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Abstract 

Background  Although interactions between amyloid-beta and tau proteins have been implicated in Alzheimer’s 
disease (AD), the precise mechanisms by which these interactions contribute to disease progression are not yet fully 
understood. Moreover, despite the growing application of deep learning in various biomedical fields, its application 
in integrating networks to analyze disease mechanisms in AD research remains limited. In this study, we employed 
BIONIC, a deep learning-based network integration method, to integrate proteomics and protein–protein interaction 
data, with an aim to uncover factors that moderate the effects of the Aβ-tau interaction on mild cognitive impairment 
(MCI) and early-stage AD.

Methods  Proteomic data from the ROSMAP cohort were integrated with protein–protein interaction (PPI) data using 
a Deep Learning-based model. Linear regression analysis was applied to histopathological and gene expression data, 
and mutual information was used to detect moderating factors. Statistical significance was determined using the Ben-
jamini–Hochberg correction (p < 0.05).

Results  Our results suggested that astrocytes and GPNMB + microglia moderate the Aβ-tau interaction. Based on lin-
ear regression with histopathological and gene expression data, GFAP and IBA1 levels and GPNMB gene expression 
positively contributed to the interaction of tau with Aβ in non-dementia cases, replicating the results of the network 
analysis.

Conclusions  These findings suggest that GPNMB + microglia moderate the Aβ-tau interaction in early AD and there-
fore are a novel therapeutic target. To facilitate further research, we have made the integrated network available 
as a visualization tool for the scientific community (URL: https://​igcore.​cloud/​GerOm​ics/​AlzPP​Map).
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Background
Alzheimer’s disease (AD) is the most common form of 
dementia, characterized by extracellular amyloid-beta 
(Aβ) plaques and intracellular tau protein tangles, which 
are believed to be central to its pathology [1–3]. Recent 
studies have reported an interaction between Aβ and 
tau proteins in the pathogenesis of AD, contributing to 
disease progression [4–9]. For instance, Lee et  al. [7] 
revealed that Aβ-tau interactions are associated with the 
propagation of tau. In practice, lecanemab, an anti-Aβ 
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antibody, which has been shown to slow cognitive decline 
in patients with early-stage AD, reduces total tau protein 
and P-Tau181 levels in cerebrospinal fluid [10]. This sug-
gests that Aβ contributes to the effect of tau in AD. More-
over, several phenotypes are associated with the Aβ-tau 
interaction, such as astrocyte reactivity, blood pressure, 
vascular burden, and microglia [11–15]; however, the 
detailed mechanisms are not fully understood. Various 
cellular perturbations have been identified through sin-
gle-nucleus RNA sequencing (snRNA-seq) in AD [16–
22]. For example, a recent snRNA-seq study [17] revealed 
the presence of Trem2-dependent disease-associated 
microglia (DAM) and a unique Serpina3n + C4b + reac-
tive oligodendrocyte population in 5XFAD mice. In 
human AD, distinct glial phenotypes including IRF8-
driven reactive microglia and oligodendrocytes with 
impaired myelination and metabolic adaptation to neu-
ronal degeneration have been observed. However, the 
specific cell types and effects of Aβ-tau interactions are 
yet to be elucidated.

Network analyses based on gene or protein co-expres-
sion have revealed gene groups and associated path-
ways correlated with pathological and clinical factors in 
AD [23–25]. Additionally, network integration methods 
based on multi-omics and other data types have been 
developed [26–29]. By integrating both physical and 
functional interactions simultaneously, network integra-
tion analyses can identify detailed molecular relation-
ships. However, this approach has largely been applied to 
cancer. AD is a complex disease involving various pathol-
ogies, and network integration is a promising approach 
for determining comprehensive physical and functional 
interactions involving Aβ and tau in AD.

