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Abstract 

Background We investigated how cerebrospinal fluid levels of synaptic proteins associate with memory function 
in normal cognition (CN) and mild cognitive impairment (MCI), and investigated the effect of amyloid positivity 
on these associations.

Methods We included 242 CN (105(43%) abnormal amyloid), and 278 MCI individuals (183(66%) abnormal amyloid) 
from the European Medical Information Framework for Alzheimer’s Disease Multimodal Biomarker Discovery (EMIF‑
AD MBD) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI). For 181 (EMIF‑AD MBD) and 36 (ADNI) proteins 
with a synaptic annotation in SynGO, associations with word learning recall were analysed with linear models.

Results Subsets of synaptic proteins showed lower levels with worse recall in preclinical AD (EMIF‑AD MBD: 7, ADNI: 
5 proteins, none overlapping), prodromal AD (EMIF‑AD MBD only, 27 proteins) and non‑AD MCI (EMIF‑AD MBD: 1, 
ADNI: 7 proteins). The majority of these associations were specific to these clinical groups.

Conclusions Synaptic disturbance‑related memory impairment occurred very early in AD, indicating it may be rel‑
evant to develop therapies targeting the synapse early in the disease.

Keywords Synaptic proteins, Cerebrospinal fluid proteomics, Memory performance, Early Alzheimer’s disease

Background
Memory impairment is a key feature of Alzheimer’s 
disease (AD) [13, 14]. Decline in memory function pre-
cedes dementia onset, starting already in the preclinical 
stage of AD [15]. A better understanding of mechanisms 
underlying memory loss can help the development of 
novel therapies.

Previous studies have shown that memory scores are 
associated with reduced synaptic density [27, 28, 35–40] 
but this research was mostly conducted post-mortem 
in AD patients who were in late disease stages. Synaptic 
protein levels can also be assessed in vivo in cerebrospi-
nal fluid (CSF). So far, studies have focused on few or 
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single synaptic markers in CSF. For example, neurogra-
nin (NRGN) is a widely studied postsynaptic protein, 
showing higher levels with worse memory performance 
in prodromal AD [12], although contradicting results 
have been found for memory associations in cognitively 
normal (CN) individuals [9, 12, 19] and in AD dementia 
[29, 41]. Associations of synaptosomal-associated pro-
tein 25 (SNAP25) and neuromodulin (also called growth-
associated protein 43, GAP43) with memory functioning 
depended on disease stage, with associations in early but 
not in later AD [31]. Many additional synaptic proteins 
exist, for which it is largely unknown if they correlate 
with memory functioning in the early stages of AD before 
dementia onset. Furthermore, individuals can have mild 
cognitive impairment (MCI) with normal amyloid (i.e., 
non-AD MCI), and it remains unclear what mechanisms 
may explain impaired memory in such individuals.

Using a proteomics approach of CSF, we aimed to ana-
lyse which synaptic proteins are related to memory scores 
in older non-demented individuals. We hypothesized 
that synaptic protein levels in CSF would be associated 
with worse memory scores, and that a subset of these 
associations would be specific for AD pathology and/or 
depend on cognitive stage. In two independent cohorts, 
we analysed cross-sectional associations of synaptic pro-
tein levels in CSF with memory scores in preclinical AD 
and prodromal AD, and in CN amyloid normal controls 
and non-AD MCI, to test if memory associations were 
specific for AD pathology.

Methods
Study participants
Two independent study cohorts, the European Medical 
Information Network Alzheimer’s disease multi-modal 
biomarker discovery study (EMIF-AD MBD) [5] and 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
[1] were used in these analyses. All participants pro-
vided informed consent to participate in these studies. 
We selected individuals who were CN and individuals 
with a clinical diagnosis of MCI if they had memory test 
scores and CSF proteomic data available. In EMIF-AD 
MBD, CN was defined in all centres based on neuropsy-
chological examination scores within 1.5 standard devia-
tion (SD) of age-, sex- and education adjusted standards, 
and in four centres with additional criteria (see [5] for 
more details). MCI was defined using cohort-specific 
criteria (in all cohorts Petersen criteria [32] except for 
Lausanne, where Winblad criteria [48] were used and 
Clinical Dementia Rating (CDR) of 0.5).

