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Abstract 

Background The nature and severity of Alzheimer’s disease (AD) pathologies in the retina and brain correspond. 
However, retinal biomarkers need to be validated in clinical cohorts with confirmed AD biomarkers and optical 
coherence tomography (OCT). The main objective of this study was to investigate whether retinal metrics measured 
by OCT aid in the early screening and brain pathology monitoring for confirmed AD.

Methods This was a case–control study. All participants underwent retinal OCT imaging, and neurological examina-
tions, including amyloid-β (Aβ) positron emission tomography. Participants were subdivided into cognitively normal 
(CN), mild cognitive impairment (MCI), and AD-derived dementia (ADD). Except retinal thickness, we developed 
the grey level co-occurrence matrix algorithm to extract retinal OCT intensity spatial correlation features (OCT-
ISCF), including angular second matrix (ASM), correlation (COR), and homogeneity (HOM), one-way analysis of vari-
ance was used to compare the differences in retinal parameters among the groups, and to analyze the correlation 
with brain Aβ plaques and cognitive scores. The repeatability and robustness of OCT-ISCF were evaluated using 
experimental and simulation methods.

Results This study enrolled 82 participants, subdivided into 20 CN, 22 MCI, and 40 ADD. Compared with the CN, 
the thickness of retinal nerve fiber layer and myoid and ellipsoid zone were significantly thinner (P < 0.05), and ASM, 
COR, and HOM in several retinal sublayers changed significantly in the ADD (P < 0.05). Notably, the MCI showed 
significant differences in ASM and COR in the outer segment of photoreceptor compared with the CN (P < 0.05). The 
changing pattern of OCT-ISCF with interclass correlation coefficients above 0.8 differed from that caused by speckle 
noise, and was affected by OCT image quality index. Moreover, the retinal OCT-ISCF were more strongly corre-
lated with brain Aβ plaque burden and MoCA scores than retinal thickness. The accuracy using retinal OCT-ISCF 
(AUC = 0.935, 0.830) was better than that using retinal thickness (AUC = 0.795, 0.705) in detecting ADD and MCI.
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Conclusions The study demonstrates that retinal OCT-ISCF enhance the association and detection efficacy of AD 
pathology compared to retinal thickness, suggesting retinal OCT-ISCF have the potential to be new biomarkers 
for AD.

Keywords Alzheimer’s disease, Early warning, Retina, OCT, Texture features

Introduction
Alzheimer’s disease (AD), a progressive neurodegen-
erative disease, is the most common cause of dementia. 
Before the clinical symptoms, brain pathological changes 
in the AD, such as amyloid beta (Aβ) plaques and phos-
phorylated tau, have occurred. Currently, AD treatments 
can slow the progression of the disease instead of cur-
ing it, making early screening and intervention for AD 
important. At present, positron emission tomography 
(PET) and cerebrospinal fluid (CSF) examinations are 
the gold standard for diagnosing AD. However, the above 

examinations are not widely used for early screening and 
progression monitoring because they are invasive and 
non-portable [1–3]. As the extension of the central nerv-
ous system, the retina shares similar cellular structure, 
immune response, and microvascular circulation char-
acteristics to the brain [4]. More importantly, the retina 
exhibits AD-specific pathological changes, including Aβ 
deposits, and common effects of AD on both retina and 
brain are reported during disease progression and in 
response to therapy (Fig. 1A). In addition, retinal imaging 
is a non-invasive, portable, quick, and cost-effective tool. 

Fig. 1 Schematic diagram of retinal pathological changes in AD based on retinal OCT imaging features. A Retinal pathological changing patterns 
from normal to AD-derived dementia (ADD). B The correspondence between retinal pathological changes and OCT imaging features in AD, such 
as optical scattering property and structural morphology. C Retinal OCT imaging features quantization metrics, including OCT intensity spatial 
correlation features (OCT-ISCF) and thickness in different retinal sublayers. GCIPL, ganglion cells and inner plexiform layer, INL, inner nuclear layer; 
MEZ, myoid and ellipsoid zone; ONL, outer nuclear layer; OPL, outer plexiform layer; OS, outer segment of photoreceptor; RNFL, retinal nerve 
fiber layer; RPE, retinal pigment epithelium. This figure contains modified images from Servier Medical Art (https:// smart. servi ercom) licensed 
by a Creative Commons Attribution 3.0 Unported License

https://smart.serviercom
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Therefore, the retina has the potential to be a detection 
window for early screening and progression monitoring 
in AD.

