able cognitive symptoms [2–4], making early detection 
crucial to provide the best possible care as anatomical 
and physiological changes become increasingly irrevers-
ible as the disease progresses. Identifying patients at a 
preclinical stage is particularly challenging, as they do 
not seek medical care due to the absence of cognitive 
decline [5], and the necessary tests to reveal these early 
changes can be costly and not widely accessible. This is 
particularly relevant given the recent availability of new 
disease-modifying drugs for AD, such as Leqembi [6] and 
Kisnula [7], which have the potential to slow down dis-
ease progression when administered in the early stages of 
the disease. Additionally, there are approved drugs that 
are used to treat patients symptomatically, such as done-
pezil or memantine, which can help manage symptoms 
[8]. Furthermore, combination therapy of these two med-
ications could also delay nursing home placement [9]. An 
early diagnosis enables patients and their families to plan 
for the future, including critical considerations regarding 
care, financial, and legal matters.

Traditional neuropsychological assessments, primarily 
focused on cognitive and behavioral symptoms, are often 
the first step in the diagnostic process. Complementing 
these are more specific diagnostic procedures, such as 
lumbar puncture and brain molecular imaging, which 
are expensive, time-consuming, and not widely acces-
sible due to their invasive nature. These procedures are 
typically limited to specialized memory clinics, making 
early disease diagnosis challenging for many individuals. 
In general, it is estimated that the economic burden of 
Alzheimer’s disease and related dementias will increase a 
lot during the following decades [10]. Therefore, develop-
ing cost-effective and user-friendly tools to support the 
existing diagnostic procedures is essential. We need diag-
nostic tools that can accurately and sensitively detect the 
functional deficits of AD pathology at the earliest possi-
ble disease stage and monitor the effects of intervention 
strategies in AD. In this study, we investigate the poten-
tial of Remote Monitoring Technologies (RMTs) for this 
purpose.

RMTs can help detect early symptoms of Alzheimer’s 
disease through a noninvasive, cost-effective method 

for collecting data on various functional parameters 
and digital biomarkers, including movement patterns, 
sleep quality, gait parameters, social engagement, and 
cognitive function, providing a comprehensive view 
of an individual’s health status [11, 12]. These tech-
nologies include smartphone apps, wearable sensors, 
smart home technology, and other remote monitor-
ing devices that can be made widely accessible to peo-
ple in low or middle-income countries. Currently, the 
field of respective technologies is rapidly developing, 
and several studies have shown their effectiveness in 
detecting symptoms of neurodegenerative diseases. 
For example, Zhan et al. proposed a smartphone app to 
detect Parkinson’s disease symptoms [13]. Bayat et  al. 
used the driver’s age and derived metrics from an in-
vehicle GPS logger to identify patients with preclini-
cal AD [14]. In another study, Berron et  al. utilized a 
smartphone application that employs tasks such as an 
object-in-room recall, complex scene recognition, and 
mnemonic discrimination for objects and scenes to 
effectively discriminate between different diagnostic 
stages, identifying MCI with good accuracy [15]. In 
general, the number of studies using RMTs in healthy 
and AD-affected populations dramatically increased in 
recent years [16]. However, many studies face strong 
limitations: some fail to incorporate data from evalu-
ations conducted in home-based and real-life settings, 
others cover only short-term measurements, and few 
compare multiple RMTs [16]. Therefore, it is currently 
unclear which RMTs are the most suitable to detect 
functional decline symptoms robustly and accurately in 
patients with early-stage AD.

The Remote Assessment of Disease and Relapse 
- Alzheimer’s Disease (RADAR-AD; https:// www. 
radar- ad. org/) study aimed to evaluate the potential of 
RMTs to accurately measure cognitive and motor func-
tioning for individuals in different stages of AD [17]. It 
addressed the limitations of prior research by evaluat-
ing a comprehensive set of RMTs in a real-world envi-
ronment over eight weeks. In this current paper, we 
employed a two-pronged analytical approach to assess 
their potential. First, we used statistical univariate anal-
yses to identify RMT-derived features that significantly 
differentiate between study groups. Then, we deployed 
a machine-learning pipeline to evaluate how well these 
RMTs distinguish between the groups.

By employing this dual methodology, we aimed 
to answer critical questions: a) Can RMTs detect 

https://www.radar-ad.org/
https://www.radar-ad.org/
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functional deficits at early-stage AD? b) Which specific 
RMT features are the most indicative? c) Furthermore, 
to what extent can machine-learning models accurately 
distinguish between different diagnostic groups by uti-
lizing features acquired from RMTs? Collectively, this 
study contributes to clarifying the possibilities of RMTs 
in healthcare systems, either for earlier diagnosis or 
ongoing monitoring of AD progression.

Methods
RADAR‑AD study cohort
The RADAR-AD study is an observational, cross-sec-
tional study conducted across 13 European countries. It 
primarily aims to evaluate the effectiveness and reliability 
of RMTs in tracking functional decline in AD from pre-
clinical to moderate stages compared to traditional clini-
cal rating scales. Data collection took place between 2020 
and 2023.

To be eligible for study participation, participants were 
required to meet the following inclusion criteria: being at 
least 50 years of age, maintaining a relatively good health 
status, or having a mild chronic disorder that was con-
trolled by therapy or did not impair function. A prereq-
uisite was having a partner willing to participate in the 
study, who could be a spouse, a relative, a caregiver, or 
a friend. Both the participant and their partner needed 
to converse in the language of the recruitment center 
and actively participate in various tests and question-
naires, with access to a smartphone being a prerequisite 
for both. Exclusion criteria included having a concurrent 
neurological or psychiatric condition that might interfere 
with their daily life activities or social interactions, or any 
other health conditions that could substantially affect 
their mobility, daily activities, or social engagements, 
such as, inflammatory disorders caused by the immune 
system, or recovery from recent trauma or stroke.

