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Abstract
Background Gut microbiota dysbiosis is linked to Alzheimer’s disease (AD), but our understanding of the molecular 
and neuropathological bases underlying such association remains fragmentary.

Methods Using 16S rDNA amplicon sequencing, untargeted metabolomics, and multi-modal magnetic resonance 
imaging, we examined group differences in gut microbiome, fecal metabolome, neuroimaging measures, and 
cognitive variables across 30 patients with AD, 75 individuals with mild cognitive impairment (MCI), and 61 healthy 
controls (HC). Furthermore, we assessed the associations between these multi-omics changes using correlation and 
mediation analyses.

Results There were significant group differences in gut microbial composition, which were driven by 8 microbial 
taxa (e.g., Staphylococcus and Bacillus) exhibiting a progressive increase in relative abundance from HC to MCI to 
AD, and 2 taxa (e.g., Anaerostipes) showing a gradual decrease. 26 fecal metabolites (e.g., Arachidonic, Adrenic, and 
Lithocholic acids) exhibited a progressive increase from HC to MCI to AD. We also observed progressive gray matter 
atrophy in broadly distributed gray matter regions and gradual micro-structural integrity damage in widespread white 
matter tracts along the AD continuum. Integration of these multi-omics changes revealed significant associations 
between microbiota, metabolites, neuroimaging, and cognition. More importantly, we identified two potential 
mediation pathways: (1) microbiota → metabolites → neuroimaging → cognition, and (2) microbiota → metabolites 
→ cognition.

Conclusion Aside from elucidating the underlying mechanism whereby gut microbiota dysbiosis is linked to AD, our 
findings may contribute to groundwork for future interventions targeting the microbiota-metabolites-brain-cognition 
pathways as a therapeutic strategy in the AD continuum.
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Introduction
Alzheimer’s disease (AD) is a neurodegenerative disor-
der that is the most common cause of dementia and cur-
rently has few clinically efficacious disease modifying 
therapies [1]. The bidirectional interaction between gut 
microbiota and the brain, i.e., the microbiota-gut-brain 
axis, has emerged as a topic of active investigation in 
AD. Gut microbiota is essential for maintaining physi-
cal and mental well-being [2], while its dysbiosis may 
lead to neurodegeneration via disrupting metabolic and 
immunological processes [3, 4], potentially contribut-
ing to the pathogenesis and/or progression of AD [5, 6]. 
Indeed, both animal and human studies have shown that 
alterations in the gut microbiome (including microbial 
diversity and abundance) are linked to AD and its related 
pathologies [7–13]. Nevertheless, our understanding of 
the molecular and neuropathological bases that underlie 
such association remains fragmentary.

Strong evidence has established the fecal metabolome 
as a functional readout of the gut microbiome [14], such 
that microbial metabolites could provide a molecular 
connection between the gut microbiota and the brain 
[15]. Metabolomics, the high-throughput identification 
and quantification of small molecules in biological sam-
ples, offers a powerful tool to identify novel biomarkers 
of diseases [16–18]. Recent metabolomics studies have 
revealed several key metabolic pathways (e.g., ceramide 
metabolism and acylcarnitine-enriched modules) that 
are involved in AD [19, 20]. In parallel, advances in mag-
netic resonance imaging (MRI) techniques and analytic 
approaches have enabled the in vivo examination of neu-
ropathological changes in the AD continuum [21–24]. 
Structural, functional, and diffusion MRI can be used to 
measure gray matter morphology [25, 26], spontaneous 
intrinsic brain activity [27–29], and white matter integ-
rity [30]. A combined analysis of multi-modal MRI mea-
sures would provide integrated information on distinct 
aspects of the brain [31–35], thereby facilitating a more 
thorough characterization of AD neuropathology.

In this study, we sought to investigate potential micro-
biota-metabolites-brain-cognition pathways in the AD 
continuum. Using a combination of 16S rDNA amplicon 
sequencing, untargeted metabolomics, and multi-modal 
MRI, we examined group differences in gut microbiome, 
fecal metabolome, neuroimaging measures, and cogni-
tive variables across 30 patients with AD, 75 individuals 
with mild cognitive impairment (MCI), and 61 healthy 
controls (HC). Furthermore, we assessed the associations 
between these multi-omics changes using correlation and 
mediation analyses.

Materials and methods
Participants
All participants (Chinese Han origin, right-handed, aged 
50–85 years) were recruited from The First Affiliated 
Hospital of Anhui Medical University between August 
2018 and March 2022. The diagnosis of MCI and prob-
able dementia due to AD was established according to 
the criteria set forth by the National Institute on Aging 
Alzheimer’s Association (NIA-AA) [36, 37]. The inclu-
sion criteria for MCI were as follows: Montreal Cogni-
tive Assessment (MoCA) scores based on the following 
educational levels of Chinese people [38]: illiterate indi-
viduals ≤ 13, individuals with 1–6 years of education ≤ 19, 
individuals with 7 or more years of education ≤ 24; Clini-
cal Dementia Rating (CDR) = 0.5 [39]; and essentially 
preserved daily activities and social functions. Inclusion 
criteria for AD were as follows: dementia was diagnosed 
according to the Diagnostic and Statistical Manual of 
Mental Disorders (DSM-IV) criteria [40]; CDR = 1 or 2 
[39]; and dementia due to AD was diagnosed according 
to the core clinical criteria of probable AD dementia as 
defined by the NIA-AA criteria. The inclusion criteria 
for HC were as follows: no complaints of memory loss; 
MoCA scores: illiterate individuals > 13, individuals with 
1–6 years of education > 19, individuals with 7 or more 
years of education > 24; and CDR = 0. The exclusion cri-
teria were as follows: patients with a history of stroke or 
the presence of multiple or extensive infarcts or severe 
white matter hyperintensities; cognitive impairment with 
other core clinical features such as dementia with Lewy 
bodies, frontotemporal dementia or other neurological 
or psychiatric illness; use of medication that could have 
a substantial effect on cognition; severe liver and kidney 
diseases, thyroid diseases, tumors, and immune diseases. 
This study was approved by the Institutional Ethics Com-
mittee of The First Affiliated Hospital of Anhui Medical 
University (20200094) and was conducted following the 
Declaration of Helsinki. Written informed consent was 
obtained from all participants after a full explanation of 
the procedure.