Optical coherence tomography (OCT) is a non-inva-
sive, widespread technique with high axial resolution, 
which can obtain in  vivo retinal imaging results con-
sistent with histological staining to assess the degree of 
retinal neurodegeneration [5, 6]. Based on OCT, most 
studies have found retinal thickness alterations in AD [7], 
and it is significantly related to the neurodegeneration 
in the brain [8, 9]. However, many studies have reported 
that the retinal thickness increases due to glial hyperpla-
sia in the early stage of AD [10, 11], while it decreases 
significantly in the advanced stage of AD caused by 
neurodegeneration [12]. To some extent, the high over-
lap between early AD and healthy individuals occurs 
due to the fluctuating altered characteristics of the reti-
nal thickness. In other words, the retinal thickness lacks 
high sensitivity for early AD, and will be limited in early 
screening.

Recently, several studies have reported AD specific 
pathological biomarkers, such as Aβ, can affect the opti-
cal scattering properties of tissues near the deposition 
area, causing changes of reflection spectrum [13, 14]. 
Moreover, AD non-specific pathological changes, includ-
ing retinal neurodegeneration, also cause changes in opti-
cal scattering properties [15]. Since Aβ deposition occurs 
earlier than neurodegeneration [16], the changes in reti-
nal optical scattering properties are thought to precede 
the changes in retinal thickness (Fig. 1B). In general, the 
OCT intensity correlates with the tissular optical scat-
tering properties [17–19]. Considering the localized dif-
fuse nature of AD pathological alterations, OCT intensity 
spatial correlation features (OCT-ISCF) may detect sub-
tle alteration in OCT intensity [20]. The OCT-ISCF are 
high-order structural features, characterizing the spatial 
correlation distribution of OCT intensity signal [21, 22]. 
To the best of our knowledge, there are no studies to con-
firm the feasibility of retinal OCT-ISCF for early screen-
ing and brain pathology monitoring in confirmed AD.

In the present work, we first developed a retinal sub-
layer feature extraction algorithm to obtain OCT-ISCF, 
and compared the detection performance of OCT-ISCF 
and retinal thickness in different stages of AD. The 
repeatability and robustness of OCT-ISCF were also 
evaluated using experimental and simulation methods. 
Further, we explored the association between retinal 
metrics and brain pathological changes in AD.

Methods
Participants
The study was approved by the Ethics Committee of 
the Third Affiliated Hospital of the PLA Army Medical 

University (Approval No. 2020–14) and the Affiliated 
Eye Hospital of Wenzhou Medical University (Approval 
No. 2020–012-K-10) in accordance with the principles 
of the Declaration of Helsinki, and written informed 
consent from all participants were obtained. This pro-
ject has been registered in the Chinese Clinical Trials 
Registry (registration number: ChiCTR2000040786; 
registration date: 2020–12-10). From December 2020 to 
December 2023, 82 subjects were enrolled by a neurolo-
gist (Y.W.) in the Memory Disorders Clinic. All subjects 
underwent neurological examinations, routine ophthal-
mological examinations and retinal OCT imaging, which 
were described in eMethods in the Supplement. When 
collecting eye data for each patient, we tried to collect 
both eyes as much as possible, but considering the cor-
relation of binocular data, only one eye data was analyzed 
in subsequent image analysis, and the right eye data was 
preferentially included. If the OCT image quality of the 
right eye is poor (image quality index less than 7 or image 
discontinuity), the left eye is selected. According to the 
National Institute of Aging and Alzheimer’s Association 
(NIA-AA) criteria, 62 patients with AD were diagnosed 
using brain Aβ-PET results. Based on Clinical Dementia 
Rating Scale (CDR), AD patients were subdivided into 40 
patients with ADD and 22 patients with mild cognitive 
impairment (MCI) [23]. Twenty cognitively normal (CN) 
age- and sex-matched subjects with Aβ-PET negative 
were recruited.