Neuropsychological assessments and in-clinic tech-
nologies (Altoida MD, Amsterdam iADL and Physiolog) 
were conducted during the initial visit, with other RMT 
data collected subsequently. The study comprises four 
distinct groups: healthy controls, preclinical AD, prodro-
mal AD, and mild-to-moderate AD. To ensure that all AD 
patients had underlying AD disease, all participants had 
evidence of supra-threshold A β  burden based on amy-
loid PET and CSF analysis before inclusion. The control 
participants were cognitively unimpaired and matched 
the age and sex distributions as participants of the AD 
groups, preferably with confirmation of negative AD 
biomarkers. The study groups were defined according to 
FDA guidelines and assessed using the Mini-Mental State 
Examination (MMSE) [18] and the Clinical Dementia 
Rating (CDR) [19, 20].

The study received ethical approval in each participat-
ing country and aligned to the principles of the Helsinki 
Declaration of 1975, as revised in 2008. All participants 
and their informants provided written informed consent 
before any study procedures. For a schematic represen-
tation of the recruitment process, readers are referred to 
the appendix, which contains the flowchart in Supple-
mentary Figure C.1. For a more comprehensive under-
standing of the RADAR-AD study, we refer to the papers 
by Owens et al. [21] and Muurling et al. [17, 22], as well 
as the research protocol available at the RADAR-AD 
website (https:// www. radar- ad. org/ our- resea rch/ proje ct- 
deliv erabl es). For details on the RADAR-AD cohort itself, 
please refer to Table 2 in the Results section.

Evaluated RMTs
The RADAR-AD study included multiple tiers of RMTs. 
For this work, we focused on six RMTs from the main 
study and the Amsterdam iADL questionnaire for fur-
ther analysis. We begin by providing details on the RMTs 
and their derived features. For a comprehensive list of 
the RMT-derived features, please refer to Supplementary 
Table A.3.

Fitbit Charge 3 The Fitbit Charge 3 is a fitness tracker 
that utilizes an accelerometer and a heart rate moni-
tor and is equipped with sleep-tracking and activity-
monitoring functions. The device features an interactive 
display for user engagement. For our study, participants 
were instructed to wear the device on their non-domi-
nant wrist for eight weeks. Following the study’s conclu-
sion, the collected data was analyzed and processed.

The extracted data was segmented into heart rate, 
sleep, and activity data. Heart rate information was cal-
culated using the average, minimum, and maximum val-
ues recorded throughout the study. Additionally, we also 
examined hourly averages of the heart rate. Similarly, step 
data were analyzed by calculating average steps per day, 
as well as per hour of the day. Regarding sleep-derived 
features, we looked at the average number of hours spent 
asleep, awake, and in the various sleep stages while also 
considering the mean bedtime.

Axivity AX3 The Axivity AX3 is an additional acceler-
ometer-based tracking device in our study for physical 
activity and sleep tracking. Participants were instructed 
to wear the device on their dominant wrist for eight 
weeks. While the Axivity AX3 does not include a display 
or heart rate monitor, it has a significantly longer bat-
tery life than the Fitbit Charge 3. As the device provides 
data at a more granular level, particularly raw 3D accel-
eration data, it was incorporated into our study. Previous 

https://www.radar-ad.org/our-research/project-deliverables
https://www.radar-ad.org/our-research/project-deliverables
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research has already demonstrated the device’s suitability 
for this type of research [23].

In our study, we extracted a range of features from the 
Axivity AX3 device, including the acceleration magni-
tude, wear time, time spent in sedentary, light, and mod-
erate-to-vigorous activity, as well as sleep-derived fea-
tures. The average values of these features were reported 
separately for weekdays and weekends. Furthermore, we 
examined the average values per hour of the day for the 
weekdays.

Mezurio app The Mezurio app is a smartphone appli-
cation compatible with iOS and Android operating sys-
tems. The app is designed to evaluate an individual’s 
cognitive abilities through gamified cognitive tasks. The 
tasks included in the app are the Gallery Game, which 
requires the memorization of photo and swipe direction 
pairings; the Story Time game, which involves narrating 
and recalling a short comic from memory immediately 
and after a thirty-minute delay; and the tilt task measur-
ing executive function, which requires moving a cursor 
to a target by tilting the device. Participants in our study 
were directed to use the app for at most 10 minutes per 
day. Previous research has demonstrated the benefits of 
the Mezurio app [24].

Out of the various tasks within the Mezurio app, this 
paper utilized the Story Time task. As briefly mentioned 
above, this task contains verbal learning of comic strips 
to form a story (similar to the picture description task 
predominantly used as a speech collection method) and 
immediate and delayed recall from the memory. In this 
paper, we only analyzed speech-derived features from the 
learning subtask. These features include speech fluency 
features, including the number of syllables and pauses, 
average pause duration, speech rate, articulation rates, 
and hesitation ratio. In addition, other prosodic and voice 
quality features were extracted using the openSMILE 
python package with the GeMAPS feature set as a param-
eter [25].

Altoida Medical Device (Altoida MD) The Altoida MD 
application is developed for smartphones and tablets and 
combines augmented reality and motor-cognitive tasks. 
This app aims to simulate complex activities of daily liv-
ing to detect early signs of cognitive decline in individu-
als. Notably, prior research has highlighted the applica-
tion’s effectiveness, reporting a balanced accuracy of 93 % 
in forecasting cognitive decline within five years among 
amyloid-positive individuals transitioning from mild cog-
nitive impairment (MCI) to Alzheimer’s disease (AD) 

[26]. The study participants engaged with the Altoida 
MD app during their initial clinic visit.

The application uses the device’s embedded sensors to 
collect data based on the user’s interaction with various 
tasks. These sensors capture intricate details of partici-
pants’ behavior, including hand micromovements, screen 
touch pressures, walking speed, navigation trajectory, 
and cognitive processing speed, thereby painting a com-
prehensive behavioral profile. The collected sensor data 
is subsequently processed by the Altoida application for 
further analysis.