The ADNI (adni.loni.usc.edu) was launched in 2003 as 
a public–private partnership, led by Principal Investiga-
tor Michael W. Weiner, MD. The primary goal of ADNI 
has been to test whether serial magnetic resonance 

imaging (MRI), positron emission tomography (PET), 
other biological markers, and clinical and neuropsycho-
logical assessment can be combined to measure the pro-
gression of mild cognitive impairment (MCI) and early 
Alzheimer’s disease (AD). For up-to-date information, 
see www. adni- info. org. Detailed information about the 
definitions of CN and MCI in ADNI, and methodology 
of the memory testing can be found in the general pro-
cedures manual of ADNI [1]. In short, CN was defined 
as absence of memory complaints, normal scores on the 
Logical Memory II subscale (delayed Paragraph Recall) 
from the Wechsler Memory Scaled – Revised, Mini-
Mental State Examination (MMSE) score ≥ 24 and CDR 
of 0. MCI was defined by a memory complaint, abnormal 
scores on the Logical Memory II subscale, MMSE ≥ 24 
and CDR of 0.5.

For the analyses, we characterized participants from 
EMIF-AD MBD and ADNI into four diagnostic groups 
depending on their clinical and amyloid status: CN indi-
viduals with normal amyloid (controls), CN individuals 
with abnormal amyloid (preclinical AD), MCI individuals 
with normal amyloid (non-AD MCI) and MCI individu-
als with abnormal amyloid (prodromal AD).

CSF amyloid, t‑tau and p‑tau biomarkers
For EMIF-AD MBD, we used cut-points for amyloid 
status that were previously determined with gaussian 
mixture modelling for each center [44]. T-tau and p-tau 
were measured in local laboratories using either Innotest 
(Fujirebio Europe, Gent, Belgium) (4 cohorts), or with 
INNO-BIA AlzBio3 (Fujirebio Europe), and we used local 
cut-offs to determine abnormality [5]. In ADNI, CSF 
amyloid, t-tau and p-tau were measured using multiplex 
xMAP Luminex platform (Luminex Corp, Austin, TX) 
with INNO-BIA AlzBio3 (Fujirebio Europe), with abnor-
mality defined as amyloid < 192  pg/ml, t-tau > 93  pg/ml 
and p-tau > 23 pg/ml.

Proteomics
In EMIF-AD MBD, proteomics was performed with the 
tandem mass tag (TMT) technique using 10 + 1 plexing 
[5] as previously described [3, 25, 42]. In addition, in a 
central laboratory (Gothenburg University, Sweden), lev-
els of neurofilament light (NEFL) were determined with 
the NF-Light assay (UmanDiagnostics, Umeå, Sweden) 
and NRGN with an in-house immunoassay [34]. All pro-
tein levels were natural log-transformed. This dataset 
included 2537 proteins in 306 individuals (missing val-
ues; mean 6%, range 0 to 99%).

In ADNI, two proteomic datasets were used. In the 
first dataset, proteomic data were generated using LC/
MS-MRM (panel developed by Caprion Proteome Inc.)
(“MRM Assays: Caprion,” n.d.) and the Rules-Based 

http://www.adni-info.org
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Medicine (RBM)(“Myriad RBM Operational Proce-
dures White Paper—Myriad RBM,” n.d.) platform. These 
included 202 proteins in 214 individuals (missing values; 
mean 0.3%, range 0 to 45%). We used the pre-processed 
and quality checked normalized data publicly available 
on the ADNI website (adni.loni.usc.edu). We natural 
log-transformed and Z-scored individual RBM meas-
urements and MRM peptide measurements. Next, we 
generated protein scores by averaging MRM peptides 
and correlating RBM proteins that were mapped to the 
same protein (r at least 0.5). Protein levels in both data-
sets were standardized relative to the mean and standard 
deviations from controls with normal amyloid, t-tau and 
p-tau.

Recently, another mass spectrometry proteomics 
analysis was performed in ADNI (CSF 48 panel) and 
provided data on 48 proteins in 706 individuals [11]. 
Proteomic data from this panel was used as the sec-
ond dataset in this study. Our main analyses, however, 

were performed in the Caprion/RBM dataset as these 
included the largest number of proteins and the second 
dataset served for validation purposes.