Exclusion criteria: (1) History of retinal disease, ocu-
lar trauma, severe cataract, and high myopia/astigma-
tism; (2) Dementia not caused by AD, such as Parkinson’s 
dementia, and vascular dementia; (3) The retinal OCT 
image quality index is less than 7.

Analysis of retinal thickness parameters
All retinal OCT images were analyzed by a custom-built 
deep learning segmentation algorithm [24]. In Fig.  1C, 
the retinal image is divided into 8 layers, which are retinal 
nerve fiber layer (RNFL), ganglion cells and inner plexi-
form layer (GCIPL), inner nuclear layer (INL), outer plex-
iform layer (OPL), outer nuclear layer (ONL), myoid and 
ellipsoid zone (MEZ), outer segment of photoreceptor 
(OS) and retinal pigment epithelium (RPE), respectively 
[25]. The average thickness of 8 retinal sublayers in the 
Early Treatment Diabetic Retinopathy Study (ETDRS) 
grid was measured.

Analysis of retinal OCT‑ISCF and performance test
The gray level co-occurrence matrix (GLCM) algo-
rithm was developed to extract retinal OCT-ISCF [26, 
27]. The OCT-ISCF contained angular second order 
moment (ASM), contrast (CON), correlation (COR), 
homogeneity (HOM) and dissimilarity (DIS). Detailed 
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calculations of the OCT-ISCF were described in the 
supplementary material (eMethods). We performed 
a small-scale study of retinal OCT-ISCF repeatability 
on 21 young healthy volunteers. Each subject had two 
repeated retinal OCT imaging acquisitions by the same 
operator using the same OCT scan protocol. The same 
performer analyzed the retinal OCT images to obtain 
the OCT-ISCF of full-layer retina. In addition, we took 
pre- and postoperative OCT images of 10 patients who 
underwent cataract surgery, to investigate the influence 
of OCT image quality index on the OCT-ISCF. Speckle 
noise usually occurs in OCT images and is represented 
as a scattered highlighted signal [28, 29]. To test the 
robustness of retinal OCT-ISCF for early detection of 
AD, we randomly added several highlighted signals 
to retinal OCT images of 5 CN subjects to simulate 
speckle noise. Subsequently, we analyzed the changes 
in OCT-ISCF before and after the addition of simula-
tion noise.

Statistical analysis
All statistical analyses were performed by the SPSS 25. 
The measurement data were presented in the form of 
mean (standard deviation). The interclass correlation 
coefficient (ICC) was calculated to assess the repeatabil-
ity of retinal OCT-ISCF. Shapiro–Wilk was used to test 
the normal distribution of data. One-way analysis of vari-
ance and Bonferroni post hoc test were used to test the 
measured values of normal distribution. If none of the 
three groups of data conforms to the normal distribution, 
the Kruskal–Wallis non-parametric test. Categorical 
variables were analyzed by chi-square test. Paired t-tests 
were used to analyze the variability of OCT-ISCF before 
and after cataract surgery, and speckle noise addition. 
Correlations of retinal metrics with brain Aβ plaque bur-
den and Montreal Cognitive Assessment (MoCA) scores 
were analyzed by age-adjusted partial correlation analy-
sis. The stepwise multivariate binary logistic regression 
analysis and receiver operating characteristics (ROC) 
curve were used to identify MCI and ADD by retinal 
thickness and OCT-ISCF, respectively. P < 0.05 was con-
sidered statistically significant.

Results
In this study, 82 subjects were subdivided into 40 ADD, 
22 MCI and 20 CN. The basic demographics and ocular 
parameters of three groups are summarized in Table  1. 
There were no significant differences in above param-
eters, except for MoCA and CDR scores. The MoCA 
and CDR scores of ADD were lower than those of MCI, 
which were lower than those of CN.