For our study, we focused on two main feature catego-
ries. The first comprises cognitive domain scores (CDS). 
These scores assess the participant’s cognitive abilities 
in various areas, such as perceptual-motor coordination, 
complex attention, cognitive processing speed, inhibi-
tion, flexibility, visual perception, planning, prospec-
tive memory, spatial memory, fine motor skills, and gait. 
These scores are derived from raw sensor data. For each 
of these features, a percentile score is determined by 
comparing it to a control group of individuals who are 
healthy and share similar characteristics in terms of age 
and gender. The second prominent feature is the Digi-
tal Neuro Signature (DNS) score. This score personal-
izes the test performance in relation to the participant’s 
demographic group considering factors such as age, sex, 
and years of education. Serving as a primary measure for 
differentiating between normal cognition and Mild Cog-
nitive Impairment (MCI), the DNS score is meant as an 
approach to detect cognitive decline effectively.

Amsterdam iADL The A-iADL is a questionnaire 
designed to evaluate instrumented activities of daily liv-
ing (iADLs). This tool can be administered by a caregiver 
using a personal computer or smartphone. The efficacy 
and validity of this questionnaire were established in a 
previous study that employed a cohort of memory clinic 
patients [27]. Further research has also illustrated its 
capacity to detect functional decline [28]. In this study, 
the questionnaire (short version) was administered dur-
ing the initial in-clinical visit.

In our experiments that explored the discriminative 
abilities of A-iADL, we utilized the calculated � score 
from the short version of the questionnaire as the solitary 
feature. This score is derived from the questionnaire and 
represents the underlying attribute of “daily functioning”. 
Parts of the A-iADL from the short version of the ques-
tionnaire were also utilized to create a composite score, 
which is detailed further in the supplementary informa-
tion (see Supplementary Table B.1).
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Physilog sensors The Physilog Gait Sensors are wear-
able devices equipped with accelerometers and gyro-
scopes, which measure triaxial acceleration and angular 
velocities. Gait spatiotemporal descriptors such as speed, 
symmetry, and variability can be accurately derived with 
measurement agreement comparable to that obtained 
from optical motion capture systems or electronic walk-
ways [29]. These sensors have been validated in numerous 
patient groups, with normative data available for cogni-
tively healthy older adults [30]. Their user-friendly nature 
and ability to provide detailed gait analysis make them a 
valuable tool for healthcare professionals and researchers 
working in the field of mobility and gait analysis.

In RADAR-AD study the Physilog gait sensors were 
placed on both feet and the hip to measure gait param-
eters while study participants performed two tests. The 
first test was the Dual-Task assessment, in which partici-
pants were instructed to walk for one minute and then to 
repeat the same action while counting aloud backwards 
from 100. The second test was a timed up-and-go (TUG) 
test, where participants initially sat, stood up, and walked 
for three meters before turning around to sit down again. 
The sensors collected data on angular velocities and 
accelerations, which was subsequently processed by pro-
prietary algorithms [30] to derive gait speed, cadence, 
duration, angles, and other features. In the Dual-Task 
assessment the Dual-Task-Effect (DTE) was calculated. 
It is defined by DTEx = 100×

xDUAL−xSINGLE

xSINGLE
 and assesses 

the difference between these two tasks.

Banking application The Banking application is a 
smartphone application that simulates a bank withdrawal 
process. Individuals are required to enter a pin, specify 
the amount they wish to withdraw, and confirm their 
selection. During this process, data is collected on factors 
such as duration and errors. Originally developed as part 
of the multisensor assessment and monitoring system 
in the Dem@Care project [31], the app was designed to 
evaluate functional abilities related to financial manage-
ment. For this study, the application has been expanded 
and improved, with added support for multi-lingual use.

The application’s features are specifically designed to 
measure the time taken for various stages of the with-
drawal process and the number of attempts required by 
participants to complete the task successfully. Data is 
reported on the number of correct attempts and their 
duration for the individual stages, thus providing valu-
able insights into the participant’s financial management 
abilities.

Assessment of RMTs’ discriminative abilities
We structured our approach into two distinct seg-
ments to thoroughly assess the discriminative poten-
tial of the selected RMTs in differentiating between all 
pairwise combinations of healthy controls, preclinical, 
prodromal, and mild-to-moderate AD stages. The first 
part involves univariate analysis for identifying signifi-
cant feature differences, while the second employs a 
machine learning pipeline to capture complex interac-
tions and robustly quantify RMT performance. An out-
line of this methodology is provided in Fig. 1.

Univariate statistical analysis of RMTs
In the first segment of our study, we applied univari-
ate analyses using Analysis of Covariance (ANCOVA) 
for each individual RMT feature. Here, each RMT 
feature was used separately as the dependent vari-
able, while the group acted as the independent vari-
able. Features generated on an hourly basis (e.g., steps 
and heart rate per hour of the day) were not consid-
ered during this analysis. Based on established litera-
ture, we adjusted the analyses for age, sex, and years 
of education, as these demographic factors have been 
consistently associated with AD risk and progres-
sion [32–34]. We also included the site as a covariate. 
For features derived from Fitbit, Axivity, and Physilog, 
the models incorporated Body Mass Index (BMI) as 
an additional adjustment. For the wearables Fitbit and 
Axvitiy, we also included the season to account for dif-
ferences in activity patterns that are based on climatic 
or seasonal effects. In the case of Altoida features, the 
models were corrected exclusively for the site as these 
features, defined by Altoida developers, already con-
sidered age, sex, and years of education in their initial 
model. We applied the Shapiro-Wilk test to determine 
the normality of feature distribution, and if found to 
be non-normal, we log-transformed the data. Finally, 
if the ANCOVA yielded a significant group difference, 
we conducted a Tukey Honestly Significant Difference 
(HSD) posthoc test for group-wise comparisons. P-val-
ues were subsequently adjusted for multiple testing 
across all features using the Holm method.

ML‑based assessment of RMTs’ discriminative abilities
The second segment of our study utilized a machine 
learning methodology to quantify the effectiveness of 
various RMTs in distinguishing different stages of Alz-
heimer’s Disease and healthy controls while using all 
features derived from a particular RMT jointly. Our 
focus was on binary classification tasks, such as dif-
ferentiating between healthy controls and preclinical 
AD or between preclinical and mild-to-moderate AD. 
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These tasks were integral to assessing the discrimina-
tive capabilities of the RMTs.