Collection of demographic, clinical, and cognitive data
Demographic and clinical data, including age, sex, 
years of education, current smoking, alcohol abuse, and 
comorbidities (hypertension, diabetes mellitus and dys-
lipidemia), were collected by the researchers during the 
interview. Each subject’s weight and height were mea-
sured, and body mass index (BMI) was calculated. Cogni-
tive assessment of all participants was performed by two 
trained neuropsychological technicians within 1 week of 
the MRI scan. All participants were evaluated using the 

Keywords Alzheimer’s disease, Gut microbiome, Fecal metabolome, Neuroimaging, Cognition



Page 3 of 15Zhao et al. Alzheimer's Research & Therapy           (2025) 17:36 

Mini-Mental State Examination (MMSE) [41], MoCA 
[42], and CDR. Moreover, memory function was further 
assessed using the 12-words list of the AVLT, including 
immediate recall (AVLT-IR), short-term delayed recall 
(5-min delay recall, AVLT-SR), long-term delayed recall 
(20-min delay recall, AVLT-LR), and recognition [43].

Gut microbiomics analysis
Fecal samples were collected in sterilized tubes and 
stored immediately in a -80◦C freezer within 1 day before 
or after MRI examination. Gut microbiome was quanti-
fied using 16S rDNA amplicon sequencing. Specifically, 
total genome DNA from the fecal samples was extracted 
using Cetyltrimethylammonium bromide (CTAB) 
method. DNA concentration and purity was monitored 
on 1% agarose gels. To construct the Polymerase Chain 
Reaction (PCR)-based 16S rDNA amplicon library for 
sequencing, PCR enrichment of the V4 hypervariable 
region of 16S rDNA was performed with the forward 
primer 515F (5′-GTGCCAGCMGCCGCGGTAA-3′) 
and reverse primer 806R (5′-GGACTACHVGGGT-
WTCTAAT-3′). Sequencing libraries were generated 
using TruSeq® DNA PCR-Free Sample Preparation Kit 
(Illumina, USA) following manufacturer’s recommenda-
tions and index codes were added. The library quality was 
assessed on the Qubit@2.0 Fluorometer (Thermo Scien-
tific) and Agilent Bioanalyzer 2100 system. At last, the 
library was sequenced on an Illumina NovaSeq platform 
and 250 bp paired-end reads were generated.

We used a standard pipeline for 16S rDNA data analy-
sis [44]. First, the raw paired-end reads were assigned 
to samples based on their unique barcode sequences. 
Then, the paired-end reads were merged to obtain raw 
tags based on the 3’ overlapping regions, and barcode 
and primers are removed. Quality filtering on the raw 
tags was performed, which would keep reads error rates 
less than 1%. All of these steps can be completed using 
VSEARCH (https:/ /github .com/to rogn es/vsearch), an 
open source and free of charge multithreaded 64-bit tool 
for processing and preparing amplicon analysis [45]. To 
select the representative sequences as proxies of a spe-
cies, denoising was done by the unoise3 command, which 
is an implementation of the UNOISE algorithm  (   h t  t p :  / / w 
w  w .  d r i v e 5 . c o m / u s e a r c h / m a n u a l / u n o i s e     algo.html). After 
dereplication, denoised sequences were generated and 
referred to as amplicon sequence variants (ASV). Finally, 
reference-based chimera detection was conducted using 
the Ribosomal Database Project (RDP) as a reference 
database (http://rdp.cme.msu.edu), and then the ASV 
table was generated by quantifying the normalized ASV 
counts in each sample.

Several commonly used gut microbial measures were 
calculated. First, alpha diversity indices were computed 
based on the normalized ASV counts using the R package 

“Vegan” to quantify the level of within-sample diver-
sity in a given fecal sample. We focused our analyses on 
Shannon and Simpson indices that reflect both species 
richness and species evenness. Second, beta diversity 
indices were calculated based on the normalized ASV 
counts using the USEARCH to quantify the dissimilarity 
between fecal samples based on Bray-Curtis index and 
weighted Unifrac distance [46]. Finally, the ASV were 
assigned taxonomy at the genus level by using RDP as a 
reference database with a minimum confidence threshold 
of 0.1, providing a dimensionality reduction perspective 
on the microbiota. After removing plastid and non-bac-
teria, microbial relative abundance at the genus level was 
obtained.

Fecal metabolomics analysis
Fecal metabolome was analyzed using the ultrahigh per-
formance liquid chromatography coupled with tandem 
mass spectrometry (UHPLC-MS/MS) system [47, 48]. 
A pooled quality control (QC) sample and instrument 
blanks were used to assess the reproducibility and to fil-
ter out the chemical background contamination. The raw 
data files were processed by MS-DIAL (version 4.92) [49] 
with a mass tolerance of 0.01 and 0.025 Da for MS1 and 
MS2, respectively; the minimum peak height was 50,000, 
and the identification score cut-off was 70%. For the 
metabolite identification process, we used the spectral 
libraries provided by the MS-DIAL team, which incor-
porate all the available public repositories. The average 
QC to blank peak area ratio was calculated, and metabo-
lites with a QC/blank peak area ratio < 3 were removed 
[50]. Signal reproducibility was tested by calculating the 
relative standard deviation (RSD) of QC sample techni-
cal replicates, and metabolites with RSD > 30% were dis-
carded [51]. Metabolites with nonzero measurement in 
at least 80% of the samples were included [52]. Missing 
values were replaced by 1/5 of minimum positive values 
of their corresponding variables. Finally, quantification 
values of metabolites were normalized by QC samples, 
made more normally distributed with a generalized log 
transformation, and standardized using z-scores.

