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Abstract
Background Early diagnosis and accurate prognosis of cognitive decline in Alzheimer’s disease (AD) is important 
to timely assignment to optimal treatment modes. We aimed to develop a deep learning model to predict cognitive 
conversion to guide re-assignment decisions to more intensive therapies where needed.

Methods Longitudinal data including five variable sets, i.e. demographics, medical history, neuropsychological 
outcomes, laboratory and neuroimaging results, from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort 
were analyzed. We first developed a deep learning model to predicted cognitive conversion using all five variable sets. 
We then gradually removed variable sets to obtained parsimonious models for four different years of forecasting after 
baseline within acceptable frames of reduction in overall model fit (AUC remaining > 0.8).

Results A total of 607 individuals were included at baseline, of whom 538 participants were followed up at 12 
months, 482 at 24 months, 268 at 36 months and 280 at 48 months. Predictive performance was excellent with AUCs 
ranging from 0.87 to 0.92 when all variable sets were considered. Parsimonious prediction models that still had a 
good performance with AUC 0.80–0.84 were established, each only including two variable sets. Neuropsychological 
outcomes were included in all parsimonious models. In addition, biomarker was included at year 1 and year 2, 
imaging data at year 3 and demographics at year 4. Under our pre-set threshold, the rate of upgrade to more 
intensive therapies according to predicted cognitive conversion was always higher than according to actual cognitive 
conversion so as to decrease the false positive rate, indicating the proportion of patients who would have missed 
upgraded treatment based on prognostic models although they actually needed it.
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Background
In 2018, the US National Institute on Aging and Alzheim-
er’s Association, using amyloidosis, tau pathology and 
neurodegeneration (ATN), redefined Alzheimer’s disease 
(AD) moving from a syndromal to a biological construct 
[1], thus allowing clinicians and researchers to better 
delineate different phases of clinical disease progression 
including preclinical and prodromal AD [2, 3]. The cur-
rent treatment algorithm foresees initial treatment with 
low dose cholinesterase inhibitors (ChEIs) followed by an 
increase of the ChEIs dose and switching to memantine 
as AD progresses. With further progression, combina-
tion therapy is recommended or other treatment modali-
ties are sought, for example, immunotherapy targeting β 
amyloid (Aβ) and tau [4–8].

As initial treatments can often not effectively halt or 
slow down disease progression in individual patients, it 
is important to predict patient response based on avail-
able patient data and clinical information in order to 
make early upgrade decisions. A problem herein is that 
the operationalization of disease progression is complex 
involving a variety of cognitive tests, plasma and cerebro-
spinal fluid (CSF) biomarkers, and radiological imaging 
[9–11].

A number of studies has, therefore, applied machine 
learning algorithms using high dimensional data combin-
ing comprehensive information from the above sources 
to predict disease progression in AD. Since advanced 
neuroimaging such as amyloid positron emission tomog-
raphy (PET) or tau PET is not readily available in routine 
clinical practice due to cost and radioactive burden on 
the patient and the extraction of CSF sampling is inva-
sive [12, 13], prediction algorithms using easily available 
plasma and cerebrospinal biomarkers such as plasma 
A β 42/Aβ 40, phosphorylated tau (p-tau) and neurofila-
ment light (NfL), routine imaging data, and information 
from cognitive tests such as mini mental state examina-
tion (MMSE), Alzheimer’s disease assessment scale-
cognition (ADAS-cog) and auditory verbal learning test 
(AVLT) may be more suitable to clinical practice, par-
ticularly in lower resourced settings [14–20]. Moreover, 
defining parsimonious sets for prediction models will 
increase applicability in the clinical context.

In this study, we used information from the Alzheim-
er’s Disease Neuroimaging Initiative (ADNI) database 
including demographic data, genetic genotype, biomark-
ers, neuropsychology tests and neuroimaging to select 

variable sets and develop prediction models for AD dis-
ease progression on which upgrade of treatment deci-
sions can be based. Our specific aims were (1) to develop 
machine learning models to predict cognitive conversion 
with few and accessible indicators; (2) to compare the 
accuracy of models using different sets of such predic-
tors; (3) make recommendations for implementation of 
such algorithms in clinical practice.