Our evaluation process involved four machine learning 
models - Logistic Regression with elastic net penalization 
[35, 36], Decision Tree [36, 37], Random Forest [36, 38], 
and XGBoost [39]. We chose these classical machine-
learning algorithms due to the small amount of available 
data (229 participants) and their reputation to work well 
even in such scenarios. With respect to the small sample 
size, we implemented repeated Nested Cross-Valida-
tion (NCV) with ten repeats and five folds to the data-
set extracted from each RMT. This approach allowed us 
to optimize hyperparameters effectively while providing 
a reliable performance estimation, particularly crucial 
for models like XGBoost that are sensitive to hyperpa-
rameter selection. For this step, we utilized the Optuna 
library [40], and we present the parameter options and 
their ranges in Table  1. To understand which features 
contribute most to the model predictions, we employed 
the approach suggested by Scheda and Diciotti to calcu-
late the Shapley additive explanations (SHAP) [41, 42] 
in a repeated NCV setting [43]. SHAP values quantify 
the influence that each feature has on a model’s predic-
tion for a given instance. The magnitude of these values 
reflects the degree of influence, while the sign shows the 
direction of its influence. In each fold, these values are 
calculated for both the train and test sets. Subsequently, 

these values are average per participant across the repeti-
tions, enabling assessment of both local and global fea-
ture importance.

To assess performance, we employed two metrics: 
the Area Under the Receiver Operating Characteris-
tic (AUROC) and the Area Under the Precision-Recall 
Curve (AUPR). The AUROC is a widely used metric 
that measures a model’s ability to discriminate between 
two group, with values ranging from 0.5 (equivalent to 

Fig. 1 Overview of the study workflow to evaluate the discriminative abilities of RMTs in AD progression. The process involves 1) data acquisition 
and 2) feature extraction from RMTs, followed by 3) univariate analyses (ANCOVA and Tukey HSD tests) to detect significant feature differences 
across study groups, and 4) a machine‑learning pipeline, including Logistic Regression, Decision Tree, Random Forest, and XGBoost models, 
to quantify how well stages of AD can be distinguished using RMT‑derived data

Table 1 Hyperparameter ranges for each classifier

Classifier Hyperparameter Range

Logistic Regression 
with elastic net penalty

C [0.01, 2]

L1‑ratio [0.01, 0.99]

Decision Tree max_depth [10, 100, step=10]

min_samples_leaf (1, 2, 4)

min_samples_split (2, 5, 10)

Random Forest n_estimators [600, 1400, step=200]

max_depth [10, 100, step=10]

min_samples_leaf (1, 2, 4)

min_samples_split (2, 5, 10)

XGBoost eta [0.01, 0.7]

gamma [0, 0.5, step=0.1]

max_depth [1, 22, step=1]

n_estimators [50, 400, step=25]
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random change) to 1 (indicating perfect discrimination). 
In clinical studies, AUROC values can be interpreted as 
follows: values ≥ 0.9 indicate excellent performance, val-
ues ≥ 0.8 indicate considerable performance, values ≥ 0.7 
indicate fair performance, values ≥ 0.6 indicate poor per-
formance, and values ≥ 0.5 indicate failure [44]. However, 
the AUROC can be overly optimistic in scenarios with 
imbalanced data. Therefore, we also utilized the AUPR, 
which provides a more robust measure in such scenarios. 
Like the AUROC, the AUPR ranges from 0 to 1, with 
higher values indicating better performance. To ensure 
the robustness of our results, we reported the average 
AUROC and AUPR values from the outer folds for each 
of the NCV repeats. This approach resulted in ten values 
for each metric, enabling us to account for any potential 
variability in the performance of our models.

Notably, our dataset contained missing values as not 
all participants used each and every RMT. For instance, 
Altoida (N=135), Physilog (Dual=176, TUG=168), and 
Mezurio (N=163) were underrepresented compared to 
others. The overlap between the different study groups 
and the RMTs is further emphasized in Table 2 and Sup-
plementary Figure A.3. To address the issue of missing 
data, we employed a k-Nearest Neighbors-based impu-
tation method [36, 45] to impute missing values as part 
of the LR, DT, and RF training pipeline. The imputation 

model was fitted on the training data and predicted miss-
ing values in the testing data. However, we did not use 
this imputation method for the XGBoost model since this 
method can handle missing values implicitly.

In this study, we evaluated different scenarios to under-
stand the capacity of our models to distinguish between 
diagnostic groups based on a set of base variables, RMT-
derived data, and also questionnaires and clinical tests. 
The diverse training approaches used in our study are 
detailed below: 

Base:  This model employs only base variables, 
such as sex, age, study site, and years of 
education, to evaluate the model’s per-
formance to distinguish between groups 
based purely on demographic factors.

Base*:  This augmented model incorporates two 
additional variables: Body-Mass-Index 
(BMI) and the season of the year. The 
Base* Model aims to account for both fit-
ness-related parameters and the poten-
tial seasonal climate variations, which 
may influence the performance of spe-
cific RMTs.

RMT:  The RMT model merges variables from 

Table 2 Characteristics of the RADAR‑AD study cohort

Shown are the characteristics of the study groups Healthy Control (HC), Preclinical AD (PreAD), Prodromal AD (ProAD), and Mild-to-Moderate AD (MildAD), as well as 
the overall study cohort. a) Descriptive statistics per group, including mean values and standard deviation (where applicable), the number of participants carrying or 
not carrying APOE E4 alleles, and MMSE and CDR ranges.. b) Number of participants for which RMT/Questionnaire data was obtained

 aOrder: participants without APOE E4 alleles, participants with APOE E4 alleles, participants with unknown APOE E4 status

HC PreAD ProAD MildAD Overall

a) Cohort‑specific N 69 39 65 56 229

Female 55.1 % 59.0 % 41.5 % 44.6 % 49.3 %

Age 67.3 (7.5) 70.7 (5.8) 69.7 (7.7) 70.0 (8.9) 69.2 (7.7)

Education Years 14.5 (3.6) 15.6 (2.8) 14.6 (4.6) 13.7 (4.2) 14.5 (4.0)

BMI 25.7 (3.1) 24.6 (3.9) 25.1 (3.6) 24.0 (3.6) 24.9 (3.6)