In this study, we investigated moderating factors in 
the Aβ-tau interaction using a systematic network inte-
gration approach. The aim of this study was to elucidate 
the cell types and moderating factors in the interaction 
between Aβ and tau proteins in early-stage AD. We show 
the overview of this study (Supplementary Fig. S1). First, 
we integrated the proteomics and protein–protein inter-
action (PPI) networks by using BIONIC [30], a network 
integration algorithm. In the downstream analysis, glial 
cell-related proteins, including those associated with 
microglia and astrocytes, were enriched around APP and 
MAPT subnetworks, which encode the precursors of Aβ 
and tau, respectively. Further analyses of microglial sub-
types revealed enrichment in GPNMB + microglia. As 
a validation, linear regression analysis based on histo-
pathological and gene expression data showed that inter-
actions between Aβ and IBA1, GFAP, and GPNMB, were 
positively related to tau levels. Our findings highlight 
that deep learning-based network integration can serve 
as a novel framework for elucidating complex disease 

mechanisms. The integrated network, made available as 
a visualization tool for the scientific community, not only 
enhances our understanding of the Aβ-tau interaction 
but also provides a basis for generating experimental vali-
dation ideas and developing more effective treatments for 
AD. By leveraging this tool, researchers can gain insights 
into the intricate molecular interactions at play in AD, 
fostering the discovery of new therapeutic targets.

Methods
Brain tissue proteomics data from the ROSMAP cohort
For the proteomic analysis, ROSMAP tandem mass 
tag (TMT) proteomics data were obtained. TMT prot-
eomics is a technique for the simultaneous quantitative 
analysis of protein expression in multiple samples using 
LC–MS/MS and is commonly employed in AD research 
[24, 25]. The ROSMAP data set included TMT proteom-
ics data for 400 cases with differences in cognitive sta-
tus (Alzheimer’s dementia, other dementia, MCI, or no 
impairment), derived from brain tissue samples. Data 
normalization and batch correction were conducted 
according to previous described procedures [24]. Four 
outlier samples were excluded from subsequent analyses 
based on a principal component analysis. In this study, 
ROSMAP TMT data for MCI and early AD cases were 
included. Early-stage AD was defined according to previ-
ously reported criteria: meeting the NIA-AA core clini-
cal criteria for probable AD dementia and having a global 
CDR score of 0.5 to 1.0 and a CDR memory box score of 
0.5 or greater at screening and baseline [10]. Additionally, 
the MMSE effectively discriminates between CDR stages 
0.5, 1, 2, and 3 but performs poorly in the separation of 
CDR stages zero and 0.5. The previously established 
MMSE ranges were 30 for no, 26–29 for questionable, 
21–25 for mild, 11–20 for moderate, and 0–10 for severe 
dementia [31]. We defined early AD as having an MMSE 
score of ≥ 21.

Proteomics and PPI data integration using a graph 
attention network‑based method
To integrate the proteomics and PPI data, total values 
were calculated for each gene symbol in the proteomics 
dataset. Pearson correlation coefficients were derived 
from the proteomics data, retaining only data with Ben-
jamini-Hochberg (BH)-corrected p-values of < 0.05. To 
validate the chosen significance thresholds (p < 0.05 with 
BH correction), we conducted a statistical power analy-
sis. The mean absolute correlation coefficient among 
the significant results (BH-adjusted p-value < 0.05) was 
0.338 and was used as the effect size. The highest unad-
justed p-value (0.00301) for these results was set as the 
significance level. Using a sample size of 122, the calcu-
lated power was 0.811, confirming that our study design 
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is adequately powered to detect correlations of this mag-
nitude. Normalization was performed to set maximum 
values to 1 and minimum values to 0. For PPI, STRING 
[32] filtering was used to obtain physical interactions 
within Homo sapiens. To ensure the reliability of the 
interactions, we applied a confidence score threshold of 
0.7, classifying interactions as "high confidence" based on 
STRING’s scoring system. This threshold, which has been 
widely used in previous studies [33, 34], indicates a 70% 
or higher probability that a predicted interaction exists 
within the same metabolic map in the KEGG database. 
By adopting this threshold, we aimed to maintain con-
sistency with established methodologies in PPI network 
analysis. Normalization was performed to set the maxi-
mum values to 1 and minimum values to 0. Proteomic 
and PPI data were integrated using a recently reported 
method, BIONIC [30], which integrates multiple biologi-
cal networks while preserving information using graph 
attention networks [35]. Unlike linear integration meth-
ods that assign fixed weights to input networks, BIONIC 
dynamically balances information across networks by 
reconstructing their topological features through a 
data-driven approach. Default values were used for the 
BIONIC hyperparameters. For both proteomics and 
PPI data, 4,787 proteins common to both datasets were 
retained. After integrating the two networks, 512-dimen-
sional features were output for each protein.