Methods
Study design
This is a modelling study based on prospective cohort 
data extracted from the ADNI database. The original 
study from the ADNI is a multicenter study aimed at 
early detecting and stopping the progression of AD with 
data being collected since 2004 [21].

Setting
Individual patient data from the ADNI database were 
included in our study if the following information was 
available: (1) plasma and CSF biomarker; (2) baseline 
and longitudinal neuropsychological assessments; (3) 
average thickness of the middle temporal lobe; (4) Apo-
lipoprotein E (APOE) genotyping. For each patient, the 
first available data point served as baseline in our study. 
We chose 12-month spacing between time points based 
on frequency of follow-up visits to ensure efficient data 
for model building (baseline, 12 months, 24 months, 36 
months and 48 month).

Participants
The original ADNI study included participants with cog-
nitive normal state (CN), subjective cognitive decline 
(SCD), mild cognitive impairment (MCI) and AD. 
Detailed eligibility criteria are available from URL: www.
adni-info.org. Criteria for the classification of subjects 
into different phases of AD progression are provided in 
Table S1.

Data sources/measurement
Demographics
The following demographic data were assessed by ques-
tionnaire: age, gender, education, race, marriage, treat-
ment and medical history.

Conclusions Neurophysiological tests combined with other indicator sets that vary along the AD continuum can 
improve can provide aid for clinical treatment decisions leading to improved management of the disease.

Trail registration information ClinicalTrials.gov Identifier: NCT00106899 (Registration Date: 31 March 2005).
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APOE genotyping
APOE genotyping was performed in all participants with 
polymerase chain reaction (PCR) following the Hixson 
and Vernier protocol, and the test was considered posi-
tive if one or more ε4 allele was detected (ε4+).

Neuropsychological assessment
Subjects were evaluated with the following tests: Hachin-
ski ischemic scale (HIS) [22], MMSE [23], ADAS-cog) 
Montreal cognitive assessment (MOCA) [24], auditory 
verbal learning test including immediate recall (AVLT-
IM), learning (AVLT-L), forgetting (AVLT-IF) and per-
cent forgetting (AVLT-PC) [25], clinical dementia rating 
(CDR) [26], neuropsychiatric inventory (NPI) [27], geri-
atric depression scale (GDS) [28], functional assessment 
questionary (FAQ) [29], logical memory-delayed recall 
(LDEL) [30] and Trail Making Test B (TRA B) [31].

Plasma and CSF biomarker measurements
Plasma p-tau181 and NfL were analyzed with single mol-
ecule array (Simoa) [32], using in-house assays developed 
in the Clinical Neurochemistry laboratory, University of 
Gothenburg, Sweden, with the assay for p-tau181 being 
based on a combination of two monoclonal antibodies 
(Tau12 and AT270) to measure N-terminal versus mid-
domain forms of p-tau181, and NfL measurement using 
a combination of monoclonal antibodies and purified 
bovine NfL as a calibrator.

Measurements of concentrations of CSF Aβ1−42, t-tau, 
p-tau181 were made with micro-bead-based multiplex 
immunoassay, and the INNO-BIA AlzBio3 RUO test 
(Fujirebio, Ghent, Belgium) on the Luminex platform.

Structural MRI analyses
Subjects underwent a 3-Tesla magnetic resonance imag-
ing (MRI) scan of the brain. Cortical thickness of the 
middle temporal brain region was measured using Free-
Surfer (version 4.3).

Study size
We did not employ statistical methods to determine the 
sample size. Instead, we included 607 participants by uti-
lizing all the available data from the ADNI database that 
had baseline plasma biomarker information and follow-
up data from all four timepoints.

Variables
Predictors used in our machine learning models included 
information on demographics, medical history, neuro-
psychological outcomes, and laboratory and neuroim-
aging results with details provided in supplementary 
Table S2. Time-dependent variables such as ADAS-
cog, MMSE, CDR, MOCA, GDS, NPI, LDEL, plasma 
p-tau181, NfL and average thickness of the middle 

temporal lobe for the evaluation of neurobehavioral sta-
tus were recorded in 12-months intervals.

Following the guidelines published by the Ameri-
can College of Physicians and the American Academy 
of Family Physicians [33], we used the ADAS-cog score 
change as the primary outcome of our study. Individu-
als who had an improvement of 4 or more points on the 
ADAS-cog were considered to have cognition improved 
(CoI), while the others were classified as cognition not 
improved (CNI).