Synapse proteins
We used Synaptic Gene Ontologies to identify synaptic 
proteins (SynGO) [18],“SynGO—Synaptic Gene Ontol-
ogies and annotations,” n.d.), a curated database with 
detailed annotation of known synapse-related proteins. 
An additional criterion for inclusion of proteins in our 
analyses was that proteins were measured in at least 25 
individuals per diagnostic subgroup. In ADNI Caprion/
RBM and CSF 48 panel, respectively 36 synaptic pro-
teins (17% of 202 total) and 10 synaptic proteins (21% 
of 48 total) were identified. In EMIF-AD MBD 181 syn-
aptic proteins (13% out of 1350 total) were identified 
(Fig. 1).

Fig. 1 Characterization of synaptic proteomic dataset. A Schematic overview of study design. B Overlap of ADNI proteomics and EMIF‑AD MBD 
proteomics with SynGO annotation used to select synaptic proteins. C SynGO locations and processes for which synaptic proteins were included 
in the datasets. One protein can have multiple annotations for different locations and processes. The SynGO annotation uses a hierarchical 
organisation, and we show here the first and second level of subprocesses, with proteins in lower subprocesses categorized with the respective 
second level subprocess
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Memory tests
We measured memory functioning with both immedi-
ate and delayed recall memory tests, because immediate 
and delayed recall may differ in their sensitivity to detect 
decline in different stages of AD [4, 16, 45]. In EMIF-
AD MBD, memory function was assessed with cohort 
specific tests (auditory verbal learning test (AVLT): 3 
cohorts; Consortium to Establish a Registry for Alzhei-
mer’s Disease wordlist (CERAD), Free and Cued Selec-
tive Reminding Test(FCSRT) and RI-48 in the remaining 
3 cohorts). Test scores were Z transformed according to 
age, sex and education norms (as detailed in [5]), and val-
ues ranged between −5 to 5.

In ADNI, we used the Rey auditory verbal learning 
test (RAVLT, immediate recall: sum of correctly recalled 
words over 5 trials, range 0–75; delayed recall: correctly 
recalled words after 30-min delay, range 0–15). We trans-
formed the memory scores into age-, education- and 
sex-adjusted Z-scores, using adjustment factors for age, 
education and sex that were estimated from linear mod-
els for memory performance of all ADNI controls.

Statistical analyses
Differences in demographic variables between groups 
were assessed with chi-square test, Mann–Whitney U 
test, Student’s t-test or Kruskal–Wallis test when appro-
priate. Unless indicated otherwise, effects were con-
sidered significant at a p-value < 0.05. We first tested if 
protein levels differed depending on diagnostic group 
with Analysis of variance (ANOVA), and if so, per-
formed two-sided t-tests between the diagnostic groups. 
To account for the multiple comparisons (in total 6 
tests), we considered differences between the diagnostic 
groups significant at a false discovery rate (FDR)-adjusted 
p-value < 0.05. Next, we tested associations between 
memory test scores (outcome) and synaptic protein 
level (predictor) with linear models that included the 
covariates diagnostic group, age, sex and years of educa-
tion (model 1) and additionally the interaction between 
protein level and diagnostic group (model 2). To report 
the effects of protein levels on memory scores across 
diagnostic groups, we selected proteins with a diagnos-
tic group-interaction p-value ≥ 0.1. To report the effects 
of protein levels on memory scores that depended on 
diagnostic group, we selected proteins if they had a sig-
nificant interaction with diagnostic group (interaction 
p-value < 0.1), and calculated associations with memory 
scores separately in the different diagnostic groups. For 
reference, we also provide statistical details of both mod-
els for all proteins (Supplementary Table  1). We then 
tested if the memory-associated proteins in our analy-
ses were enriched for specific synaptic functions with 
the SynGO website(“SynGO—Synaptic Gene Ontologies 

and annotations,” n.d.), and selected biological process 
ontology terms for the enrichment analyses when they 
included at least 3 genes. For visualisation purposes, 
we calculated composite scores of synaptic proteins, by 
averaging proteins which showed an interaction (interac-
tion p-value < 0.1) with diagnostic group on immediate 
or delayed recall scores. All analyses were run in R 4.1.2 
“Bird Hippie”. Emmeans 1.4.2 was used for estimation of 
regression coefficients.