MRI data acquisition
MRI scans were obtained using a 3.0-Tesla MR system 
(Discovery MR750w, General Electric, Milwaukee, WI, 
USA) with a 24-channel head coil. Earplugs were used 
to reduce scanner noise, and tight but comfortable foam 
padding was used to minimize head motion. All partici-
pants were instructed to relax, keep their eyes closed but 
not fall asleep, think of nothing in particular, and move as 
little as possible. High-resolution 3D T1-weighted struc-
tural images were acquired by employing a brain vol-
ume (BRAVO) sequence with the following parameters: 
repetition time (TR) = 8.5 ms; echo time (TE) = 3.2 ms; 
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inversion time (TI) = 450 ms; flip angle = 12 °; field of view 
(FOV) = 256 mm × 256 mm; matrix size = 256 × 256; slice 
thickness = 1  mm, no gap; 188 sagittal slices. Resting-
state blood-oxygen level-dependent (BOLD) functional 
MRI (fMRI) data were acquired using a gradient-echo 
single-shot echo planar imaging (GRE-SS-EPI) sequence 
with the following parameters: TR = 2000 ms; TE = 30 
ms; flip angle = 90 °; FOV = 220  mm × 220  mm; matrix 
size = 64 × 64; slice thickness = 3  mm, slice gap = 1  mm; 
35 interleaved axial slices; 185 volumes. Diffusion ten-
sor imaging (DTI) data were acquired using a spin-
echo single-shot echo planar imaging (SE-SS-EPI) 
sequence with the following parameters: TR = 10,000 ms; 
TE = 74 ms; flip angle = 90 °; FOV = 256  mm × 256  mm; 
matrix = 128 × 128; slice thickness = 3 mm without gap; 50 
axial slices; 64 diffusion gradient directions (b = 1000  s/
mm2) plus five b = 0 reference images. All images were 
visually inspected to ensure that only images without vis-
ible artifacts were included in subsequent analyses.

Structural MRI data analysis
Gray matter morphology was assessed using voxel-based 
morphometry (VBM) and surface-based morphome-
try (SBM) analyses. VBM analysis was performed using 
the CAT12 toolbox (http:// www.neu ro.uni- jena .de/cat) 
implemented in the Statistical Parametric Mapping soft-
ware (SPM12, http:// www.fil .ion.uc l.ac .uk/spm). First, 
all the structural T1-weighted images were corrected for 
bias-field inhomogeneities. Second, these images were 
segmented into gray matter, white matter, and cerebrospi-
nal fluid density maps using the “new-segment” approach 
[53], with total intracranial volume (TIV) obtained. 
Third, a diffeomorphic anatomical registration through 
the exponentiated Lie algebra (DARTEL) technique was 
used to generate a custom, study-specific template [54]. 
Fourth, each participant’s gray matter density image was 
warped to the customized template; then the resultant 
images were affine registered to the Montreal Neurologi-
cal Institute (MNI) space and resampled to a voxel size of 
1.5 mm × 1.5 mm × 1.5 mm. Fifth, the modulation was 
applied by multiplying the transformed gray matter den-
sity maps with the non-linear components of Jacobian 
determinants, which resulted in normalized gray matter 
volume (GMV) maps. An automated anatomical labeling 
(AAL) template was employed to segment the cerebrum 
into 90 cortical and subcortical regions [55]. Mean GMV 
within each brain region was extracted for subsequent 
analysis.

SBM analysis was performed using the surface-pre-
processing pipeline of the CAT12 toolbox. We used 
a projection-based thickness estimation that allows 
the calculation of cortical thickness (CT) and the cen-
tral surface [25]. For the estimation of white matter 
distances, we subjected the T1-weighted images to 

tissue segmentation. Local maxima were then projected 
to other gray matter voxels by using a neighbor relation-
ship described by the white matter distance. These values 
equal CT. This projection-based approach also included 
partial volume correction and correction for sulcal blur-
ring and asymmetries. Topological correction was car-
ried out through a method based on spherical harmonics. 
For reparametrization of the surfaces, an algorithm for 
spherical mapping of the cortical surface was applied 
[56]. An adapted two-dimensional DARTEL algorithm 
[54] was then applied to the surface for spherical regis-
tration. Desikan-Killiany atlas was utilized to parcellate 
the cerebral cortex into 68 regions. Mean CT within each 
cortical region was extracted.

fMRI data analysis
Resting-state fMRI data were preprocessed using 
SPM12 and Data Processing & Analysis for Brain Imag-
ing (DPABI, http://rfmri.org/dpabi) [57] according to a 
validated pipeline [58–60]. The first 10 volumes for each 
participant were discarded to allow the signal to reach 
equilibrium and the participants to adapt to the scan-
ning noise. The remaining volumes were corrected for 
the acquisition time delay between slices. Then, realign-
ment was performed to correct the motion between time 
points. Head motion parameters were computed by esti-
mating the translation in each direction and the angular 
rotation on each axis for each volume. All participants’ 
data were within the defined motion thresholds (i.e., 
translational or rotational motion parameters less than 
3  mm or 3 °). We also calculated frame-wise displace-
ment (FD), which indexes the volume-to-volume changes 
in head position. Several nuisance covariates (the linear 
drift, the estimated motion parameters based on the Fris-
ton-24 model, the spike volumes with FD > 0.5  mm, the 
white matter signal, and the cerebrospinal fluid signal) 
were regressed out from the data. Notably, we did not 
perform global signal regression since it is still a con-
troversial topic in resting-state fMRI analysis [61]. The 
datasets were then band-pass filtered using a frequency 
range of 0.01–0.1  Hz. In the normalization step, indi-
vidual structural images were firstly co-registered with 
the mean functional images; then the transformed struc-
tural images were segmented and normalized to the MNI 
space using the DARTEL technique [54]. Finally, each fil-
tered functional volume was spatially normalized to the 
MNI space using the deformation parameters estimated 
during the above step and resampled into a 3-mm cubic 
voxel.