Differences in retinal thickness among groups
eTable 1 shows the thickness of each retinal sublayers in 
three groups according to ETDRS grid. Compared with 
CN, the RNFL and MEZ in the outer inferior region 
and the MEZ in the inner temporal region reduced sig-
nificantly only in the ADD (P < 0.05). Compared with the 
MCI, the ADD showed significant thinning of RNFL in 
the inferior region and OPL in the outer superior and 
temporal regions (P < 0.05).

Retinal OCT‑ISCF performance test and differences 
among groups
In eTable  2, ICCs of all retinal OCT-ISCF are greater 
than 0.8. eFigure  1 shows all retinal OCT-ISCF are sig-
nificantly altered before and after surgery. eTable 3 sum-
marizes retinal OCT-ISCF in various retinal sublayers 
among three groups. Figure 2 shows that compared with 
CN, ASM in GCIPL, INL, OPL, OS and RPE sublay-
ers, COR in GCIPL, OPL, OS and RPE sublayers, and 
HOM in OPL and OS sublayers in ADD varies signifi-
cantly (P < 0.05). It is worth noting that there were also 
significant differences in ASM and COR in OS sub-
layer between CN and MCI (P < 0.05). In eFigure  2, the 
results show that the CON, COR, and HOM increase 
significantly after speckle noise addition, while the ASM 
decreases significantly. In contrast, the change pattern in 

Table 1 Clinical characteristics of subjects among CN, MCI, and 
ADD

Abbreviations: BCVA best corrected visual acuity, CDR Clinical Dementia Rating 
Scale, IOP Intraocular pressure, MoCA Montreal Cognitive Assessment, SD 
standard deviation, SE spherical equivalent refraction
a Statistical difference with CN group
b Statistical difference with MCI group
c Statistical difference with ADD group;
¶ chi-square test

*P < 0.05

Characteristics CN (n = 20) MCI (n = 22) ADD (n = 40) P Value

Sex, No. (%)

 Male 6 (30) 11 (50) 15 (37) 0.40

 Female 14 (70) 11 (50) 25 (62)

Age, mean (SD), y 62.2 (6.2) 65.7 (8.3) 64.5 (7) 0.36

OCT image qual-
ity index

8.1 (0.8) 7.9 (0.8) 8.1 (0.9) 0.71¶

Hypertension, 
No. (%)

6 (30) 4 (18) 8 (20) 0.66

Diabetes, No. (%) 3 (15) 3 (13) 4 (10) 0.86

SE (D) −0.8 (1.3) −0.3 (2.0) 0.6 (1.1) 0.06

BCVA (logMAR) 0.04 (0.10) 0.05 (0.09) 0.05 (0.12) 0.88

IOP (mmHg) 15.7 (2.6) 15.1 (2.6) 15.2 (3.1) 0.77

MoCA 23.5 (2.9) b, c 17.0 (4.6) a, c 9.3 (4.7) a, b  < 0.001*

CDR 0 b, c 0.5 a, c 1.3 (0.6) a, b  < 0.001¶*
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OCT-ISCF between AD and CN showed increased ASM 
and decreased COR, which was opposite to those of add-
ing speckle noise.

Diagnostic performance of retinal metrics for different 
stages of AD
Figure  3 provides the diagnostic performance of retinal 
metrics for different stages of AD using ROC analysis. 
To discriminate ADD from CN, the thickness parameters 
of RNFL, OPL, MEZ, and RPE were included in a multi-
variate model with area under the curve (AUC) of 0.795, 
while the OCT-ISCF parameters COR of the RNFL, 
GCIPL, INL, and RPE sublayers, the ASM of the RNFL, 
GCIPL, and OPL sublayers, and HOM of OS sublayers 
were included in another multi-variate model with AUC 
of 0.935 (Fig.  3A). To discriminate MCI from CN, the 
thickness parameters of the MEZ and RPE were included 
in a multi-variate model with AUC of 0.705, while the 
COR of the retina full-layer, GCIPL, INL, OPL, MEZ 

sublayers, and ASM of the OPL and MEZ were included 
in the analysis with AUC of 0.830 (Fig. 3B).