Clustering analysis and dimension reduction using 
features derived from BIONIC
Considering that the data derived from neural networks 
are nonlinear, clustering was performed following a 
method similar to that used in snRNA-Seq analyses [36]. 
After feature calculation using BIONIC and subsequent 
scaling to Z-scores, Euclidean distances were com-
puted to create a distance matrix. Then, setting k = 25, 
the k-nearest neighbor method was used to calculate an 
adjacency matrix and form a graph structure. This graph 
structure was then subjected to clustering using the Lou-
vain method [37] (resolution = 1) to classify each protein 
into clusters.

Cluster centroid analysis using BIONIC‑derived features
After implementing BIONIC to evaluate the networks 
derived from proteomic and PPI data, a clustering anal-
ysis of proteins was performed. To analyze the relation-
ships between clusters, the average of the feature values 
for each cluster was calculated as its centroid. Pearson 
correlation coefficients and Euclidean distances between 
the clusters were calculated. Furthermore, the network of 
clusters was visualized using the reciprocal values of the 
Euclidean distances as the weights of the edges.

Cell type enrichment analysis based on human brain 
and microglia snRNA‑seq data
For a cell type enrichment analysis, publicly available 
human brain [38] and microglia [21, 22] snRNA-seq 
data were used. Cell annotations for each dataset were 
based on publicly available data. The AddModuleScore 
function was performed using the Seurat package [39] 
to calculate the average expression levels in each pro-
tein community. The combined score was calculated by 
multiplying the expression level by the proportion of 
positive cells in each community.

Cell type composition analysis based on human brain 
and microglia snRNA‑seq data
For a cell type composition analysis, publicly available 
human microglia [21, 22] snRNA-seq data were used. 
ANOVA was used to compare the frequencies of differ-
ent microglial subtypes across various conditions (Con-
trol, Aβ + , and Aβ + Tau +). Next, for the microglial 
subtypes "Microglia_GPNMB_LPL" and "Microglia_
GPNMB_PLAT," a Tukey HSD test was used to deter-
mine specific differences between groups (for cases 
where ANOVA showed p < 0.05).

Gene Ontology functional enrichment analysis
A Gene Ontology (GO) analysis was used to explore the 
biological functions of our targeted gene set. The GO 
biological process (GObp) dataset version 2023.1 was 
downloaded from the Molecular Signatures Database 
(MsigDB) (https://​www.​gsea-​msigdb.​org/​gsea/​msigdb). 
For the analysis, the enrichment function in the cluster-
Profiler package was used, and values of p < 0.05, after 
BH correction, were considered significant. The Rrvgo 
[40] software was used to summarize the GO terms.

Modulators of the Aβ‑tau interaction
To explore modulators of the Aβ-tau interaction based 
on proteomics data, a slightly modified version of the 
MINDy algorithm [41] was employed. Briefly, (1) 
Euclidean distances for APP and MAPT were calculated 
using BIONIC features, and common elements within 
the top 5% with respect to proximity were selected for 
analyses. (2) For each candidate modulator, the top and 
bottom 35% of proteins with respect to expression lev-
els were segregated, and mutual information for APP 
and Tau was calculated for each group. Mutual infor-
mation, which measures the interdependence between 
two random variables X and Y, was defined using 
Eq. (1) as follows:

(1)MI(X ,Y ) = x ∈ X y ∈ Yp x, y log p(x)p y p x, y

https://www.gsea-msigdb.org/gsea/msigdb
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Here, p(x,y) represents the joint probability distribu-
tion of X and Y. p(x) and p(y) are the marginal probabil-
ity distributions of X and Y, respectively. The logarithm 
base 2 was used. Subsequently, (3) the difference in 
mutual information between the top and bottom 35% 
groups was calculated using Eq. (2):

Here, Mtop35 and Mbottom35 indicate the APP and MAPT 
groups in the top 35% and bottom 35% of protein expres-
sion levels, respectively. This differentiation is crucial 
for understanding the difference in mutual information 
between the two groups, allowing for a clear analysis of 
the Aβ-Tau interaction modulators. Bootstrapping with 
1,000 iterations was then used to compare mutual infor-
mation, with values of p < 0.05 deemed significant.