Three resting-state fMRI measures reflecting spon-
taneous intrinsic brain activity were calculated in the 
following way. (1) The BOLD time course of each voxel 
obtained from the preprocessed fMRI data without 
band-pass filtering was transformed to a frequency 
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domain via a Fast Fourier Transform, and then the 
power spectrum was obtained. Fractional amplitude of 
low-frequency fluctuations (fALFF) was defined as the 
ratio of the power spectrum in the low-frequency band 
(0.01–0.1 Hz) to that in the entire frequency range [27]. 
(2) Regional homogeneity (ReHo) was calculated as the 
Kendall’s coefficient of concordance of the time course 
of a given voxel with those of its nearest neighbours (26 
voxels) [28, 31]. (3) Pearson’s correlation coefficients were 
calculated between the BOLD time courses of all pairs of 
voxels and a whole-brain functional connectivity matrix 
was obtained for each participant. For a given voxel, 
functional connectivity density (FCD) was defined as the 
number of functional connections with correlation coef-
ficients above a threshold of 0.25 between that voxel and 
all other voxels within the whole brain [29, 62, 63]. For 
these fMRI measures, the value of each voxel was divided 
by the global mean value within the whole brain, yielding 
standardized fALFF, ReHo, and FCD maps. Mean fALFF, 
ReHo, and FCD within each brain region of the AAL 
template were extracted.

DTI data analysis
For DTI data, standard processing steps were performed 
by using the FMRIB Software Library (FSL, www.fmrib.
ox.ac.uk/fsl). First, eddy current distortion and head 
motion were corrected by registering the diffusion-
weighted images to the first b0 image through the affine 
transformations. Second, the data were skull-stripped 
by using the FMRIB Brain Extraction Tool. Finally, frac-
tional anisotropy (FA) was calculated to evaluate white 
matter integrity by using the DTIFIT toolbox. Then, the 
tract-based spatial statistics pipeline was conducted [30]. 
Briefly, individual FA images were firstly non-linearly 
registered to the MNI space. After transformation into 
the MNI space, mean FA image was created and thinned 
to generate a mean FA skeleton. Then, each subject’s 
FA image was projected onto the skeleton via filling the 
mean FA skeleton with FA values from the nearest rel-
evant tract center by searching perpendicular to the local 
skeleton structure for maximum FA value. Finally, the 
Johns Hopkins University probabilistic white matter atlas 
was used to define 50 white matter tracts in the whole 
brain [64]. Mean FA within each tract was extracted.

Statistical analysis
Demographic, clinical, cognitive, gut microbiome, fecal 
metabolome, and multi-modal MRI data were analyzed 
with the SPSS 23.0 software (SPSS, Chicago, Ill) and 
MetaboAnalyst 5.0 (https://www.metaboanalyst.ca) [65]. 
First, demographic, clinical, and cognitive data were 
compared across three groups using one-way analysis 
of variance (ANOVA) for continuous and Pearson’s chi-
squared test for categorical variables. Second, we adopted 

a multi-stage approach to examine group differences in 
gut microbiome. Kruskal Wallis test was used to compare 
alpha diversity indices. For beta diversity, a combination 
of principal coordinate analysis (PCoA) and permuta-
tional multivariate analysis of variance (PERMANOVA) 
was used to test group difference in gut microbial com-
position. To determine the exact taxa contributing to 
the microbial composition difference, microbial relative 
abundance at the genus level was residualized for con-
founding factors (age, sex, years of education, BMI, cur-
rent smoking, alcohol abuse, and comorbidities) using 
the ‘fitlm’ function in MATLAB and then compared using 
Kruskal Wallis test. Third, quantification values of fecal 
metabolites were residualized for the same confound-
ers and then compared across three groups using one-
way ANOVA. Fourth, multi-modal MRI measures were 
additionally residualized for modality-specific covariates 
(TIV for GMV; FD for fALFF, ReHo, and FCD) and then 
compared using one-way ANOVA. For these analyses, 
multiple comparison correction was performed using the 
false discovery rate (FDR) method, with a corrected sig-
nificance level of P < 0.05.

In case of significant group differences in cognition, gut 
microbiota, fecal metabolites, and neuroimaging mea-
sures, we adopted MetaboAnalyst’s pattern-matching 
method [65, 66] to further identify variables showing dif-
ferences across three groups with a linear, stepwise order 
from HC to MCI to AD. Multiple testing was corrected 
by the FDR method.