APOE E4  statusa 13/4/52 6/14/19 11/24/30 5/25/26 35/67/127

CDR 0.0 (0.0) 0.0 (0.1) 0.5 (0.1) 1.1 (0.4) 0.4 (0.5)

CDR Range 0.0 0.0–0.5 0–0.5 0.5–2.0 0.0–2.0

MMSE 29.2 (0.9) 29.1 (1.0) 26.5 (2.3) 21.7 (3.3) 26.6 (3.7)

MMSE Range 27–30 26–30 19–30 16–29 16–30

A‑iADL 68.2 (2.6) 66.1 (3.9) 58.6 (7.1) 46.8 (8.0) 59.8 (10.2)

b) RMT‑specific Altoida 57 28 38 12 135

Axivity 60 32 56 44 192

Banking 62 34 57 50 203

Fitbit 68 39 56 52 215

Mezurio 66 27 44 26 163

Physilog (Dual) 56 31 49 40 176

Physilog (TUG) 52 31 47 38 168

iADL 67 37 63 55 222
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the base model with features derived 
from RMTs, exploring the additional 
contribution of RMTs to enhance classi-
fication performance.

FDS:  The FDS model integrates base vari-
ables with a series of composite scores, 
denoted as Functional Domain Score 
(FDS) throughout this paper. The pur-
pose of this model is to discern disease 
stages using these traditional measures 
associated with each cognitive domain. 
For details on its calculation, refer to 
Supplementary Section B.1.

RMT+FDS:  Expanding on the RMT model, the 
RMT+FDS model additionally incorpo-
rates FDS. This model investigates the 
potential advantages of combining these 
scores with RMT-derived features and 
base data.

Results
This study used two distinct yet complementary analy-
ses to evaluate the efficacy of RMTs in distinguishing 
between various stages of AD, as outlined in Fig.  1. In 
the first stage of our study, we performed an univariate 
analysis. This allowed us to isolate and investigate each 
feature and consequently identify those that held signifi-
cant potential for differentiating between the four study 
groups. Recognizing that this approach does not capture 
complex interactions or patterns that could be impor-
tant to distinguish between the different stages, we lev-
eraged the entire set of features from each RMT in the 
subsequent stage. We used a machine learning pipeline 
to further investigate the capabilities of each individual 
RMT and quantify discrimination performance. Before 
discussing the results, a brief overview of the dataset 
obtained from the RADAR-AD study will be provided.

Characteristics of study population
The RADAR-AD study population comprised 229 par-
ticipants from 13 European sites, categorized into four 
groups: healthy controls (HC), preclinical AD (PreAD), 
prodromal AD (ProAD), and mild-to-moderate (Mil-
dAD). Preclinical participants exhibit amyloid pathology 
but are cognitively unimpaired, whereas those in the pro-
dromal stage display minor cognitive impairment. Partic-
ipants from the mild-to-moderate AD group experienced 
more extensive cognitive deficits. The groups were 
closely matched in demographic and health-related vari-
ables that could influence the study results. Specifically, 
there were no statistically significant differences in age 
(ANOVA, p=0.26), education years (ANOVA, p=0.30), 

and BMI (ANOVA, p = 0.18) between the four groups. 
Similarly, the sex distribution across groups exhibited 
no significant differences (Chi-squared test, p=0.30). 
All p-values were corrected with the Holm method for 
multiple testing. The distributions of these variables are 
depicted in Supplementary Figure A.2 and additional 
descriptive statistics on the cohort and the number of 
participants for each RMT are provided in Table 2.

Univariate assessment of RMT features for Alzheimer’s 
disease discrimination
During the initial research phase, we examined the 
potential of specific features to effectively distinguish 
between various diagnostic stages. A sample of these 
features is shown in Fig.  2, where both the ANCOVA-
derived p-values and at least one Tukey HSD test p-value 
were statistically significant in differentiating between 
diagnostic groups. It is important to clarify that in this 
section, “significance” refers to statistical significance, 
with p-values indicating differences determined by our 
statistical analysis. We have complemented these p-val-
ues with effect size values to provide a more comprehen-
sive understanding of the differences. indicating notable 
differences determined by our statistical analysis. Fur-
thermore, the p-values in each group comparison have 
been adjusted for multiple testing. For a complete list of 
each feature and its corresponding outcomes, including 
test statistics and effect size estimates, see Supplemen-
tary Table C.1.

Our analysis identified significant features for the fol-
lowing RMTs: Altoida, Axivity, the Banking app, Fitbit, 
Mezurio, and the Physilog DUAL task. However, no sig-
nificant feature was detected for the Physilog TUG task. 
Furthermore, we did not uncover any significantly differ-
entiated features between healthy controls and preclini-
cal AD and prodromal and mild AD.

A subset of features significantly separated healthy con-
trols from prodromal AD subjects. However, these fea-
tures were derived exclusively from Altoida and Fitbit. 
For Altoida, several cognitive domain scores, such as cog-
nitive processing speed, complex attention, gait, percep-
tual motor coordination, planning, spatial memory and 
visual perception, and the DNS score were significantly 
lower for prodromal AD participants. For Fitbit, less time 
spent in the Rapid Eye Movement (REM) sleep stage and 
more time spent in the light sleep stage were associated 
with prodromal AD.