Statistical methods
For data pre-processing, one-hot encoding was first 
employed to transform categorical features into a binary 
format where only one bite is 1 and the rest are 0. We 
opted for one-hot encoding because it effectively handles 
unordered categorical data. This approach prevents bias 
that could arise from introducing irrelevant numerical 
relationships. To address missing values, we imputed a 
constant value of 255 for time-series variables, which was 
not factored into the supervised learning process, while 
for other variables containing missing data, we utilized 
the k-nearest neighbors (KNN) algorithm for imputa-
tion. This technique estimates missing values by identify-
ing the. 𝐾 most similar samples using Euclidean distance 
and imputing missing values based on the mean (for con-
tinuous variables) or mode (for categorical variables) of 
these neighbors. In our study, we set 𝐾=10 with equal 
weights for all neighbors. This non-parametric approach 
leverages data similarity to provide robust imputations, 
enhancing data completeness and supporting the reli-
ability of subsequent machine learning analyses. Outli-
ers were identified and removed with box-whisker plots. 
Specifically, outliers were identified using the Interquar-
tile Range (IQR) rule, defined as follows: Lower bound: 
Q1-1.5×IQR, Upper bound: Q3-1.5×IQR. Q1 and Q3 
represent the 25th and 75th percentiles, respectively, 
and IQR = Q3 − Q1. Data points outside this range were 
classified as outliers and processed accordingly. For stan-
dardized scaling, min-max normalization was carried out 
for both ordinal and quantitative variables.

Potential predictors were categorized into five sets 
(demographic characteristics, genetic features, neuro-
psychological test, plasma biomarkers and MRI mea-
sure), yielding a total of 31 unique combinations (one 
combination with five sets, five combinations with four 
sets, ten with three sets, 10 with two groups, and five 
with one set). Prediction models of cognitive conversion 
at four time points (1-year, 2-year, 3-year, and 4-year) 
were developed for each combination of sets using 
automated machine learning (AutoGluon version 0.3.1 
[34]), including ten algorithms (LightGBM, CatBoost, 
XGBoost, Random Forest, Extremely Randomized Trees, 
K-nearest neighbors, Linear Regression, Neural Network 
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Implemented in MXNet, Network and Neural Network 
with FASTAI backend). We performed five-fold cross-
validation to test the model stability and to obtain the 
predicted outcomes of all patients. Five-fold cross-vali-
dation, a well-established and rigorous approach widely 
used in machine learning for model evaluation. This 
method involves dividing the dataset into five subsets of 
equal size, where each subset serves as a validation set 
once, while the remaining four subsets are used for train-
ing. This process is repeated five times, ensuring that 
every data point is used both for training and validation. 
The primary advantage of five-fold cross-validation lies 
in its ability to mitigate bias and variance. By averaging 
the results across all five iterations, it provides a robust 
and stable estimate of the model’s generalization perfor-
mance, reducing the risk of overfitting or relying on any 
specific data split. This approach maximizes the utiliza-
tion of the available dataset and offers a comprehensive 
assessment of model performance across different sub-
sets, thereby enhancing the reliability of the evaluation. 
Area under curve value (AUC) was used to evaluate 
model performance, with 95% confidence intervals being 
calculated employing bootstrap with 2000 replicates. 
AUC values range from 0.5 to 1.0, with 0.5 denoting 
random guess and 1.0 perfect prediction. AUC value of 
0.80 was used as cutoff to identify set combinations that 
maintained good predictive performance while reducing 
the number of predictor sets at each time point. In order 
to minimize false positives, a cognitive improvement of 
4 on the ADAS-cog scale was set as cutoff for upgrade to 
more aggressive therapy mode. Confusion matrices were 
further provided which comprises of four components 
namely true positive (TP), true negative (TN), false nega-
tive (FN) and false positive (FP). We also calculated the 
area under the precision-recall curve (AUPRC), a com-
monly used metric in imbalanced data to measure the 
model’s ability to identify rare events. Other performance 
measures included accuracy, sensitivity/recall, specific-
ity, positive predictive value (PPV), negative predictive 
value (NPV) with 95% confidence interval (95% CI) and 
Fβ scores. The following expressions are employed for the 
computation of metrics:

 
Accuracy = TN + TP

TN + FP + FN + TP

 
Sensitivity = TP

TP + FN

 
Specificity = TN

TN + FP

 
PPV = TP

TP + FP

 
NPV = TN

TN + FN

Fβ scores were calculated according to the following 
equation: Fβ=(1 + β2) × presion× recall

β 2× presion+recall , β was set to 0.5 
as to improve recall. Optimal cut-off values were deter-
mined through largest F0.5 scores, indicating low false 
positives and negatives. All statistical analyses were con-
ducted with Python 3.9 and STATA 16.0 (StataCorp LLC, 
TX, United States). Statistical testing was two-tailed, and 
level of statistical significance was set at alpha=0.05.

Results
Demographics characteristics by cognitive status
Patients’ overall demographic characteristics and distrib-
uted according to cognitive improvement (i.e., improved 
or not improved) at 12, 24, 36 and 48 months are pro-
vided in Supplementary Table S3. From the 607 individu-
als included at baseline, 538 participants were followed 
at 12 months, 482 at 24 months, 268 at 36 months and 
280 at 48 months. The flowchart of the screening process 
was showed in Figure S1. One hundred and sixty patients 
at 12 months, 152 at 24 months, 105 at 36 months and 
92 at 48 months were classified as CoI, whereas 567 at 12 
months, 506 at 24 months, 272 at 36 months and 311 at 
48 months were considered as CNI.

Predictive performance of automatic machine learning 
modeling
Figure  1 summarizes the model selection process and 
main results.

Predictor sets considered in the models included 
demographic data (demographic set-d), genetic data 
(genetic set-g), tests for cognitive function (cognitive set-
c), plasma biomarkers (biomarker set-b) and MRI mea-
sure (imaging set-i).

We first selected models with highest AUC indicating 
best model fit. This were models featuring all five vari-
ables sets at all timepoints (AUC = 0.87 at 12 months, 
AUC = 0.87 at 24 months, AUC = 0.90 at 36 months, 
AUC = 0.92 at 48 months). Successively dropping vari-
able sets while keeping the model with lowest num-
ber of variable sets that achieved AUC above 0.8 at the 
same time, we identified parsimonious models. For each 
timepoint, these were models including two predictors 
sets: group cb at 12 months, AUC = 0.82; group cb at 24 
months, AUC = 0.80; group ci at 36 months, AUC = 0.84; 
group dc at 48 months, AUC = 0.80). If only one variable 
set was considered, models including the cognitive set 
al.ways achieved the best fit, however always below AUC 
0.8. Detailed information on the models selected in each 
information reduction step is provided in Figs.  2 and 3, 
Supplementary Figure S2-S3 and Table S4-S5. Figure  4 
showed AUCs given with 84%CIs so that non-overlap of 



Page 5 of 13Yang et al. Alzheimer's Research & Therapy           (2025) 17:41 

CIs for different models indicates that the difference is 
approximately statistically significant at p < 0.05 [35].

In addition, we further analyzed the performance of the 
model by subgroup according to diagnosis. In best fitting 
models, the AUCs of the CN group exceeded 0.9 across 
all time points. Notably, the SCD group achieved a peak 
AUC of 0.940 (95% CI: 0.790-1.000) at the 12-month, 
whereas MCI group recorded the lowest AUC of 0.769 
(95% CI: 0.680–0.857). For the AD group, the AUC 
peaked at 0.961 (95% CI: 0.859-1.000) at 12-month but 
subsequently declined. However, data for the AD group 
at 36 and 48 months were unavailable. Detailed statis-
tical details can be found in Supplementary Table S6. 
Considering parsimonious models, the AUC values for 
the CN group consistently exceeded 0.8 across all time 
points. In contrast, the AUCs for the AD group remained 
around 0.5 at 12-month and 24-month. SCD group dem-
onstrated the highest AUC at 12 months, while the MCI 
group showed a modest increase over time, surpassing 

0.7 after 12-month. Detailed statistical details are pre-
sented in Table S7.

Proposed treatment upgrade following actual and 
predicted cognitive improvement at 12, 24, 36 and 48 
months
Proportions of patients who needed upgraded treatment 
as determined by suboptimal cognitive improvement 
were 85.32% (459/538) at 12 months, 79.67% (384/482) at 
24 months, 75.37% (202/268) at 36 months, and 76.43% 
(214/280) at 48 months in the actual data.