Results
We included 137 controls, 105 individuals with pre-
clinical AD, 183 individuals with prodromal AD and 95 
individuals with non-AD MCI (Table  1). In both stud-
ies, the preclinical and prodromal AD groups had more 
Apolipoprotein E (APOE) ε4 carriers and tended to have 
higher CSF t-tau and p-tau levels than controls. Com-
pared to EMIF-AD MBD participants, ADNI participants 
were older (all groups), had received longer education 
(all groups) and had lower memory test scores (controls, 
preclinical and prodromal AD) (Table 1, Supplementary 
Fig. 1).

We selected 181 synaptic proteins in EMIF-AD MBD 
and 36 synaptic proteins in ADNI that were present in 
at least 25 individuals for each diagnostic group (Fig. 1). 
In EMIF-AD MBD, 30 of these proteins differed between 
diagnostic groups (ANOVA p-value < 0.05; supplemen-
tary Table  2). Relative to controls, individuals with pre-
clinical AD showed lower levels of VGF, NPTX2, BDNF, 
CDH2 and higher levels of FXYD6. Compared to con-
trols, individuals with prodromal AD showed lower lev-
els of NPTX2 and higher levels of 9 proteins (YWHAE, 
YWHAH, YWHAZ, NEFL, NRGN, GAP43, TPD52, 
VAPA and AKR1A1). The levels of these proteins were 
typically also higher in prodromal AD compared to pre-
clinical AD and non-AD MCI (Fig.  2A, Supplementary 
Table  2, Supplementary Table  3). There was no spe-
cific association with synaptic locations (pre- and post-
synapse) or synaptic functions (synaptic signalling or 
organization). In ADNI Caprion/RBM, only four proteins 
showed different levels between diagnostic subgroups 
(Fig. 2A, Supplementary Table 2). As in EMIF-AD MBD, 
NRGN and NEFL were increased in prodromal AD com-
pared to controls, and were also increased compared to 
individuals with preclinical AD or non-AD MCI (Fig. 2B). 
FGA and PLG were increased in non-AD MCI relative to 
prodromal AD and/or controls.

In ADNI Caprion/RBM, we found that several proteins 
showed an opposite pattern or couldn’t be reproduced as 
it did not fit the inclusion criteria (i.e. measured in > 25 
individuals). For example, VGF was decreased in AD in 
the EMIF-AD cohort while it was increased in ADNI. 
In addition, 14–3-3 proteins such as YWHAZ were 
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increased in EMIF-AD, but none of these proteins were 
measured in ADNI. Therefore, we repeated the analysis 
in the 48 CSF panel [11] (supplementary Table  2). We 
found that the 10 synaptic proteins, including VGF and 
YWHAZ, measured in this panel now showed consisted 
findings with EMIF-AD MBD. Relative to controls, indi-
viduals with preclinical AD and prodromal AD showed 
lower levels of VGF, NPTX2 and SCG2 which was in 
concordance with the protein levels observed in EMIF-
AD. In addition, YWHAZ was increased in prodromal 
AD compared to controls and preclinical AD which was 
also in agreement to the YWHAZ levels observed in 
EMIF-AD.

Associations of synaptic protein levels with memory scores
Here, we will summarise the results separately for imme-
diate and delayed recall on memory tests, and separately 
report associations across diagnostic groups vs. associa-
tions that depended on diagnostic group (for full results, 

see Supplementary Table 1, and kwesenhagen.shinyapps.
io/Synaptic_protein_associations_with_memory). First, 
a lower score on immediate recall was associated with 
lower concentrations of synaptic proteins in EMIF-AD 
(49 proteins) and ADNI (6 proteins) (Fig.  3). Of these 
associations, 1 protein (CDH13) between cohorts. A 
lower memory score was associated with higher levels of 
coagulation related proteins in EMIF-AD and with NEFL 
in ADNI.