In contrast, a greater proportion of the examined fea-
tures demonstrated statistical significance when com-
paring healthy controls with participants in the mild to 
moderate AD stage. This demonstrates that the explored 
RMTs effectively distinguish between these groups with 
greater variation in behaviors and functional abilities 
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based on the disease stage. Significant features were 
identified in Axivity, the Banking app, Fitbit, and Physi-
log (Dual). The average time spent in light physical activ-
ity over the eight-week study period, a feature derived 
from the Axivity measurements, was significantly higher 

in healthy controls. Similar to the comparison with 
the participants in the prodromal stage, the amount of 
REM sleep was also significantly lower for participants 
with mild AD. The significant features derived from the 
Phsyilog Dual task indicate that mild AD participants 

Fig. 2 Statistical Analysis of RMT Features. The figure illustrates a comprehensive univariate statistical analysis of the RMTs’ features. Each row depicts 
the results obtained for the six comparisons, while the label on the left indicates the corresponding RMT affiliation. Statistical outcomes of the Tukey 
HSD test (conducted upon significant ANCOVA) are presented in the heatmap itself. The p‑values are expressed through a color‑coded system, 
with the specific coding shown in the provided legend. The symbols “‑” or “+” are used to denote the direction of the test statistic. The p‑values have 
been adjusted for multiple testing
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exhibited an altered gait cycle, spending more time in 
both the double support phase and the single support 
phase compared to healthy individuals. Moreover, several 
Banking app features differed significantly between these 
groups. For example, mild AD participants took longer to 
enter their PIN and transaction amount, signaling declin-
ing financial capabilities with disease progression.

Importantly, no Altoida data from the mild AD cohort 
were used in our experiments. The RMT was discontin-
ued for this subject population after initial testing with 
a small group of participants with mild AD (N=12). The 
tests revealed difficulties with fine motor tasks like draw-
ing a circle on a smartphone, suggesting even greater 
challenges when encountering the more complex tasks of 
this application. As a result, the data from these 12 par-
ticipants were excluded from our analyses.

When distinguishing between individuals in the pre-
clinical and prodromal stages, it was observed that only 
Altoida provided features that varied significantly, specif-
ically in the scores for Cognitive Processing Speed, Com-
plex Attention, and DNS.

Several features from the Banking app, Physilog (Dual), 
and Mezurio presented significance when distinguish-
ing preclinical from mild AD. As previously, in the 
healthy controls versus mild AD cases, mild AD patients 
took longer to enter, such as their PIN and transaction 
amounts. Amongst the Physilog (Dual) features, only the 
coefficient of variation for the stride length was signifi-
cant, indicating that the length of strides is less consistent 
among the mild AD group. Finally, two features derived 
from the Mezurio data were found to be significant: the 
duration of the voiced and unvoiced segment lengths.

Comprehensive examination: machine learning 
assessment of RMT capabilities
In the next phase, we investigated the RMTs’ capa-
bilities in differentiating AD stages by applying four 
machine learning models in different scenarios. Specifi-
cally, we fitted Base models with variables such as age, 
years of education and sex , RMT-based models with 
the RMT-derived features, and FDS-based models with 
a series of composite scores derived from traditional 
assessments and questionnaires. Notably, we chose to 
use all available features rather than only the significant 
ones from the univariate analysis. Several factors drove 
this decision: Firstly, the univariate analysis served as 
an exploratory step aiming at finding out which fea-
tures differ between groups. It was conducted on the 
entire dataset and thus, limiting the features to the sig-
nificant ones would introduce information leakage into 
the ML pipeline. Second, multivariate machine learning 
algorithms can identify complex interactions between 

features that could be missed if only the significant fea-
tures were selected, potentially introducing additional 
bias. For further details on our approach, we refer to 
the Methods section.

Figure  3 shows the results of the best classifier from 
these variants, with each subplot comparing two diag-
nostic groups. The boxplots show the AUROCs obtained 
through a repeated NCV. More detailed results, includ-
ing the RMT+FDS variant and the results per ML clas-
sifier, further feature importance plots, as well as the 
AUPR metrics can be found in the supplementary mate-
rials (Supplementary Figures C.1 to C.17, Supplementary 
Table C.2). In the following sections, we elaborate on the 
performance of the various models and provide informa-
tion on the most important features when a model sig-
nificantly outperforms its corresponding Base model.

Base Model Performance We discovered that the Base 
and Base* models failed or performed relatively poorly in 
every scenario with average AUROCs ranging between 
50.4 and 65.1 % across the six comparisons. This indicates 
that demographic and study-related data alone cannot be 
used to distinguish study groups accurately. This aligns 
with our analysis of the features age, sex, BMI, and years 
of education, which showed no significant differences 
between groups and suggests that the benefits observed 
for the other models shown in Fig. 3 are primarily attrib-
uted to the inclusion of additional features.

HC vs.  PreAD Neither the RMT nor FDS-based mod-
els demonstrated fair discrimination abilities in the HC 
vs. preclinical AD comparison, with the average AUROCs 
ranging between 52.4 % and 67.2 %. For most RMTs, we 
matched the Base model scores closely. Only for Axiv-
ity and Altoida (DNS)-based models, the discrimination 
was comparable (67.1 and 62.9 %, respectively) to that of 
A-iADL and FDS (67.2 % and 65.4 %, respectively).

HC vs.  ProAD The FDS and A-iADL-based models 
demonstrated considerable discrimination ability in 
the HC vs.  prodromal AD comparison, achieving aver-
age AUROCs of 87.9 and 81.6 %, respectively. Similarly, 
some RMTs, such as Altoida (CDS=68.1 %, DNS=73.0 %) 
and Fitbit (69.3  %) performed fair, although the perfor-
mance was significantly lower. In contrast, the Axivity, 
Physilog, and Mezurio-based models performed poorly. 
Particularly, the Physilog-based Dual and TUG models 
performed the worst, with AUROCs of 55.7 and 57.1 %, 
respectively, indicating that the discriminant abilities 
with these RMTs are closer to a random guess. Both 
models performed at the same level or worse than the 
respective Base model.
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Figure 4 highlights the features that drive the model’s 
decision with respect to Altoida and Fitbit. Depicted 
are the ten features with the highest mean absolute 
SHAP values. A higher value indicates a more substan-
tial impact on the models’ prediction. In the Altoida 
(CDS) model, Cognitive Processing Speed, Gait, age, 
and Planning stood out as the most influential fea-
tures. For the Altoida (DNS) model, the DNS feature 
is, as expected, the most important feature. In the 
Fitbit-based model, factors such as the average hours 
spent in REM, the ratio of deep sleep, and the REM 

latency were most important, followed by the number 
of steps recorded at several time points throughout the 
day.