Considering the overall best fitting models (i.e. those 
which included all variable sets), predicted conversion 
resulted in upgraded treatment for 90.15% (485/538) 
of patients at 12 month, 90.25% (435/482) at 24 month, 
81.72% (219/268) at 36 months, and 82.86% (232/280) at 
48 months. Detailed statistics regarding subgroup analy-
sis of treatment upgrade are provided in Table 1; Fig. 5.

As regards parsimonious models, predicted cogni-
tive change that would indicate early treatment upgrade 

Fig. 1 Feature selection process in prediction of cognitive improvement. (a) 12 months; (b) 24 months; (c) 36 months; (d) 48 months. Notes: demo-
graphic data-d; genetic data-g; cognitive data-c; biomarker-b; imaging data-i
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in 90.15% (485/538) of the patients at 12 month, 89.21% 
(430/482) at 24 month, 82.46% (221/268) at 36 months, 
and 79.29% (222/280) at 48 months. Detailed statistics 
regarding subgroup analysis of treatment upgrade are 
provided in Table 1; Fig. 6.

Further subgroup analysis based on different diagno-
ses showed that the proportion of upgraded treatment 
was quite high in the early stage of AD and MCI groups. 
Detailed statistics are provided in Table S8 and Table S9.

False positive rate of different models at 12, 24, 36 and 48 
months
Table 2 summarizes false positive rates (FPR) that is the 
proportion of patients who would have missed upgraded 
treatment based on the prognostic models although they 
actually needed it. The average false positive rate across 
five folds was acceptable in different models at four time-
points except for set combination dc where the FPR 

Fig. 2 ROC comparisons of cognitive improvement at 12, 24, 36 and 48 months with best model fit. (a) 12 months; (b) 24 months; (c) 36 months; (d) 48 
months

 



Page 7 of 13Yang et al. Alzheimer's Research & Therapy           (2025) 17:41 

reached 9.35%. Other models stabilized over time at 48 
months.

Subgroup analysis according to diagnosis
In best fitting models, the AUCs of the CN group 
exceeded 0.9 across all time points. Notably, the SCD 
group achieved a peak AUC of 0.940 (95% CI: 0.790-
1.000) at the 12-month, whereas MCI group recorded the 
lowest AUC of 0.769 (95% CI: 0.680–0.857). For the AD 

group, the AUC peaked at 0.961 (95% CI: 0.859-1.000) 
at 12-month but subsequently declined. However, data 
for the AD group at 36 and 48 months were unavailable. 
Detailed statistical details can be found in Supplementary 
Table S6.

Considering parsimonious models, the AUC values for 
the CN group consistently exceeded 0.8 across all time 
points. In contrast, the AUCs for the AD group remained 
around 0.5 at 12-month and 24-month. SCD group 

Fig. 3 ROC comparisons of cognitive improvement at 12, 24, 36 and 48 months with parsimonious models. (a) 12 months; (b) 24 months; (c) 36 months; 
(d) 48 months
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demonstrated the highest AUC at 12 months, while the 
MCI group showed a modest increase over time, surpass-
ing 0.7 after 12-month. Detailed statistical details are pre-
sented in Table S7.

For asymptomatic patients, the early use of the scale 
is simple to operate and can effectively monitor the 
dynamic changes in cognitive levels.

Discussion
In this study, we developed and tested a model using deep 
learning algorithms to predict changes in cognitive func-
tion of AD patients based on various combinations of dif-
ferent variable sets. Predictive performance was excellent 
with AUCs ranging from 0.87 to 0.92 when all variable 
sets were considered. Parsimonious prediction models 
that still had a good predictive performance of 0.80–0.84 
could also be established, each only including two vari-
able sets. This is important as in practice not all relevant 
31 variables included in the sets can be easily collected 
or at least absorb considerable assessment time. In 

particular, parsimonious models also achieved low false 
positive rates, that is proportions of patients who should 
have been assigned to upgraded treatment because of 
suboptimal cognitive development but would not have 
been based on models’ predictions were kept low.