Next, factors moderating Aβ-tau interactions were 
extracted using data obtained from BIONIC and a 
network analysis was conducted. Among candidate 
modulators identified in the MINDy analysis, HSPA5, 
which is closely associated with Aβ [42] and Tau [43], 
was included in the analysis. The inner product of the 
BIONIC-derived features was calculated to determine 
protein similarity, retaining the top 5% for network con-
struction. From this network, the top 5% of factors based 
on Euclidean distances to APP, MAPT, and HSPA5 were 
retained to form a subnetwork. Community detection 
within this subnetwork was performed using the leading 
eigenvector function of the iGraph package [44].

Neuropathological and RNA‑seq datasets
The neuropathological and RNA-Seq datasets used in 
this study were obtained from previously published 
works [45]. Neuropathological data include quantitative 
immunostaining results for the microglial marker IBA1, 
astrocyte marker GFAP, Aβ, tau, and phosphorylated 
tau. The datasets included 377 samples collected from 
the cortical grey (parietal and temporal) and white mat-
ter (parietal) as well as the hippocampus. Additionally, 
the frequency distributions of age, sex, CERAD scores, 
and Braak scores among the participants were evaluated, 
differentiating between the no-dementia and dementia 
groups. Age was compared between the dementia and 
no-dementia groups using a t-test, whereas sex, Braak 
score, and CERAD score were compared between the 
groups using Fisher’s exact test.

Linear regression analysis for exploring interaction terms
To explore moderating factors in the Aβ-tau interaction, 
a linear regression analysis was used to evaluate interac-
tion effects, as described previously [13]. Measurements 

(2)
�MI =

∣

∣MI
(

MAPTMtop35,APPMtop35

)

−MI(MAPTMbottom35,APPMbottom35)
∣

∣)

were performed on formalin-fixed, paraffin-embedded 
tissue Sects. (5 μm). For Aβ, the percentage of area cov-
ered by Aβ immunoreactivity was used, identifying both 
Aβ40 and Aβ42. The analysis focused on the percentage 
of the area covered by Tau2 immunoreactivity, identify-
ing mature neurofibrillary tangles and dystrophic neu-

rites. AT8, an antibody that recognizes phosphorylated 
tau (Ser202, Thr205), was also utilized. Interaction effects 
with Aβ were investigated using immunoreactivities of 
IBA1 and GFAP and gene expression levels of GPNMB. 
IBA1 was measured as the percentage of area covered 
by IBA1 immunoreactivity, GFAP as the percentage of 
area covered by GFAP immunoreactivity (identifying 
activated astrocytes), and GPNMB gene expression lev-
els were quantified as fragments per kilobase of exon per 
million reads mapped (FPKM). The interaction effects 
were evaluated using the t-test, with values of p < 0.05 
considered significant.

Trajectory analysis of human microglia snRNA‑seq data
A trajectory analysis was conducted using human 
microglial snRNA-seq data and the Slingshot pack-
age. The default parameters for the slingshot function 
were utilized, and the getCurves function was used 
with the following parameters: approx_points = 300, 
threshold = 0.01, stretch = 0.8, allow.breaks = FALSE, 
and shrink = 0.99. From the dataset reported by Sun 
et  al. [21], only microglia were extracted from immune 
cells for clustering. Clustering was performed using the 
Seurat package, following the tutorial provided by the 
Satija Lab (https://​satij​alab.​org/​seurat/​artic​les/​pbmc3k_​
tutor​ial). The settings were FindVariableFeatures with 
nfeatures = 4000, FindNeighbors, RunUMAP with 
dims = 1:10, and FindClusters with resolution = 0.5. To 
visualize gene expression over time, ggplot2 was used 
and regression curves were generated using generalized 
additive models (GAM).