To establish the relationship among microbiota, 
metabolites, neuroimaging and cognition, we initially 
applied principal component analysis (PCA) to the vari-
ables showing significant group differences, and 4 first 
principal components were obtained to represent the 
common factors of microbiota, metabolites, neuroimag-
ing and cognition, respectively. Subsequently, pattern-
matching analysis was performed for these components, 
and Spearman’s correlations were used to examine the 
associations between these components in all partici-
pants. More importantly, to test whether the associa-
tion between microbiota and cognition was mediated 
by metabolites and/or neuroimaging, mediation analy-
sis was performed for the 4 first principal components 
using the PROCESS macro  (   h t t p : / / w w w . p r o c e s s m a c r o . o 
r g /     ) , with microbiota (X) and cognition (Y) as indepen-
dent and dependent variables, and metabolites (M1) and 
neuroimaging (M2) as mediating variables. In the media-
tion model, we sought to establish three pathways: 1) X 
→ M1 → M2 → Y; 2) X → M1 → Y; and 3) X → M2 → 
Y. All pathways were reported as unstandardized ordi-
nary least squares regression coefficients, namely, total 
effect of X on Y (c) = indirect effect of X on Y through 
M1 (a1 × b1) + indirect effect of X on Y through M2 (a2 
× b2) + indirect effect of X on Y through M1 and M2 (a1 

http://www.fmrib.ox.ac.uk/fsl
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× d × b2) + direct effect of X on Y (c’). The significance 
analysis was based on 10,000 bootstrap realizations and a 
significant indirect effect is indicated when the bootstrap 
95% confidence interval (CI) does not include zero.

Results
Demographic, clinical, and cognitive characteristics
This study enrolled 166 participants, comprising 30 
patients with AD, 75 individuals with MCI, and 61 HC. 
Demographic, clinical, and cognitive characteristics 
are presented in Table  1. There were no significant dif-
ferences in age, sex or education among three groups. 
Regarding vascular risk factors, the prevalence of alco-
hol, smoking, hypertension, diabetes, and hyperlipidemia 
was comparable across three groups, while BMI showed 

a significant group difference. With respect to cogni-
tion, there were significant group differences in MMSE, 
MoCA, AVLT-IR, AVLT-SR, AVLT-LR and AVLT-recog-
nition, manifesting as a progressive decline from HC to 
MCI to AD.

Gut microbiome in the AD continuum
Alpha diversity analysis demonstrated no significant dif-
ferences in Shannon and Simpson indices among three 
groups (Fig. 1A and Supplementary File 1). Beta diversity 
analysis revealed significant differences in gut micro-
bial composition between AD and the other two groups 
based on Bray-Curtis index (PERMANOVA, AD vs. HC: 
P = 1.50 × 10− 3, AD vs. MCI: P = 4.32 × 10− 3, FDR cor-
rected) and weighted UniFrac distance (PERMANOVA, 
AD vs. HC: P = 3.37 × 10− 3, AD vs. MCI: P = 9.00 × 10− 3, 
FDR corrected), but no significant differences between 
MCI and HC (Fig. 1B and Supplementary File 2).

HC, MCI, and AD showed similar group-average 
microbial composition at the genus level, with the domi-
nant bacteria including Phocaeicola, Faecalibacterium, 
Paraburkholderia, Bacteroides, Pseudomonas, Blautia, 
Pseudescherichia, Roseburia, Prevotella, and Rumino-
coccus (Fig.  1C). However, Kruskal Wallis test revealed 
significant differences in relative abundance of 10 micro-
bial taxa among three groups (P < 0.05, FDR corrected) 
(Supplementary File 3). Further pattern-matching analy-
sis demonstrated that 8 microbial taxa (Sphingomonas, 
Staphylococcus, Stenotrophomonas, Massilia, Variovo-
rax, Bacillus, Bosea, and Dyella) exhibited a progressive 
increase from HC to MCI to AD, and 2 taxa (Limosilac-
tobacillus and Anaerostipes) showed a gradual decrease 
(P < 0.05, FDR corrected) (Supplementary File 3). Box 
plots of relative abundance of the representative micro-
bial taxa in three groups are illustrated in Fig. 1D.

Fecal metabolome in the AD continuum
After quality control, data filtering and normalization, 
a total of 505 fecal metabolites were obtained. One-way 
ANOVA revealed significant differences in quantifica-
tion values of 27 fecal metabolites across three groups 
(P < 0.05, FDR corrected) (Supplementary File 4). Further 
pattern-matching analysis demonstrated that 26 metabo-
lites showed a progressive increase from HC to MCI to 
AD, including Arachidonic, Adrenic, and Lithocholic 
acids, among others (P < 0.05, FDR corrected) (Supple-
mentary File 4). Box plots of quantification values of the 
representative fecal metabolites in three groups are illus-
trated in Fig. 2.

Brain abnormalities in the AD continuum
Results of group comparisons in multi-modal MRI mea-
sures are provided in Supplementary File 5. One-way 
ANOVA revealed significant group differences in GMV 

Table 1 Demographic, clinical, and cognitive characteristics of 
the participants
Characteristic HC (N = 61) MCI 

(N = 75)
AD (N = 30) Statistical 

test
Age (years) 62.39 ± 6.92 64.48 ± 7.91 65.47 ± 7.99 F = 2.066, 

P = 0.130
Sex (female) 36 (59.0%) 41 (54.7%) 23 (76.7%) χ2  = 4.391, 

P = 0.111
Education 
(years)