Significant correlation of retinal metrics with brain Aβ 
plague burden and cognitive function
Figure  4 presents correlation coefficients of brain Aβ 
plaque burden and MoCA scores with retinal sublay-
ers thickness in ETDRS grid and OCT-ISCF. Specifi-
cally, there were significant correlations between retinal 
sublayers thickness with standardised uptake value ratio 
(SUVr) in different brain regions. The above correlation 
coefficients ranged from −0.318 to 0.362 (Fig. 4A). More-
over, there also were significant correlations between 
SUVr in different brain regions and retinal OCT-ISCF 
in several sublayers. Of note, the correlation coefficients 
between retinal OCT-ISCF and brain SUVr ranged from 
−0.494 to 0.40 (Fig. 4B).

There were also significant correlations of MoCA 
scores with retinal sublayer thickness and OCT-ISCF. 
In terms of retinal thickness, MoCA scores were 

Fig. 2 OCT-ISCF parameters with statistical differences among groups. (A-C) stands for ASM, COR, and HOM parameters respectively. (ASM, angular 
second moment; COR, correlation; GCIPL, ganglion cells and inner plexiform layer, HOM, homogeneity; INL, inner nuclear layer; OPL, outer plexiform 
layer; OS, outer segment of photoreceptor; RPE, retinal pigment epithelium; *, P < 0.05; **, P < 0.01)

Fig. 3 The differential efficacy of retinal thickness and OCT-ISCF parameters between groups. A The ROC curves of Retinal thickness and OCT-ISCF 
parameters identify ADD and CN; B The ROC curves of Retinal thickness and OCT-ISCF parameters identify MCI and CN
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significantly correlated with RNFL, GCIPL, INL, OPL 
and MEZ sublayers. Specifically, the highest correlation 
between retinal thickness and MoCA scores in the inner 
retina was the RNFL sublayer (r = 0.330, P = 0.003), and 
that in the outer retina was the OPL sublayer (r = 0.314, 
P = 0.004) (Fig. 4C). Moreover, there were significant cor-
relations between MoCA scores and retinal OCT-ISCF 
in the RNFL, GCIPL, INL, OPL, OS, and RPE sublayers, 
with the highest correlation between the GCIPL sub-
layer and MoCA scores in the inner retinal layer (r = 0.40, 
P < 0.001) and that between the OS sublayer and MoCA 
scores in the outer layer (r = 0.448, P < 0.001) (Fig. 4D).

Discussion
The purpose of this study is to investigate whether reti-
nal metrics measured by OCT aid in the early screening 
and brain pathology monitoring for confirmed AD. To 

our knowledge, the present work is the first to systemati-
cally compare retinal OCT-ISCF and thickness in differ-
ent stages of AD. The primary finding of our study is that 
the outer retinal OCT-ISCF can significantly improve 
the discrimination performance between AD and CN 
compared to traditional retinal thickness parameters. 
Furthermore, the retinal OCT-ISCF present excellent 
repeatability and robust for early detection of AD using 
experimental and simulation methods. Finally, the retinal 
OCT-ISCF are more strongly correlated with AD patho-
logical changes, including brain Aβ plaque burden and 
MoCA scores, than retinal thickness.