In EMIF-AD MBD, 30 synaptic proteins showed an 
interaction with diagnostic group on immediate recall 
scores. In prodromal AD, lower levels of 27 proteins were 
associated with lower immediate recall scores (Fig.  4), 
while higher levels of only (APOA4) was associated with 
worse immediate recall. Only 1 to 2 associations were 
found with immediate memory in controls, preclinical 
AD and non-AD MCI (Fig. 4, Supplementary Table 1).

In ADNI, 8 proteins showed an interaction with diag-
nostic group on immediate recall. Lower levels of 7 of 

Table 1 Demographics of study participants in EMIF‑AD MBD and ADNI

Memory scores in EMIF are age-, sex- and education-adjusted Z-scores based on published test reference values or local norms; memory scores in ADNI were age-, 
sex- and education-adjusted Z-scores based on memory scores within the ADNI cohort, using all available memory scores in this population for CN individuals. Levels 
of amyloid, t-tau and p-tau are Z-scores relative to the CN A- group

CN cognitively normal, MCI mild cognitive impairment

a-g, p-value < 0.05 for a: comparing same cognitive and amyloid group between EMIF-AD MBD and ADNI, b: comparing CN A + and CN A- in same dataset, c: 
comparing MCI A- and CN A- in same dataset, d: comparing MCI A + and CN A- in same dataset, e: comparing MCI A- and CN A + in same dataset, f: comparing MCI 
A + and CN A + in same dataset, g: comparing MCI A + and MCI A- in same dataset

EMIF‑AD MBD ADNI

Controls Preclinical AD MCI with 
normal 
amyloid

Prodromal AD Controls Preclinical AD MCI with 
normal 
amyloid

Prodromal AD

n 87 73 66 80 50 32 29 103

Age in years, 
mean ± sd

65.9 ± 7.8ad 66.8 ± 8.3af 67.2 ±  8ag 70.3 ± 6.7adfg 75.3 ± 5.5a 76.1 ± 5.6a 75.3 ± 7.8a 74.7 ± 7.2a

Sex, female (%) 43(49%) 39(53%) 29(44%)a 45(56%)a 25(50%)c 15(47%)e 5(17%)ace 38(37%)a

APOE‑e4 carrier‑
ship, 1–2 alleles 
(%)

22(25%)bd 44(60%)be 21(32%)aeg 55(69%)dg 5(10%)bd 16(50%)be 3(10%)aeg 67(65%)dg

MMSE score, 
mean ± sd

28.9 ± 1.2 cd 28.7 ± 1.2aef 26.6 ± 2.6ce 26.7 ± 2.5df 28.9 ±  1 cd 29.2 ±  1aef 27.4 ± 1.8ce 26.8 ± 1.7df

Delayed 
recall Z‑score, 
mean ± sd

0.444 ± 0.99acd 0.337 ± 0.95aef −1.28 ± 1.1ce −1.23 ± 1.2adf 0.0053 ±  1acd −0.254 ± 1.2aef −1.52 ±  1ceg −1.99 ± 1.1adfg

Immediate 
recall Z‑score, 
mean ± sd

0.523 ± 0.93acd 0.252 ± 0.97ef −1.33 ± 1.4ce −0.952 ± 1.3adf 0.128 ± 0.96acd 0.158 ± 1.1ef −0.985 ± 1.1ce −1.43 ± 1.2adf

Education 
in years, 
mean ± sd

12.7 ± 3.4acd 12.6 ± 3.6aef 10.5 ± 3.6ace 11.1 ± 3.4adf 15.6 ± 2.8a 15.7 ± 3.4a 16.4 ± 2.8a 15.8 ±  3a

CSF amyloid, 
mean ± sd

0 ±  1bcd −1.42 ± 0.57abe 0.425 ± 1.2ceg −1.26 ± 0.86adg 0 ±  1bd −4.35 ± 1.6abef −0.0274 ± 0.89eg −5.1 ± 1.4adfg

CSF t‑tau, 
mean ± sd

0 ±  1 cd 0.726 ± 2.5f 0.791 ± 2.2cg 2.39 ± 2.2dfg 0 ±  1bd 1.06 ± 1.6bef 0.0525 ±  1eg 2.55 ± 2.6dfg

CSF p‑tau, 
mean ± sd

0 ±  1 cd 0.242 ± 1.5af 0.318 ± 1.4acg 1.76 ± 1.7dfg 0 ±  1bd 1.01 ± 1.6abef −0.194 ± 0.69aeg 1.91 ± 1.6dfg
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these proteins (NECTIN, NCSTN, NCSTN, NPTXR, 
CNTN2, NRXN1, APP) were associated with worse 
immediate recall in non-AD MCI (NECTIN1, NCSTN, 
NCSTN, NPTXR, NRXN1 and APP; Fig. 4).