Comparative analysis of GPNMB + Microglia with DAM 
and MGnD Subtypes
To compare GPNMB + microglia with DAM and MGnD 
subtypes, we retrieved their respective marker genes. The 
marker genes for GPNMB + microglia were identified 
from existing microglial subtype datasets using the Fin-
dAllMarkers function in the Seurat package, while those 
for DAM and MGnD were obtained from the relevant lit-
erature. The overlap between these gene sets was visual-
ized using the UpSetR library. The Jaccard index, a metric 

https://satijalab.org/seurat/articles/pbmc3k_tutorial
https://satijalab.org/seurat/articles/pbmc3k_tutorial
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of similarity between sets, was calculated using the fol-
lowing formula (3):

where |A ∩ B| represents the number of common ele-
ments between sets A and B, and |A ∪ B| represents the 
total number of unique elements in both sets.

Heatmaps of CERAD and Braak scores in the ROSMAP 
and MSBB cohort data
To investigate whether GPNMB protein expression mod-
erates the Aβ-tau interaction in patients with MCI and 
early AD in the ROSMAP cohort, correlations between 
CERAD and Braak scores were evaluated. The CERAD 
score in the ROSMAP cohort is a semi-quantitative 
measure of neuritic plaque density, classified into four 
scores ranging from 4 to 1, corresponding to no AD, pos-
sible AD, probable AD, and definite AD, respectively. The 
Braak score is a semi-quantitative measure of the sever-
ity of neurofibrillary tangle pathology, ranging from 0 to 
6, corresponding to Braak stages I–VI. For the top 35% 
and bottom 35% of patients based on GPNMB protein 
expression, the frequency of each CERAD and Braak 
score was visualized using a heatmap. The same analysis 
was conducted using the proteomics data from MSBB 
cohort [25], which includes TMT proteomics data from 
198 individuals diagnosed with AD and non-AD condi-
tion. Notably, the MSBB cohort did not include MCI 
patients and consisted only of AD patients and control 
groups. Therefore, our analysis focused on patients with 
CDR scores of 0.5 and 1 in both groups.

ADNI cohort analysis
Data used in the preparation of this analysis were 
obtained from the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) database (adni.loni.usc.edu). The ADNI 
was launched in 2003 as a public–private partnership, led 
by Principal Investigator Michael W. Weiner, MD. The 
original goal of ADNI was to test whether serial magnetic 
resonance imaging (MRI), positron emission tomography 
(PET), other biological markers, and clinical and neu-
ropsychological assessment can be combined to measure 
the progression of mild cognitive impairment (MCI) and 
early Alzheimer’s disease (AD). The current goals include 
validating biomarkers for clinical trials, improving the 
generalizability of ADNI data by increasing diversity in 
the participant cohort, and to provide data concerning 
the diagnosis and progression of Alzheimer’s disease to 
the scientific community. For up-to-dateinformation, see 
adni.loni.usc.edu.

CSF proteomics data were obtained using the SOMAs-
can platform, a proteomics technology that employs 

(3)J (A,B) = |A∩B|
|A∪B|

SOMAmer (Slow Off-rate Modified Aptamer) reagents. 
SOMAmers are synthetic DNA-based aptamers that 
bind to specific protein targets with high affinity and 
specificity, enabling the simultaneous quantification of 
thousands of proteins in a single assay. We utilized pre-
viously reported SOMAscan data that were normalized 
and quality-checked according to established protocols 
[46]. For data on Aβ and tau protein levels in CSF, we 
used Roche Elecsys Immunoassay data [47]. Among the 
samples that included both SOMAscan proteomics and 
Immunoassay data, we selected patients diagnosed with 
MCI (n = 112) and patients diagnosed with mild demen-
tia (n = 132) for the analysis.