Firstly, retinal OCT-ISCF in the OS layer have changed 
in MCI, prior to the retinal thickness in our study. Sev-
eral histopathological works confirmed that AD biomark-
ers are deposited in the outer retina, including OS layer, 
which lead to retinal neurodegeneration [7, 30]. Recently, 

Fig. 4 Correlation of retinal sublayers thickness and OCT-ISCF parameters with brain Aβ-SUVr values and MoCA scores. A The retinal sublayers 
thickness in ETDRS grid were correlated with the SUVr in different brain regions; B The retinal sublayers OCT-ISCF were correlated with the SUVr 
in different brain regions; C The correlation between retinal thickness parameters and MoCA scores; D The correlation between retinal OCT-ISCF 
and MoCA scores. (COR, correlation; GCIPL, ganglion cells and inner plexiform layer; I-I, inner-inferior; OPL, outer plexiform layer; O-S, outer-superior; 
RNFL, retinal nerve fiber layer; RPE, retinal pigment epithelium; SUVr, standardised uptake value ratio



Page 7 of 10Jin et al. Alzheimer’s Research & Therapy           (2025) 17:33  

a study demonstrated that rod degeneration is the earli-
est AD retinal manifestations compared with cone and 
bipolar cells in AD mice [31]. The retinal MEZ sublayer 
thickness in the peripheral macular area in the ADD was 
significantly thinner than that in the CN. In addition, we 
also reported thickness thinning in the RNFL sublayer in 
ADD, consistent with previous studies [12, 32]. Interest-
ingly, the trend of thickening in retinal RNFL sublayers 
existed in MCI, also reported by recent studies [10, 33]. 
Researchers attributed the retinal thickening at the MCI 
stage to glial cell proliferation prior to the retinal degen-
eration [34]. Considering the opposite effect of glial pro-
liferation and neurodegeneration in retinal thickness, 
the high overlap between early AD and healthy individu-
als occurs, requiring more sensitivity retinal biomarkers 
for early AD detection. In nature, the retinal OCT-ISCF 
characterize the spatial correlation distribution of retinal 
OCT intensity signal, which is affected by tissular opti-
cal scattering property [35, 36]. Using the co-registered 
angle-resolved low-coherence interferometry OCT, Song 
et al. found that different retinal sublayers in AD mouse 
have alterations in tissue optical scattering signals, prior 
to retinal thickness changes. [37] However, the above 
technique adopted a complex structure design, making 
it difficult for clinical application. In contrast, we devel-
oped a radiomic analysis algorithm based on the OCT 
commercial device, and found that outer retinal OCT-
ISCF alterations advanced to its thickness abnormality in 
clinical data. Using ROC analysis, the retinal OCT-ISCF 
showed higher accuracy than thickness parameters to 
distinguish CN with MCI and ADD. The results suggest 
that retinal OCT-ISCF may be a potential biomarker for 
the early screening of AD.

Secondly, the retinal OCT-ISCF are new indicators 
with excellent repeatability and robustness. The OCT-
ISCF may be affected by light angles, refractive media, 
retinal disease and OCT speckle noise, etc. As we known, 
Henle’s fiber layer presents a different appearance in 
OCT images under different light angles [38]. Thus, 
we instructed all subjects to maintain in primary posi-
tion, avoiding the effect of light angles on OCT inten-
sity. In the retinal OCT repeat experiments, the ICCs of 
all retinal OCT-ISCF were greater than 0.8, suggesting 
OCT-ISCF have good repeatability. Moreover, retinal 
OCT-ISCF significantly altered after cataract surgery. 
Therefore, our study matched retinal OCT image quality 
index to minimize the effects of refractive media opacity. 
In addition, we also excluded retinal diseases, thus reduc-
ing the influence of retinal diseases on the retinal OCT-
ISCF. As for OCT speckle noise, we simulated speckle 
noise by randomly adding highlighted signals to the OS 
layer on OCT images. As a result, OCT-ISCF changed 
significantly after the addition of speckle noise. However, 

the pattern of OCT-ISCF alterations by speckle noise was 
opposite to those caused by AD observed in this study. 
Overall, the retinal OCT-ISCF alterations seem to be 
associated with AD pathological changes, but not other 
relevant factors.