HC vs.  MildAD The performance of the FDS and 
A-iADL-based models was excellent in discriminating 
between HC and mild AD groups, with average AUROCs 
of approximately 96  % in both cases. Among the RMT-
based models, the Mezurio-based model performed best 
with an average AUROC of 76.9  %. Following that, the 
Fitbit-based model achieved an AUROC of 70.4  %. In 

Fig. 3 Discriminative abilities of different RMTs and their performance comparison across different disease stages. The figure depicts the Area 
Under the Receiver Operator Characteristic (AUROC). As we focused on optimal performance rather than specific classifiers to emphasize 
the highest discrimination ability, we show the AUROC only for the best‑performing machine learning model in each experiment. The red 
and green boxes represent the base models, while the purple boxes illustrate the models trained solely on RMT data. The blue boxes depict 
the performance achieved for the questionnaire and test‑based assessments (A‑iADL and the functional domain scores derived from multiple 
questionnaires)
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contrast, the Physilog and Axivity-based models showed 
only marginal improvement compared to the respective 
Base model.

In the Mezurio-based model, key features included the 
number of voiced segments per second and the speak-
ing rate (Fig.  5). Complementing these were complex 

Fig. 4 Distinguishing Features for HC vs. ProAD: This plot depicts the top ten features with the highest mean absolute SHAP values, offering insights 
into their significance in the Altoida and Fitbit‑based models

Fig. 5 Distinguishing Features for HC vs. MildAD: This plot depicts the top ten features with the highest mean absolute SHAP values, offering 
insights into their significance in the Fitbit and Mezurio‑based models
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voice-derived features such as the standard deviation 
of the spectral envelope between 0 and 500 Hz, and the 
log ratio of harmonic components. Furthermore, demo-
graphic attributes like years of education, age, and sex were 
among the top ten features. For the Banking app, the most 
important features were the duration spent at various 
stages within the app and the number of attempts to enter 
the correct PIN. Conversely, in the Fitbit-based model, 
BMI was among the most significant features, alongside 
several activity and sleep-related features, including the 
proportions of deep, light, and REM sleep stages.

PreAD vs.  ProAD In this comparison, the FDS-based 
model demonstrated fair performance with an average 
AUROC of 74.4  %, while the A-iADL-based model was 
equal with 76.1  %. Most RMT-based models achieved 
AUROCs comparable to the respective Base models. 
Only the Banking app-based model achieved, on aver-
age, slightly better results (64.9  %). The activity track-
ers Axivity and Fitbit performed the worst, with average 
AUROCs of 51.9 and 56.3  %, respectively, even lower 
than the AUROC of the Base* model (59.4 %).

ProAD vs.  MildAD In comparing prodromal and 
mild AD, A-iADL and FDS-based models achieved fair 
AUROCs of 76.9 % and 77.7 % respectively. Nonetheless, 
all evaluated RMTs failed in this assessment, with none 
surpassing an average AUROC of 59  %. Their perfor-
mance was equivalent to that of the Base models.

PreAD vs.  MildAD Similar to the discrimination 
of healthy control and mild AD groups, the FDS and 
A-iADL-based models performed remarkably well in dis-
tinguishing mild AD participants from healthy controls. 
Both achieved very similar AUROC values (FDS=91.3 %, 
A-iADL=92.4 %). Among the RMTs, the Banking app and 
Physilog (Dual) based models achieved the best perfor-
mances with AUROCs of 70.6 % and 69.9 % respectively.

HC vs. AD Spectrum When comparing healthy controls 
to the entire AD spectrum, the FDS and A-iADL-based 
models demonstrated fair performance, with AUROCs 
of 79.8  % and 74.0  %, respectively. Apart from Altoida, 
which performed best among the RMTs (CDS=65.8  %, 
DNS=72.1 %), all other RMTs failed, achieving AUROCs 
of less than 58 %.

HC vs. ProAD + MildAD Finally, in comparing healthy 
controls with prodromal and mild-to-moderate AD, the 
FDS and A-iADL-based methods showed good to excel-
lent performance with AUROCs of 90.5  % and 86.3  %, 
respectively. Among the RMTs, the Banking app, Fitbit, 
and Mezurio performed best with AUROCs between 

66.0  % and 67.1  %. Notably, Altoida data was excluded 
from this evaluation as it was the same as in the healthy 
controls versus prodromal AD comparison, with the 
mild-to-moderate group excluded.

Pairwise Combinations of RMT and FDS Data Lastly, 
the results of the pairwise combination of the RMT and 
FDS data are shown in Supplementary Figure C.1. The 
objective was to assess the potential for further improve-
ment by combining conventional questionnaires and 
RMTs. We observed that the performance of the models 
fitted on the paired data of the respective RMTs and FDS 
slightly exceeded the performance of the FDS-only model 
in some cases (HC vs. MildAD and PreAD vs. MildAD). 
However, the improvement was minimal, suggesting that 
simply combining information from both data sources 
does not provide significant benefits.

Discussion
In this study, we conducted an extensive analysis to 
investigate the efficacy of RMTs in detecting different 
stages of Alzheimer’s disease. Our univariate analysis 
revealed only a few features with significant discrimina-
tory potential across all RMTs. No significant differences 
were found between healthy controls and subjects with 
preclinical AD, highlighting the challenge of detecting 
functional differences in early stages. Similarly, no signifi-
cant differences were found between the two later stages: 
prodromal and mild-to-moderate AD. Nevertheless, our 
findings suggest that RMTs help identify individuals in 
either the prodromal or more advanced mild-to-moder-
ate stages of AD compared to healthy controls. For these 
stages, we found several differences compared to healthy 
subjects related to reduced physical activity (Axivity), less 
REM sleep (Fitbit), altered gait patterns (Physilog Dual), 
and decreased cognitive functioning (Altoida, Banking 
app).

The subsequent machine learning analysis demon-
strated that using univariate analysis alone for assessing 
discrimination ability is limited. In some cases, the uni-
variate analysis did not show significant differences, but 
the respective RMT-based ML models performed well 
in distinguishing between study groups. For example, 
Axivity was the best RMT for healthy controls versus 
preclinical AD, while Mezurio excelled for healthy con-
trols versus mild-to-moderate AD, despite identifying no 
distinct features. This suggests that using a combination 
of all features helps to effectively distinguish the stages of 
AD and healthy controls and capture complex patterns 
that could be missed in a univariate analysis.