To investigate the relationship between GPNMB 
expression and Aβ42, tau, and phosphorylated tau lev-
els, patients were stratified into two groups: the top 35% 
and bottom 35% based on GPNMB expression levels 
from SOMAscan proteomics. Statistical significance for 
differences in Aβ42, tau, and phosphorylated tau levels 
between the two groups was evaluated using a two-sam-
ple t-test.

Establishment of AlzPPMap
Using the R Shiny app, we developed a tool named 
AlzPPMap to analyze and visualize the integrated net-
work. By inputting one or more gene names, the tool 
allows users to select a percentage of neighboring genes 
within the integrated network. The selected percent-
age of data is then used to construct and display a sub-
network. For instance, in this study, selecting HSPA5, 
APP, and MAPT, extracting the top 5% of genes closest 
to each within the integrated network, and executing the 
tool allows reproduction of the results shown in Fig.  4. 
In the “Table” tab, users can output the community and 
degree of each gene in the network. This information can 
be leveraged for enrichment analysis for GObp or other 
databases, facilitating identification of pathways associ-
ated with genes in each community. Additionally, since 
the degree value represents a gene’s connectivity level 
(hubness) within the network, genes with higher degree 
are more centrally positioned. Such genes may serve as 
potential drug targets for network-wide regulation, offer-
ing insights for experimental validation.

Results
Study design
The analysis workflow, including an overview of the 
datasets, methods, and results, is presented in Fig.  1. 
We extracted proteomics data for patients with MCI or 
early-stage AD, constructed a co-expression network, 
and integrated it with a PPI network using BIONIC, a 
deep learning-based method. To characterize the inte-
grated data, we utilized enrichment analysis and whole 
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snRNA-seq data (Fig.  2). Using proteomics data, we 
searched for factors associated with tau and Aβ (Fig. 3), 
constructed a subnetwork of tau, Aβ, and moderators, 
and performed cell type and functional enrichment 
analyses (Fig.  4). We validated these findings using 
immunohistochemical data from a separate cohort 

(Fig. 5). Additionally, for the subnetworks, we obtained 
microglia-specific snRNA-seq data to perform a micro-
glial cell subtype enrichment analysis (Fig.  6). Finally, 
we validated these findings using immunohistochemi-
cal and gene expression data (Fig. 7).

Fig. 1  Study design. A schematic workflow of how the dataset was filtered and utilized in each figure is depicted. Data used for analyses are 
outlined with black borders, while analyses are framed in blue borders and filled in blue. Specific data applied for sub-objectives are highlighted 
by black frames within the blue sections. The analysis was conducted in two phases: exploration and validation
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Integration of protein co‑expression and physical PPI 
networks
We constructed an integrated framework as a basis for 
analyzing the effects of PPIs and their moderators in the 
AD postmortem brain. To this end, we integrated pro-
teomic data and a physical PPI network to construct a 
functional-physical PPI model. We employed BIONIC 
[30], a deep learning method designed to integrate mul-
tiple biological networks while preserving their integrity 
(Fig.  2a). BIONIC uses a graph attention network [35] 
to integrate multiple networks, maintain the distinc-
tive characteristics of each, and generate new features. A 
graph attention network is a neural network designed for 
graph-structured data. It assigns varying levels of impor-
tance to different nodes and edges, thereby improving the 
capacity to learn meaningful patterns from complex bio-
logical networks. It shows good performance [30] and has 
been used in analyses of gene interactions in cancer [48].

First, a functional protein interaction network was 
constructed based on protein abundance data. We com-
piled postmortem proteome profiles for patients with 
MCI and early-stage AD from the dorsolateral pre-
frontal cortex, which were available from the Religious 

Order Study (ROS) and Rush Memory and Aging Project 
(MAP) cohort (https://​adkno​wledg​eport​al.​synap​se.​org/). 
Early-stage AD was defined based on the clinical criteria 
outlined in the NIA-AA guidelines and lecanemab clini-
cal trials [10, 31]. Subsequently, we generated a PPI net-
work using the STRING database [32] (https://​string-​db.​
org/) and constructed subnetworks by prioritizing “high 
confidence” interactions. Using BIONIC, the integrated 
framework was embedded into a lower-dimensional vec-
tor space, and the embedded coordinates were obtained 
in a 512-dimensional space. Our downstream analysis 
used 512 integrated network features.