8.57 ± 4.45 8.11 ± 3.39 6.93 ± 4.33 F = 1.714, 
P = 0.183

BMI (kg/m2) 23.71 ± 2.65 23.12 ± 2.81 21.38 ± 2.34 F = 7.747, 
P < 0.001

Alcohol abuse 10 (16.4%) 17 (22.7%) 6 (20.0%) χ2  = 0.831, 
P = 0.660

Current 
smoking

10 (16.4%) 19 (25.3%) 4 (13.3%) χ2  = 2.673, 
P = 0.263

Hypertension 14 (23.0%) 27 (36.0%) 11 (36.7%) χ2  = 3.148, 
P = 0.207

Diabetes 
mellitus

6 (9.8%) 10 (13.3%) 5 (16.7%) χ2  = 0.907, 
P = 0.635

Dyslipidemia 13 (21.3%) 13 (17.3%) 6 (20.0%) χ2  = 0.354, 
P = 0.838

MMSE 28.67 ± 1.39 25.83 ± 2.71 14.70 ± 6.23 F = 184.913, 
P < 0.001

MoCA 25.82 ± 2.53 19.81 ± 3.16 9.40 ± 4.54 F = 236.927, 
P < 0.001

AVLT-IR 16.66 ± 4.16 13.40 ± 4.15 6.43 ± 5.08 F = 44.933, 
P < 0.001

AVLT-SR 5.98 ± 2.10 3.94 ± 2.20 1.16 ± 1.57 F = 41.736, 
P < 0.001

AVLT-LR 5.47 ± 2.21 3.36 ± 2.26 0.42 ± 0.96 F = 43.962, 
P < 0.001

AVLT-recogni-
tion

21.43 ± 2.40 19.15 ± 2.77 12.35 ± 6.373 F = 52.095, 
P < 0.001

Data are expressed as n (%) or mean ± standard deviation. One-way ANOVA 
(F) and Pearson’s chi-squared tests (χ2) were conducted for continuous and 
categorical variables, respectively. Entries in bold indicate a significant 
difference between groups. Abbreviations: AD, Alzheimer’s disease; ANOVA, 
analysis of variance; AVLT-IR, auditory verbal learning test immediate recall; 
AVLT-SR, auditory verbal learning test short term recall; AVLT-LR, auditory verbal 
learning test long term recall; BMI, body mass index; HC, healthy controls; MCI, 
mild cognitive impairment; MMSE, Mini-Mental State Examination; MoCA, 
Montreal Cognitive Assessment
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across a widely distributed set of 74  Gy matter regions 
(P < 0.05, FDR corrected). Further pattern-matching anal-
ysis demonstrated a progressive GMV reduction from 
HC to MCI to AD in 63 regions (P < 0.05, FDR corrected) 
(Fig. 3A). This was also the case for the CT analysis, with 

47 cortical regions showing group differences and 42 
regions showing a progressive CT reduction (Fig.  3B). 
Contrasting with the widespread nature of structural 
changes, gray matter functional alterations in the AD 
continuum were less extensive or non-significant. There 

Fig. 1 Gut microbiome in the AD continuum. (A) Box plots of alpha diversity using Shannon and Simpson indices. Each box plot shows the median, inter-
quartile range, minimum, and maximum. (B) PCoA plots of beta diversity using Bray-Curtis index and weighted UniFrac distance. The axes represent the 
two dimensions explaining the greatest proportion of variance in microbial composition. Each symbol represents a sample. (C) Bar plot of group-average 
dominant microbial composition at the genus level. (D) Box plots of relative abundance of the representative microbial taxa with significant group dif-
ferences at the genus level. Staphylococcus and Bacillus exhibited a progressive increase from HC to MCI to AD, and Anaerostipes showed a progressive 
decrease. The asterisks reflect the statistical significance of the pairwise comparisons. *P < 0.05, **P < 0.01, ***P < 0.001. Abbreviations: AD, Alzheimer’s 
disease; HC, healthy controls; MCI, mild cognitive impairment; PCoA, principal coordinate analysis
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Fig. 3 Brain abnormalities in the AD continuum. GMV (A), CT (B), fALFF (C), and FA (D) differences across three groups with a linear, stepwise order from 
HC to MCI to AD. Color bar indicates -log10(PFDR) in pattern-matching analysis. Abbreviations: AD, Alzheimer’s disease; CT, cortical thickness; FA, fractional 
anisotropy; fALFF, fractional amplitude of low-frequency fluctuations; FDR, false discovery rate; GMV, gray matter volume; HC, healthy controls; L, left; MCI, 
mild cognitive impairment; R, right

 

Fig. 2 Fecal metabolome in the AD continuum. Box plots of quantification values of the representative fecal metabolites with significant group differ-
ences. Quantification values of Arachidonic, Adrenic, and Lithocholic acids showed a progressive increase from HC to MCI to AD. The asterisks reflect the 
statistical significance of the pairwise comparisons. *P < 0.05, **P < 0.01, ***P < 0.001. Abbreviations: AD, Alzheimer’s disease; HC, healthy controls; MCI, 
mild cognitive impairment
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Fig. 4 (See legend on next page.)
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were significant differences in fALFF in 4  Gy matter 
regions; among these regions, the left triangular part of 
inferior frontal gyrus, middle temporal gyrus, and right 
hippocampus exhibited a gradual fALFF decrease from 
HC to MCI to AD, and the right inferior temporal gyrus 
showed a progressive increase (Fig.  3C). As to ReHo 
and FCD, no significant results were observed. In addi-
tion, white matter integrity was broadly affected in the 
AD continuum, characterized by 21 white matter tracts 
exhibiting group differences in FA and 15 tracts showing 
a gradual FA reduction from HC to MCI to AD (Fig. 3D).

Associations between microbiota, metabolites, 
neuroimaging, and cognition
PCA revealed that the first principal components, 
accounting for the greatest variance (microbiota: 56%, 
metabolites: 37%, neuroimaging: 37%, and cognition: 
64%), could represent the common factors of microbiota, 
metabolites, neuroimaging and cognition, respectively 
(Fig. 4A). Pattern-matching analysis of the four first prin-
cipal components demonstrated a progressive increase 
from HC to MCI to AD for microbiota and metabolites, 
and a progressive decrease for neuroimaging and cogni-
tion (P < 0.05, FDR corrected) (Fig. 4B). Spearman’s corre-
lation analysis revealed significant associations between 
the four first principal components in all participants 
(Fig. 4C). Of more importance, further mediation analysis 
of these components identified two potential mediation 
pathways: (1) microbiota → metabolites → neuroimaging 
→ cognition, and (2) microbiota → metabolites → cog-
nition. That said, the relationship between microbiota 
and cognition was significantly mediated by metabolites 
and neuroimaging (indirect effect = -0.0443, 95% CI: 
-0.0841, -0.0190) or by metabolites alone (indirect effect 
= -0.1046, 95% CI: -0.1937, -0.0458) (Fig. 4D). However, 
no significant mediation effect of neuroimaging alone 
on the relationship between microbiota and cognition 
(microbiota → neuroimaging → cognition) was observed 
(indirect effect = -0.0408, 95% CI: -0.1004, 0.0195).