For delayed recall, lower levels of 3 proteins in EMIF-
AD MBD and higher levels of 1 protein in ADNI were 
associated with worse delayed recall independent of 
diagnostic group (Fig.  3, Supplementary Table  1). For 
22 proteins in EMIF-AD MBD, the association between 
synapse protein level and delayed recall differed between 
diagnostic groups. In controls, higher levels of GPC4 and 

ADAM10 were associated with lower recall scores. In 
preclinical AD, lower levels of 7 proteins were associated 
with lower delayed recall scores. In prodromal AD, lower 
levels of 3 proteins were associated with lower delayed 
recall scores (supplementary Table 1).

For 11 proteins in ADNI, the association between syn-
apse protein level and delayed recall differed between 
diagnostic groups. In preclinical AD, lower levels of 
CLSTN1, CLSTN3, SCG2, CADM3 and NRCAM were 
associated with lower delayed recall scores (Fig.  4). In 
non-AD MCI and prodromal AD, lower levels of 2 to 3 

Fig. 2 Differences in synaptic proteins depending on diagnostic group. a Mean protein levels are shown for top proteins depending on amyloid 
and cognitive subgroups, b boxplots of protein levels between diagnostic groups for neurogranin (NRGN) and neurofilament light (NEFL). The 
box of the boxplot indicates 25th percentile, median and 75th percentile, whiskers indicate 1.5 × interquartile range. See Supplementary Table 2 
for mean differences between groups and full synaptic annotation for all proteins. Synaptic category ‘Other’ refers to other synaptic locations 
and functions as detailed in Fig. 1c. *, ** and *** indicate significant difference between diagnostic group and controls (a), or between indicated 
diagnostic groups (b): *, p‑value < 0.05, **, p‑value < 0.01; ***, p‑value < 0.001, n.s.: not significant
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proteins were associated with worse memory (Fig.  4, 
Supplementary Fig.  2). Supplementary Table  3 summa-
rizes the findings of protein levels in prodromal AD and 
non-AD MCI and their associations with memory in 
both cohorts.

We finally performed enrichment analyses on pro-
teins of which the association with memory scores dif-
fered between diagnostic groups. Synaptic proteins 
that were associated with immediate recall in non-AD 
MCI showed enrichment for synapse organization, and 

Fig. 3 Synaptic proteins associated with memory independent of diagnostic group. Top proteins associated with memory across all diagnostic 
groups are shown. Associations were considered significant when proteins did not show an interaction with diagnostic group (interaction 
p‑value ≥ 0.1) and had an association with memory function (*, p‑value < 0.05; **, p‑value < 0.01), ***, p‑value < 0.001). Associations of all analysed 
synaptic proteins are provided in Supplementary Table 1
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proteins related with immediate recall in prodromal 
AD showed enrichment for synapse organization and 
trans-synaptic signalling (Supplementary Fig.  2). Syn-
aptic proteins related with delayed recall in preclinical 
AD showed enrichment for synapse organization and 

presynaptic functions (Supplementary Fig. 3). Figure 5 
summarizes the associations of synaptic proteins with 
memory scores through composite scores of synaptic 
proteins associated with delayed and immediate recall 
in EMIF-AD MBD and ADNI.