Characterizing integrated protein network modules
Next, we characterized the biological context captured by 
the integrated network by evaluating the cell types and 
biological functions associated with the protein modules. 
To investigate these modules, we built k-nearest neighbor 
graphs of proteins based on the integrated network to 
obtain clusters (see Methods and Figs. 2a, b). A k-nearest 
neighbor graph links each protein to its k most similar 
neighbors based on network features, thereby effectively 
clustering proteins with similar biological properties. The 

Fig. 2  Characterization of integrated protein network modules. a Schematic representation of the workflow for integrating proteomics 
and protein–protein interaction (PPI) data and evaluation of integrated features. b Stochastic neighbor embedding (tSNE) plot displaying 
protein modules. c Upper panels: Uniform Manifold Approximation and Projection (UMAP) visualizations of single-nucleus RNA sequencing 
(snRNA-seq) data for patients with Alzheimer’s disease (AD) (GSE174367) [40] clustered according to cell types (left) and conditions (right) 
Lower panels: expression levels of proteins within the identified modules. d Representative Gene Ontology (GO) terms enriched in each protein 
module. e Network depicting the closeness among modules. Closeness was defined by averaging BIONIC-derived features within modules, 
calculating the Euclidean distances among modules, and taking reciprocals

https://adknowledgeportal.synapse.org/
https://string-db.org/
https://string-db.org/
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cell types and biological processes corresponding to each 
module were inferred using publicly available snRNA-
seq data [38] and Gene Ontology terms. The modules 
in the integrated network contained cell type signatures 
(Fig. 2c) and were enriched in biological processes related 
to these cell types (Supplementary Table S1 and Fig. 2d). 
For example, module 1 was characterized by endothe-
lial cells, microglia, and astrocytes, modules 5, 17, 22, 
and 27 were associated with oligodendrocytes, modules 
9 and 13 with astrocytes, and module 11 with neurons 
(Fig. 2c). Consistent with the cell type results, in module 
5, terms related to oligodendrocytes, such as “Ensheath-
ment of neuron” and “Oligodendrocyte differentiation,” 
were identified, whereas module 11 was predominantly 
enriched in synapse-related terms (Fig. 2d).

Identification of APP and MAPT as adjacent modules 
in the integrated network
We explored the inter-modular relationships within the 
integrated network by specifically examining modules 
that included APP and MAPT, which serve as markers 
for Aβ and tau, respectively. The APP gene was located in 
module 11 and MAPT was located in module 12. Addi-
tionally, APOE, which plays a significant role in the accu-
mulation and aggregation of Aβ, was assigned to module 
1. We then constructed a network of module–module 

interactions (Fig. 2e, and Supplementary Fig. S2). Nota-
bly, these three modules were in close proximity in the 
network, with a strong correlation between the APP and 
MAPT modules (Pearson correlation coefficient = 0.7667, 
p < 0.001). Additionally, strong correlations were 
observed between the APOE module and both the APP 
(r = 0.6479, p < 0.001) and MAPT modules (r = 0.6289, 
p < 0.001). Furthermore, within the network, the MAPT 
module was closest to the APP module based on Euclid-
ean distances; the APP module was second closest to the 
MAPT module. These module-to-module correlations in 
early-stage AD support the interactions between APOE, 
APP, and MAPT [49, 50].

Next, we evaluated whether similar findings could be 
obtained without network integration. Employing the 
STRING database with settings for high confidence and 
physical interactions alone, no interactions were detected 
between the APP and MAPT modules. Similarly, APOE 
did not interact with the other genes (Supplementary 
Fig. S3). When examining protein expression data sepa-
rately, APP and MAPT did not show significant cor-
relations (Pearson’s correlation coefficient = −0.0465, 
p = 0.61). These results underscore the importance of our 
integrated network approach in capturing the biological 
interactions between Aβ and tau, which are crucial for 
understanding early-stage AD development.