Discussion
By using a combination of 16S rDNA amplicon sequenc-
ing, untargeted metabolomics, and multi-modal MRI, 
this is the first study comprehensively investigating 
microbiota-metabolites-brain-cognition pathways in 
the AD continuum. Gut microbiomics analysis in AD, 
MCI and HC revealed no significant difference in alpha 

diversity among three groups, while there were signifi-
cant group differences in gut microbial composition, 
which were driven by 8 microbial taxa exhibiting a pro-
gressive increase (e.g., Staphylococcus and Bacillus) in 
relative abundance from HC to MCI to AD, and 2 taxa 
(e.g., Anaerostipes) showing a gradual decrease. Fecal 
metabolomics analysis demonstrated that 26 metabo-
lites (e.g., Arachidonic, Adrenic, and Lithocholic acids) 
exhibited a progressive increase from HC to MCI to AD. 
Multi-modal MRI analysis also showed progressive gray 
matter atrophy in broadly distributed gray matter regions 
and gradual micro-structural integrity damage in wide-
spread white matter tracts along the AD continuum. 
Integration of these multi-omics changes revealed signifi-
cant associations between microbiota, metabolites, neu-
roimaging, and cognition. More importantly, mediation 
analysis identified two potential mediation pathways: (1) 
microbiota → metabolites → neuroimaging → cognition, 
and (2) microbiota → metabolites → cognition. Aside 
from elucidating the underlying mechanism whereby gut 
microbiota dysbiosis is linked to AD, our findings may 
contribute to groundwork for future interventions tar-
geting the microbiota-metabolites-brain-cognition path-
ways as a therapeutic strategy in the AD continuum.

Despite no difference in alpha diversity across AD, 
MCI and HC, beta diversity analysis revealed significant 
group differences in gut microbial composition between 
AD and the other two groups. Further microbial abun-
dance analysis demonstrated that the microbial composi-
tion differences were mainly driven by specific microbial 
taxa showing progressive alterations from HC to MCI to 
AD, which is coherent with earlier reports [13, 67–69]. 
These findings jointly work to endorse the notion that 
gut microbiota dysbiosis may occur at the early stage of 
dementia and presents a gradual deterioration during 
disease progression. Among the affected microbial taxa, 
Anaerostipes, Staphylococcus and Bacillus may serve 
as particularly appropriate examples to disentangle the 
relationship between gut microbiota dysbiosis and AD. 
Anaerostipes possesses the ability to utilize dietary inosi-
tol for the production of short chain fatty acids (SCFAs), 
which beneficially modulate the peripheral and central 
nervous systems [70]. Decreased Anaerostipes might give 
rise to reduced SCFAs, which have been suggested to 
play a critical role in AD [71]. Indeed, previous work has 
indicated that SCFAs are decreased in the faeces and the 
serum from AD patients’ fecal transplanted germ-free 

(See figure on previous page.)
Fig. 4 Associations between gut microbiota, fecal metabolites, neuroimaging, and cognition. (A) Variance explained by the principal components in 
microbiota, metabolites, neuroimaging, and cognition. (B) Box plots of the four first principal components showing a progressive increase from HC to 
MCI to AD for microbiota and metabolites, and a progressive decrease for neuroimaging and cognition. (C) Scatter plots of Spearman’s correlations be-
tween the four first principal components, representing associations between microbiota, metabolites, neuroimaging, and cognition in all participants. 
(D) Mediation analysis of these components identified two potential mediation pathways: (1) microbiota → metabolites → neuroimaging → cognition, 
and (2) microbiota → metabolites → cognition. However, the microbiota → neuroimaging → cognition pathway was not significant. *P < 0.05, **P < 0.01, 
***P < 0.001. Abbreviations: AD, Alzheimer’s disease; CI, confidence interval; HC, healthy controls; MCI, mild cognitive impairment
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mice, which may lead to a disruption in blood-brain bar-
rier homeostasis and innate immune and glial activation 
[72, 73]. There is mounting evidence supporting the idea 
that AD can be caused by microbial infections [74–76]. 
Compatible with this view, we observed an increase in 
Staphylococcus and Bacillus in the AD continuum. It 
has been evident that Staphylococcus and Bacillus could 
produce functional bacterial amyloid proteins [77, 78]. 
Functional bacterial amyloid proteins are associated with 
AD by cross-seeding of amyloid misfolding, altered pro-
teostasis, and oxidative stress [79]. Moreover, Staphylo-
coccaceae exhibited higher levels in AD brains than in 
control brains [76]. These data invite the speculation that 
increase in specific pathogenic bacteria may contribute 
to the pathogenesis and/or progression of AD [76].