Fig. 4 Memory‑associated synaptic proteins stratified for amyloid and cognitive status. Associations between synaptic protein levels and delayed 
and immediate recall on word learning tests are shown stratified for diagnostic groups based on amyloid and cognitive status in EMIF‑AD MBD 
and ADNI. Proteins which were related to memory function depending on diagnostic group in at least one cohort are shown. Associations were 
considered significant when proteins showed an interaction with diagnostic group on memory scores (p‑value < 0.1) and showed an effect 
on memory function in diagnostic group‑stratified analyses (p‑value < 0.05). *, **, ***: significant effect of protein level on memory function 
in diagnostic group‑stratified analyses (*, p‑value < 0.05, **, p‑value < 0.01; ***, p‑value < 0.001). Synaptic category ‘Other’ refers to other synaptic 
locations and functions as detailed in Fig. 1c. Associations of all analysed synaptic proteins are provided in Supplementary Table 1
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Discussion
Our main finding is that lower synaptic protein levels in 
CSF were associated with more impaired memory func-
tion in predementia AD. Therefore, treatment targeting 
synapses may be beneficial in early phases of AD.

Reduced synaptic protein levels associated with worse 
memory functioning in preclinical AD
We found that the concentrations of five synaptic 
proteins (VGF, CDH2, NPTX2, BDNF and FXYD6) 
were reduced in preclinical AD relative to controls in 

Fig. 5 Associations of synaptic composite scores with immediate and delayed memory scores. Synaptic composites contain proteins associated 
with delayed recall (left) or immediate recall (right). CN A‑, controls; CN A + , preclinical AD, MCI A‑, non‑AD MCI, MCI A + , prodromal AD
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EMIF-AD MBD. Reduced synaptic protein levels in 
CSF have been reported before in preclinical AD [24]. 
We extended previous studies by showing that lower 
delayed recall scores were associated with decreased 
synaptic protein levels in CSF in preclinical AD. These 
associations may reflect synapse loss [27, 28, 35–40]. 
The deterioration of synapses could in turn result in 
memory impairment [2, 8, 47]. Alternatively, this asso-
ciation can be bidirectionally interpreted, with higher 
levels of these proteins correlating with improved 
delayed recall scores. As the associated proteins did 
not show actual decreased levels compared to controls, 
it remains a possibility that higher protein levels could 
compensate for neuronal loss.

Associations of synaptic proteins with immediate 
and delayed recall in prodromal AD
We found higher levels of NRGN in prodromal AD rela-
tive to controls which is in line with previous studies that 
showed that higher NRGN levels are associated with 
advanced disease stage and worse cognition [6, 19, 21]. In 
our study, however, there was only a slight trend towards 
a relationship between increased NRGN levels and mem-
ory function, which could imply that NRGN also relates 
to other aspects such as disease severity. Previous studies 
have shown an association of lower levels of in NPTX2 
and VGF with worse cognition in non-demented indi-
viduals with AD and conversion to dementia [20, 22, 
23]. This is in line with our results as we have found that 
decreases in NPTX2 and VGF levels were also related to 
worse cognition. These results suggests that these pro-
teins may play a role in synaptic disturbance in AD which 
leads to cognitive impairment and reinforces the prog-
nostic value of these proteins. Overall, the associations of 
synaptic proteins with immediate and delayed recall were 
similar, but substantially more associations with imme-
diate recall than delayed recall were found in prodromal 
AD subjects suggesting that immediate recall may be 
more sensitive in early AD.

Associations of synaptic proteins with immediate 
and delayed recall in non‑AD MCI
In non-AD MCI, 11 proteins were associated with mem-
ory. The majority of memory-associated proteins in non-
AD MCI (7 proteins) were specifically related to memory 
in non-AD MCI. Therefore, these may reflect synaptic 
dysfunction and memory decline caused by different dis-
orders. For example, for diseases such as Parkinson’s dis-
ease (PD) and dementia with Lewy bodies (DLB) that can 
underly non-AD MCI [7, 26], aggregated alpha synuclein 
could induce synaptic disturbances [10, 46].