Longitudinal data results revealed that the predictive 
performance of our algorithm improved over time. More-
over, we progressively filtered the full set of combined 
variables to reduce variable set combinations to achieve 
parsimony while keeping acceptable predictive per-
formance. The results showed that at least two variable 
combinations were needed to achieve satisfactory AUCs. 
Importantly, we found that in parsimonious models the 
neuropsychological variable set was always included. In 
single-variable combinations, the cognitive scale also 
achieved the highest predictive performance, with AUC 
being above 0.7 at four time points. In practice, this is 
easy to implement because neuropsychological scales can 
be assessed without great amounts of resources and time.

Fig. 4 The AUCs with 84% CI of different models. (a) 12 months; (b) 24 months; (c) 36 months; (d) 48 months. Notes: demographic data-d; genetic data-g; 
cognitive data-c; biomarker-b; imaging data-i
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We also saw that second most important sets for pre-
diction in parsimonious models varied at different time 
points, with biomarkers playing an important role at 
the first two years of forecast, then imaging results at 

the third year, and finally demographic data. This is in 
line with clinical data showing the presence of biomark-
ers such as plasma Aβ and tau in AD patients a decade 
or two prior to the manifestation of clinical symptoms. 

Table 1 Comparison between actual and AI-predicted results of full and parsimonious models after 12, 24, 36 and 48 months
Actual reassignment status Predicted reassignment status

Full model Parsimonious model
12-month Overall, n (%) 459/538 (85.32) 485/538 (90.15) 485/538 (90.15)

Observation 312/380 (82.11) 334/380 (87.89) 334/380 (87.89)
Monotherapy-ChEI 93/101 (92.08) 97/101 (96.04) 95/101 (94.06)
Monotherapy-Memantine 49/50 (98.00) 48/50 (96.00) 49/50 (98.00)
Combined therapy 5/7 (71.43) 6/7 (85.71) 7/7 (100.00)

24-month Overall, n (%) 384/482 (79.67) 435/482 (90.25) 430/482 (89.21)
Observation 304/386 (78.76) 341/386 (88.34) 339/386 (87.82)
Monotherapy-ChEI 54/62 (87.10) 61/62 (98.39) 59/62 (95.16)
Monotherapy-Memantine 25/31 (80.65) 31/31 (100.00) 31/31 (100.00)
Combined therapy 1/3 (33.33) 2/3 (66.67) 1/3 (33.33)

36-month Overall, n (%) 202/268 (75.37) 219/268 (81.72) 221/268 (82.46)
Observation 157/198 (79.29) 170/198 (85.86) 169/198 (85.35)
Monotherapy-ChEI 36/50 (72.00) 39/50 (78.00) 38/50 (76.00)
Monotherapy-Memantine 7/17 (41.18) 10/17 (58.82) 12/17 (70.59)
Combined therapy 2/3 (66.67) 0/3 (0.00) 2/3 (66.67)

48-month Overall, n (%) 214/280 (76.43) 232/280 (82.86) 222/280 (79.29)
Observation 183/233 (78.54) 199/233 (85.41) 187/233 (80.26)
Monotherapy-ChEI 26/35 (74.29) 26/35 (74.29) 27/35 (77.14)
Monotherapy-Memantine 5/10 (50.00) 7/10 (70.00) 7/10 (70.00)
Combined therapy 0/2 (0.00) 0/2 (0.00) 1/2 (50.00)

Fig. 5 Proposed treatment upgrade of best model fit following actual and predictive cognitive improvement at 12, 24, 36 and 48 months. (a) Treatment 
upgrade following actual cognitive improvement at 12-month; (b) Treatment upgrade following predictive cognitive improvement 12-month; (c) Treat-
ment upgrade following actual cognitive improvement at 24-months; (d) Treatment upgrade following predictive cognitive improvement at 24-month; 
(e) Treatment upgrade following actual cognitive improvement at 36-month; (f) Treatment upgrade following predictive cognitive improvement at 36-
month; (g) Treatment upgrade following actual cognitive improvement at 48-month; (h) Treatment upgrade following predictive cognitive improvement 
at 48-month
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With disease progression, patients commence experienc-
ing alterations in neuroimaging, predominantly char-
acterized by temporal lobe atrophy. Consequently, the 
incorporation of MRI measurements during this stage 
exhibits notable predictive capability. In the advanced 
stages, owing to the clinical symptom heterogeneity, 
limited efficacy of pharmaceutical interventions and sta-
bilization of biomarker level, alternative predictors dem-
onstrate inferior performance compared to demographic 
data, which effectively reflect the patient’s social status, 
cognitive reserve, and possibly caregiver availability and 
support.