Fecal metabolomics analysis demonstrated that 26 
metabolites exhibited a progressive increase from HC 
to MCI to AD. Among the affected metabolites, Ara-
chidonic, Adrenic, and Lithocholic acids are thought to 
be prominently involved in the pathophysiology of AD. 
Arachidonic acid is a poly-unsaturated fatty acid that 
is of vital importance for human health. Oxidative Ara-
chidonic acid metabolism is a major hallmark of neuro-
inflammation [80], which may explain the intimate link 
between lipid metabolism and Alzheimer’s disease [81, 
82]. In addition, Arachidonic acid functions as a critical 
mediator in Aβ-induced pathogenesis, leading to learn-
ing, memory, and behavioral impairments in mouse 
models of AD [81]. Adrenic acid is an endogenously syn-
thesized polyunsaturated free fatty acid [83]. Abnormal 
metabolism of Arachidonic and Adrenic acids can trigger 
the activation of ferroptosis [84–86], a form of cell death 
driven by iron-dependent lipid peroxidation [87]. The 
involvement of ferroptosis in neurodegenerative diseases 
including Alzheimer’s disease has been well documented 
[88, 89]. Lithocholic acid is a secondary bile acid, which is 
synthesized in the colon by intestinal bacteria from che-
nodeoxycholic acid [90, 91]. Marksteiner et al. reported 
that levels of Lithocholic acid were enhanced in AD rela-
tive to HC, and Lithocholic acid could act as a useful 
biomarker to separate AD from HC [90]. Broadly, solid 
evidence has suggested that altered bile acid profile asso-
ciates with cognitive impairment in Alzheimer’s disease 
[92, 93].

Multi-modal MRI techniques offer us sufficient mate-
rial to attempt a more thorough characterization of brain 
structural and functional changes in the AD continuum 
[21, 94–96]. We found progressive gray matter atrophy 
in broadly distributed gray matter regions and gradual 
micro-structural integrity damage in widespread white 
matter tracts along the AD continuum. In accordance 
with our observation, extensive research has shown that 
gray matter atrophy affects very early the medial tem-
poral lobe, entorhinal cortex and hippocampus, soon 

after extending to the remainder of the cortex along a 
temporal-parietal-frontal trajectory, while motor areas 
are generally spared until late disease stages [97–103]. 
Correspondingly, tau accumulation is most frequently 
observed in the medial temporal regions and stepwise 
spreads to the basal and lateral temporal, inferior pari-
etal, posterior cingulate, and the other association corti-
ces, and then ultimately to the primary cortical regions 
[104]. In addition, numerous DTI studies have docu-
mented widespread white matter integrity impairment 
in AD and MCI [105–109], which is consistent with our 
finding. Moreover, longitudinal studies in MCI and AD 
patients have suggested that white matter integrity repre-
sents an indicator of disease progression [110, 111].

The relations between the gut microbiota and cogni-
tive functions in the AD continuum have been clearly 
established. For example, altered gut microbiota in adults 
with subjective cognitive decline was found to associate 
with cognitive performance [69]. Correlations between 
gut microbial abundance and cognitive deficits have been 
observed in MCI and AD patients [13, 67, 68, 112]. In 
parallel, there has been increasing interest in investigat-
ing the associations between metabolites and cognitive 
functions in AD. For instance, altered bile acid profile 
was found to associate with cognitive decline in AD [93]. 
Wu et al. identified differences between AD and HC in 
tryptophan metabolites, SCFAs, and lithocholic acid, the 
majority of which correlated with altered microbiota and 
cognitive impairment [113]. Jiang et al. reported that con-
centrations of several blood metabolites, including lipids, 
amino acids, and steroids were associated with cognitive 
decline and the incidence or progression of dementia 
[114]. Complementing and extending these prior find-
ings, our mediation analysis identified two potential 
mediation pathways: (1) microbiota → metabolites → 
neuroimaging → cognition, and (2) microbiota → metab-
olites → cognition. Theoretically, these findings may add 
important context to the growing literature on the effects 
of gut microbiome on cognition in the AD continuum by 
shedding light on the molecular and neuropathological 
mechanisms underlying such effects. More broadly, our 
results may expose the gut microbiota as a new therapeu-
tic target for improving cognitive impairment in the AD 
continuum, which may be of high clinical and transla-
tional importance.

Our study has several limitations that should be men-
tioned. First, the diagnosis of MCI and AD was based 
on clinical symptoms and routine neuroimaging sig-
natures in this study. Reliable AD biomarkers should 
be included to aid in accurate diagnosis in future stud-
ies. Second, the correlational design of this investigation 
means that further longitudinal and mechanistic research 
must be conducted to determine the causative nature 
of the multi-omics associations. Third, we performed a 



Page 12 of 15Zhao et al. Alzheimer's Research & Therapy           (2025) 17:36 

PCA to reduce the dimensionality of the variables and 
selected 4 first principal components to represent the 
common factors of microbiota, metabolites, neuroimag-
ing and cognition. Although some information may be 
lost, principal components with potential biological rel-
evance tend to be more tractable than working with the 
high-dimensional original data. Fourth, while mediation 
analysis was a key focus of our work and allowed us to 
identify the pathways from microbiota to cognition, we 
must acknowledge that mediation analysis has its own 
limitations. Specifically, mediation analysis, a regression-
based approach, examines the relationship between vari-
ables and can suggest potential pathways, but it cannot 
establish directionality of the pathways [115, 116]. The 
specification of independent and dependent variables is 
often based on our existing knowledge and assumptions, 
which may not fully capture the complexity of biologi-
cal interactions. Other potential pathways, such as those 
from cognition to microbiota, are of great interest and 
merit further research in our future work. Finally, we per-
formed our analysis without controlling for oral probiot-
ics or yogurt that would influence the gut microbiota. For 
one, participants who took oral probiotics or yogurt were 
randomly distributed across the sample, such that it is 
unlikely that these participants would affect the analysis 
in a systematic manner. For another, substantial variabil-
ity in use frequency, amount, and types makes it chal-
lenging to precisely quantify this factor.

Conclusions
In summary, our multi-omics data established plausible 
microbiota-metabolites-brain-cognition pathways in 
the AD continuum, which may illuminate the underly-
ing mechanisms whereby gut microbiota dysbiosis is 
linked to AD. More generally, our findings might have 
important clinical implications for developing treatment 
approaches targeting the microbiota-metabolites-brain-
cognition pathways in the AD continuum.
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