Associations of synaptic proteins with delayed recall 
in controls
Rather surprisingly, in controls a higher concentra-
tion of 5 synaptic proteins were associated with worse 
delayed recall (Fig.  4). These proteins were not associ-
ated with memory in any of the other diagnostic groups. 
Some controls in EMIF-AD MBD had increased tau lev-
els, which may have contributed to low memory scores 
in these individuals, as tau can impair synaptic plasticity 
and cause synaptic damage (Hu et al., n.d.; [17, 30, 33]). 
However, the proteins that did associate with memory in 
the other diagnostic groups showed associations of lower 
levels with lower memory scores. This suggests that the 
synaptic processes leading to impaired memory may dif-
fer in controls, non-AD MCI and Alzheimer’s disease. 
Moreover, we previously showed in cognitively normal 
individuals with normal AD biomarkers that those with 
higher synaptic proteins levels had a higher risk for AD 
pathology at follow-up such that the increase may indi-
cate early AD [43].

Difference in associations between ADNI and EMIF‑AD 
MBD
In general, CSF proteins showed similar associations with 
memory scores when comparing the EMIF-AD MBD 
and ADNI datasets. An exception was prodromal AD, 
in which individuals from the EMIF-AD MBD cohort 
showed many associations of lower synaptic protein lev-
els and lower immediate recall, which were not observed 
in ADNI. Potentially, the lack of reproducibility between 
the cohorts is due to the different word learning tests 
used in EMIF-AD MBD and ADNI. Prodromal AD indi-
viduals in ADNI also had on average lower delayed and 
immediate recall scores compared to EMIF-AD MBD 
(Table 1), likely because in ADNI impairment on a mem-
ory test was an inclusion criterion for the prodromal 
AD group, which was not the case in EMIF-AD MBD. 
The difference in disease severity in prodromal AD and 
the number and difference in measurement of proteins 
between both cohorts may also explain the lack of repro-
ducibility. The latter is reinforced by the observation that 
the same proteins in the ADNI Caprion/RBM dataset 
showed a different association with cognitive function 
compared to the same proteins measured in the CSF 48 
panel in ADNI.

Memory associations of synaptic subcomponents 
and functions
In general, we observed that synaptic components (the 
pre- and post-synapse) and functions (synaptic signal-
ing) showed similar memory associations. This suggests 
that generalized synapse loss underlies the associations of 
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the observed synaptic proteins with memory. However, 
in preclinical AD, we observed enrichment of synapse 
organization among proteins that were associated with 
delayed recall in both cohorts. This could imply synapse 
(re-)organization might be a process involved in memory 
functioning in very early AD.

Strengths and limitations
A limitation of this study is that cohorts showed differ-
ent demographics (i.e. ADNI had an older population 
and lower memory scores), used different memory tests, 
procedures to normalize memory scores, different cri-
teria for the diagnostic groups, and different proteomic 
platforms. Nonetheless, we found similar associations 
of synaptic protein levels with delayed recall in both 
cohorts and the validation CSF panel, which indicated 
these results are robust for cohort-dependent effects. 
For associations of the proteins with immediate recall 
in prodromal AD and non-AD MCI, we observed more 
heterogeneity between cohorts, perhaps reflecting that 
individuals with MCI form a heterogenous group. This 
stresses the importance of new, larger studies in individu-
als with prodromal AD.

Our data included only a part of the synaptic proteome 
(16.5%), so future studies should target a larger part of 
the synaptic proteome to investigate the role of synapses 
in memory functioning in more detail. Furthermore, 
while CSF proteomics allow simultaneous measurement 
of many proteins, it is not possible to determine whether 
alterations in concentrations are specific to particular 
anatomical brain structures. As such, future studies com-
bining CSF proteomics and synapse PET would provide 
great anatomical detail of alterations in synaptic density. 
Lastly, the associations with memory performance we 
reported were not corrected for multiple testing. Instead, 
we tested associations with memory performance in 
two independent datasets which improves the robust-
ness of the results. Strengths of our study are a the rela-
tively large sample size from 2 independent studies and 
our analysis of synaptic changes in the very early stage 
of the disease that has received relatively little attention. 
Another strength is the publication of the memory asso-
ciations of the analyzed synaptic proteins in an interac-
tive online database (available at kwesenhagen.shinyapps.
io/Synaptic_protein_associations_with_memory).

Conclusions
CSF levels of synaptic proteins are decreased in early AD 
and were associated with memory loss. This indicates 
that the synapse may be an attractive target for thera-
peutic modulation in early AD. Further studies should 
therefore aim to study longitudinal relationships across 
different stages of AD.
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