More importantly, the correlations between retinal 
OCT-ISCF and AD pathological changes are stronger 
than those in retinal thickness. The retinal OCT-ISCF 
alteration in AD may attribute to several reasons: Firstly, 
retinal Aβ plaques may contribute to the retinal OCT-
ISCF alteration. Several studies conducted the retinal 
immunohistochemical analysis, and identified the pres-
ence of Aβ plaques in the retina [39, 40]. Using spectral 
imaging techniques, different groups have confirmed Aβ 
plaques cause changes in tissular optical scattering prop-
erty, affecting the retinal OCT-ISCF [35, 41]. Consider-
ing the parallels in retina and brain pathophysiology of 
AD, we use brain Aβ plaque burden to indirectly repre-
sent retinal Aβ plaque burden. Previous studies reported 
that retinal thickness is linearly related to cerebral cor-
tex SUVr value after controlling for any main effects of 
age, of which correlation coefficient is similar with our 
results [42, 43]. Of note, it’s first time to report the reti-
nal OCT-ISCF have middle correlations with brain Aβ 
plaque burden, which are stronger than thickness. From 
the Aβ deposition perspective, retinal OCT-ISCF better 
reflect pathological changes in AD when compared to the 
thickness. Secondly, neurodegeneration may also cause 
changes in OCT-ISCF. The cognitive impairment often 
represents brain neurodegeneration, therefore we ana-
lyze the correlation between retinal metrics and cognitive 
performance [44, 45]. Previously, several studies dem-
onstrated that retinal thickness has a linear relationship 
with MoCA scores in AD, consistent with our finding. 
One interesting finding is retinal OCT-ISCF are more 
strongly correlated with MoCA scores than retinal thick-
ness. Specifically, the Pearson’s correlation coefficient of 
COR in GCIPL and RPE sublayers are 0.40, and 0.448, 
respectively. The above sublayers are the most common 
sites of retinal neurodegeneration [7, 46]. It is found that 
the optical density of RNFL in glaucoma patients is lower 
than that of normal subjects, and it gradually decreases 
with glaucoma progression, even before the thickness 
change [15]. In other words, retinal neurodegeneration 
is likely to cause the OCT-ISCF changes. Taken together, 
retinal OCT-ISCF have the potential to be used as an 
objective assessment of brain Aβ plaques burden and 
cognitive performance.

There are several limitations in our study. Firstly, the 
sample size is relatively small. Since there was no previ-
ous study to investigate OCT-ISCF parameters, we esti-
mated sample sizes for the OCT-ISCF indicators with 
significant difference among groups in this study. For 
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example, for the ASM and COR parameters in the reti-
nal OS layer, we calculated effect size of 0.714 and 0.976, 
respectively, based on the Cohen’s formula [47]. Assum-
ing alpha error and power of 0.05 and 0.8, respectively, 
the total sample sizes for the three groups could be cal-
culated to be 24 and 15 using the G*power software, 
which are less than the actual included sample size of 
82 in our study. As such, the current sample size in our 
study is sufficient to support the significant changes in 
retinal OCT-ISCF. Secondly, this study is cross-sectional. 
Although retinal metrics are associated with pathological 
alterations in AD, longitudinal data are still required to 
validate. Thirdly, we evaluate the refraction rather than 
ocular axial length. To some extent, spherical equivalent 
has a relationship with the ocular axial length, avoid-
ing the effect of lateral magnification differences on the 
retinal metrics due to differences in ocular axial length. 
Finally, this study focuses on the research about AD and 
retinal metrics, which may be affected by ocular diseases 
and other neurodegenerative diseases. In the future, the 
retinal OCT-ISCF are necessary to be further validated in 
a general population.

Conclusions
The present study demonstrates that retinal OCT-ISCF 
significantly improve the association of pathological 
changes, including brain Aβ plaque burden and MoCA 
scores, and detection efficacy in AD compared to retinal 
thickness. In addition, a rigorous experimental design is 
used to clarify the excellent repeatability and robustness 
of retinal OCT-ISCF for AD screening and monitoring 
in clinical. These findings provide a theoretical basis for 
early screening and brain pathology monitoring in AD by 
using a combination of OCT and radiomic analysis meth-
ods, suggesting that retinal OCT-ISCF have the potential 
to be used as new biomarkers for AD.
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SE  Spherical equivalent
SUVr  Standardised uptake value ratio
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