While some RMTs exhibited good performance levels 
in discriminating prodromal and mild-to-moderate AD 
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stages from healthy controls, their effectiveness was more 
limited in other comparisons. For differentiating healthy 
controls versus preclinical AD, preclinical versus prodro-
mal AD, and prodromal versus mild-to-moderate AD, 
the best RMTs only marginally outperformed or were on 
par with baseline models.

However, RMTs like Altoida, Mezurio, and Fitbit 
yielded encouraging results in distinguishing healthy 
individuals from those in prodromal and mild-to-mod-
erate AD stages, suggesting their potential use in these 
specific stages. Unfortunately, these same RMTs dem-
onstrated poor performance in distinguishing between 
prodromal and mild-to-moderate AD stages. Further-
more, participants with mild-to-moderate AD had diffi-
culties using the Altoida app. These findings indicate that 
while they may be helpful for initial differentiation from 
healthy controls, they may not be suitable for tracking 
disease progression throughout these stages.

In addition to individual RMT analysis, the effective-
ness of combining RMT and FDS data was assessed. 
While models trained on RMT and FDS data only occa-
sionally performed better than FDS-only models, there 
was little or no benefit in most of the comparisons. Nev-
ertheless, exploring a multimodal approach in which 
features from different RMTs or questionnaires are com-
bined should be investigated in future studies, as this was 
not investigated in this study and could perform better 
than models trained on data from single RMTs.

Despite the many strengths of the RADAR-AD study, 
which entails a multicentre, multinational cohort includ-
ing a range of AD stages from the preclinical to moderate 
dementia, with the diagnosis supported by biomarkers 
and the use of several RMTs, it is essential to recognize 
certain limitations: although the recruitment of 229 par-
ticipants exceeded the target of 220, preclinical AD par-
ticipants are slightly under-represented (PreAD=39) 
compared to the other groups (HC=69, ProAD=65, 
MildAD=56). Furthermore, it should be noted that not 
all RADAR-AD study participants used every RMT. For 
example, the number of data available for the Altoida 
app (N=135), the Physilog tasks (Dual=176, TUG=168), 
and the Mezurio app (N=163) were lower than that of 
other RMTs such as Axivity (N=192), the Banking app 
(N=203), or Fitbit (N=215) (Table  2 and Supplemen-
tary Figure A.3 provide additional information). This 
discrepancy necessitates a greater dependence on data 
imputation techniques and could be an additional source 
of error. Moreover, some RMTs, such as the Physilog 
devices, were only used once; therefore, these measures’ 
test-retest reliability cannot be assessed. Finally, the 
cross-sectional design precludes the longitudinal assess-
ment of the change over time in these RMTs.

Nevertheless, our research findings contribute substan-
tially to the field since, to the best of our understanding, 
apart from RADAR-AD, no other study has gathered 
cross-sectional data for a sizable cohort and multiple 
RMTs. Our findings suggest that Altoida, Mezurio, and 
Fitbit-based models have the potential to distinguish 
individuals in the prodromal stage from healthy controls. 
The findings related to Altoida align with previous stud-
ies, demonstrating the app’s ability to produce scores 
comparable to traditional neuropsychological tests [46]. 
Furthermore, machine learning models trained on these 
features exhibited impressive predictive capabilities, 
accurately forecasting the transition from Mild Cognitive 
Impairment to Alzheimer’s Disease [47]. In a similar vein, 
a remote digital memory composite (RDMC) that inte-
grated three different memory tests achieved a high diag-
nostic accuracy in distinguishing cognitively impaired 
individuals from those who are unimpaired [15]. Besides 
these specified examples, there is a growing body of evi-
dence that supports the use of digital technologies in 
measuring cognitive decline. For instance, systematic 
reviews on virtual reality have concluded that these tech-
nologies may assess crucial aspects such as spatial navi-
gation and memory impairments [48, 49], which are often 
early signs of cognitive decline in at-risk populations [50, 
51]. However, challenges related to achieving a balanced 
difficulty of the tests exist [49]. Our study mirrored these 
observations; specifically, we had to exclude data from 
Altoida for mild AD participants, who faced difficulties 
with fine motor tasks like drawing a circle on a smart-
phone, indicating even greater challenges when engaging 
with the more complex tasks offered by the application.

Another significant insight from our study is the effec-
tiveness of the A-iADL questionnaire across various con-
texts. Although it was completed by the caregiver in this 
study, its potential for use in remote locations highlights 
its promise as a time-efficient and cost-effective supple-
ment to traditional clinical evaluations, similar to other 
promising RMTs. These tools are widely accessible and 
could help identify and monitor functional decline in 
individuals with AD.

Recognizing AD patients in the pre-dementia phase 
is particularly important, as it may allow for early inter-
ventions with treatments like Leqembi or Kisunla, which 
may slow disease progression and enhance patient out-
comes. Furthermore, RMTs can contribute significantly 
to clinical trials, aiding in diagnosis, patient stratifica-
tion, and outcome assessments. Overall, the capacity of 
these technologies to improve the detection of earlier 
stages of Alzheimer’s Disease holds substantial potential, 
which could dramatically influence disease management 
strategies.
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Conclusion
The present study suggests that remote measurement tech-
nologies hold promise for detecting Alzheimer’s disease in its 
prodromal stage. While not discriminative enough for pre-
clinical AD detection, the Altoida app, Mezurio app, Fitbit, 
and A-iADL questionnaire demonstrated potential for iden-
tifying individuals at the prodromal and mild-to-moderate 
AD stages. Although our study had limitations, these results 
show the potential of RMTs to enhance early AD detection. 
RMTs offer significant advantages – they are cost-effective, 
convenient, and accessible for at-home use. The ability to 
detect AD at earlier stages could enable earlier interventions 
and improve outcomes for patients, making the potential 
impact of RMTs on managing this debilitating disease sig-
nificant. Overall, our findings highlight the importance of 
continued research and development in the field of RMTs for 
detecting AD and improving patient outcomes.
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