We further analyzed predictive outcomes of models 
according to a pre-set threshold for upgrade to more 
intensive therapy regimen, keeping the conversion rate 
predicted by the deep learning model slightly higher 
than actual results at various time points. This ensures 
that no patient in need of an upgraded treatment is over-
looked. Only at 48 months did the parsimonious model 
exhibit a higher FPR, suggesting that there were predic-
tions of improvement for patients who, in reality, did not 
experience such improvements, subsequently leading to 
delayed upgrades in their treatment regimen. This is pos-
sible owing to missing predictors such as environmen-
tal factors. This was less pronounced when the model 
including all sets was used. On the other hand, the full 
model exhibited a decrease in FPR from 24 to 48 months, 
while the parsimonious model showed a stable FPR at all 

timepoint except for 48 months. These findings warrant 
further investigation to better comprehend the underly-
ing factors influencing model performance over time. 
The identification of factors leading to false positives 
can have significant implications for patient treatment 
strategies and overall clinical decision-making. Further 
research is needed to elucidate the mechanisms contrib-
uting to the observed trends in FPR and to enhance the 
predictive accuracy of such models.

The only previous study that considered all variable sets 
included in our study did not predict cognitive improve-
ment but progression to AD. The authors found that 
combing plasma biomarker, memory, executive func-
tion and APOE produced the highest prediction accu-
racy (AUC = 0.91) which still remained good with plasma 
p-tau217 (AUC = 0.83) [36].

Ocasio and colleagues [37] developed a CNN network 
to predict MCI conversion to AD at three years using 
longitudinal and whole-brain 3D MRI. There results 
showed an accuracy of 0.793 with the most important 
regions including lateral ventricles, periventricular white 
matter and cortical gray matter. The parsimonious mod-
els identified in our study have similar or better predic-
tive capacity.

Our study has important clinical implications. Accu-
rate diagnosis and timely intervention at the preclinical 
and prodromal stages of AD have become core aims of 
drug development [38]. To optimize therapy assignment, 

Fig. 6 Proposed treatment upgrade of parsimonious models following actual and predictive cognitive improvement at 12, 24, 36 and 48 months. (a) 
Treatment upgrade following actual cognitive improvement at 12-month; (b) Treatment upgrade following predictive cognitive improvement 12-month; 
(c) Treatment upgrade following actual cognitive improvement at 24-months; (d) Treatment upgrade following predictive cognitive improvement at 
24-month; (e) Treatment upgrade following actual cognitive improvement at 36-month; (f) Treatment upgrade following predictive cognitive improve-
ment at 36-month; (g) Treatment upgrade following actual cognitive improvement at 48-month; (h) Treatment upgrade following predictive cognitive 
improvement at 48-month
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we need to timely identify individuals who are at a high 
risk of developing AD. While presently, many studies 
use AD prediction models that differentiate between NC 
and AD, MCI and AD, our model predicts annual cog-
nitive changes for both asymptomatic and symptomatic 
individuals. Prediction of cognitive progression a year 
later with respective adjustment of treatments appears 
more important in clinical settings then the prediction of 
change in diagnosis. The performance of our prediction 
model at various time points has significant implications 
for optimizing treatment escalation strategies. We estab-
lished a prediction threshold to identify patients requir-
ing more intensive interventions early. To minimize the 
risk of missed diagnoses, we set the threshold conversion 
rate predicted by the deep learning model slightly higher 
than observed clinical data, ensuring timely intervention 
for patients needing enhanced care. Future studies should 
aim to optimize the decision threshold to balance sensi-
tivity and specificity, possibly by dynamically adjusting it 
based on patient history and disease progression. Imple-
menting predictive models in clinical practice requires 

evaluating the cost-effectiveness of included variables 
and their impact on healthcare resources. Our find-
ings indicate that neuropsychological assessments play 
a pivotal role in the parsimonious model, consistently 
achieving an AUC above 0.7 across all time points. Neu-
ropsychological assessments are cost-effective and time-
efficient, making them valuable tools for early detection 
without imposing significant medical burdens. Other 
important variables, such as biomarkers, neuroimaging, 
and demographics, vary in relevance depending on the 
disease stage. A phased clinical implementation strategy 
is proposed: in the early stage, prioritize neuropsycho-
logical assessments and selectively apply biomarker tests 
for high-risk patients to balance cost and effectiveness. 
In the medium stage, neuroimaging can be selectively 
used for patients exhibiting cognitive decline, optimizing 
both diagnostic accuracy and cost-efficiency. In the later 
stages, demographic and neuropsychological data should 
guide interventions, reducing reliance on expensive bio-
markers and imaging. This staged approach maximizes 
the predictive utility of different variables at each disease 
phase, enhancing cost-effectiveness while maintaining 
high accuracy.

Limitations
This study has some limitations that warrant mentioning. 
First, our sample size was relatively small and general-
izability is limited as data are mostly from the USA. In 
addition loss to follow up is problem as it may be related 
to cognitive conversion and measured and unmeasured 
influence factors. Unfortunately, longitudinal multiple 
imputation models for deep learning are still unsatisfac-
tory [39]. Second, due to the relatively small sample size 
we did not perform subgroup analysis. Therefore, as of 
yet, no data indicating difference in model performance 
across different subgroups are available. Third, we used 
F-score instead of Youden index as the cut-off value and 
other thresholds according to the demand of clinical set-
tings may be desirable. Eventually, our study lacks an 
external validation cohort., and caution is thus warranted 
when interpreting our results. We acknowledge the 
importance of external validation to further confirm the 
model’s applicability in real-world scenarios. As part of 
our future work, we plan to validate our model on inde-
pendent datasets, which will strengthen its generalizabil-
ity and applicability beyond the ADNI dataset.

Conclusion
In conclusion, our study found that standard neuropsy-
chological tests combined with other indicators that 
differed across phases of disease progression could accu-
rately predict cognitive conversion in patients with AD 
or at risk thereof. This prognostic information may be 

Table 2 False positive rate of different models at 12, 24, 36 and 
48 months

False positive rate
12-month dgcbi gcbi cbi cb c
Fold0 2.17% 3.26% 2.17% 4.35% 1.09%
Fold1 9.78% 0.00% 10.87% 0.00% 6.52%
Fold2 0.00% 3.26% 9.78% 8.70% 13.04%
Fold3 3.26% 4.35% 0.00% 2.17% 5.43%
Fold4 1.10% 1.10% 4.40% 5.49% 1.10%
Average across folds 3.26% 2.39% 5.44% 4.14% 5.44%
24-month dgcbi dgci gci cb c
Fold0 2.60% 3.90% 11.69% 2.60% 10.39%
Fold1 2.60% 7.79% 5.19% 6.49% 5.19%
Fold2 0.00% 1.30% 2.60% 1.30% 0.00%
Fold3 1.30% 0.00% 1.30% 2.60% 0.00%
Fold4 0.00% 1.32% 10.53% 5.26% 6.58%
Average across folds 1.30% 2.86% 6.26% 3.65% 4.43%
36-month dgcbi dgci gcb ci c
Fold0 0.00% 4.88% 0.00% 7.32% 4.88%
Fold1 4.88% 0.00% 2.44% 2.44% 2.44%
Fold2 5.oo% 2.50% 2.50% 2.50% 7.50%
Fold3 0.00% 0.00% 0.00% 10.00% 0.00%
Fold4 0.00% 2.50% 5.00% 0.00% 17.50%
Average across folds 1.98% 1.98% 1.99% 4.45% 6.46%
48-month dgcbi dgci dgc dc c
Fold0 0.00% 0.00% 0.00% 18.60% 4.65%
Fold1 2.33% 2.33% 2.33% 6.98% 6.98%
Fold2 2.33% 0.00% 0.00% 0.00% 4.65%
Fold3 0.00% 0.00% 0.00% 11.63% 0.00%
Fold4 2.38% 2.50% 2.38% 9.52% 2.38%
Average across folds 1.41% 0.97% 0.94% 9.35% 3.73%
Notes: demographic data-d; genetic data-g; cognitive data-c; biomarker-b; 
imaging data-i
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utilized for early upgrade of high-risk patients to more 
aggressive treatment regimens.
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