Fig. 3  Inference of APP-MAPT modulators using a mutual information-based method. a Graphical representation of the Modulator Inference 
by Network Dynamics (MINDy) analysis. b Scatter plot illustrating the relationships between –log10(p-values) and Scores. Points representing 
p-values less than 0.05 are highlighted in red and are labeled with their corresponding gene symbols
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Stress response factors moderate Aβ‑tau interactions
Next, we aimed to identify factors that could moder-
ate the Aβ-tau interaction based on the integrated 

network. For this purpose, we prioritized proteins with 
strong moderating effects on APP-MAPT interactions 
against proteins close to the APP and MAPT modules. 

Fig. 4  Glial cells moderate APP and MAPT interactions. a Workflow for network reconstruction from BIONIC analysis results, subnetwork 
construction using proteins highly associated with intermediary factors, APP and MAPT, and community detection within the network, followed 
by cell type identification and enrichment analyses for each community. b GO enrichment analysis of the subnetwork, categorized by parent 
terms using the rrvgo [45] software. c Representative GO terms enriched in each community. d Dotplot displaying expression levels of proteins 
within each community
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We utilized the computational framework of Modulator 
Inference by Network Dynamics (MINDy) [41] (Fig. 3a). 
Briefly, MINDy calculates mutual information for inter-
action pairs (such as APP and MAPT), conditioned by 
the expression of the modulator, which reflects the mod-
ulating effect. Mutual information quantifies the infor-
mation shared between two variables―specifically, 
protein interactions in this context―and measures 
how much the expression of one protein provides infor-
mation about the other under the influence of a modula-
tor. In the present analysis, we extracted the neighboring 
proteins of the APP and MAPT modules in the inte-
grated network (see Methods, "Modulators of the Aβ-tau 
interaction"). We then stratified the samples from the 
proteomics dataset into groups representing the top and 
bottom 35% of expression for each neighboring protein 
and evaluated differences in the magnitude of mutual 
information between APP and MAPT (Fig.  3a). We 

analyzed 312 neighboring proteins and identified the 11 
most significant modulators (Fig.  3b). These candidates 
included factors involved in the cellular stress response 
(HSPD1 and HSPA5) [51], ubiquitin–proteasome system 
(USP48, KBTBD6, UBE2D4, and STAMBPL1) [52–54], 
and apoptosis and cellular responses (MAP3K5) [54]. 
These results suggest that proteostasis involving stress 
response genes is related to the Aβ-tau interaction.

To further identify proteins contributing to the Aβ-tau 
interaction from the moderator candidates, we investi-
gated proteins known to physically interact with Aβ and/
or tau sourced from the Amyloidome [42] and Tau Inter-
actome [43]. Consequently, Heat Shock Protein Family 
A (Hsp70) Member 5 (HSPA5) was identified. HSPA5, 
a marker of ER stress associated with AD [55, 56], has 
been shown to interact in vitro with Aβ and tau, mitigat-
ing their toxicity [57–61]. Although in vivo studies have 
identified it as a candidate therapeutic target [62, 63], the 

Fig. 5  Histopathological analysis validated the roles of microglia/astrocytes as Aβ-tau moderators in early Alzheimer’s disease. a Schematic 
of the analytical workflow for linear regression analyses. Samples were sourced from four brain regions: frontal white matter (FWM), hippocampus 
(HIP), parietal neocortex (PCx), and temporal neocortex (TCx). RNA sequencing and immunohistochemistry data were used [21, 22]. A linear 
regression was performed, repeated for GFAP and IBA1, and Aβ as predictors of tau interactions. b Significant results of linear regression analyses 
for each of the four distinct brain regions, with subjects categorized into no-dementia and dementia groups
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detailed mechanisms of action and its relevance in the 
Aβ-tau interaction are not fully understood [64].

Glial cells are closely related to the APP‑MAPT interaction 
in the integrated network
We further investigated whether stress responses involv-
ing HSPA5 are involved in Aβ-tau interactions and identi-
fied related cell types and biological pathways. To address 
this, we exploited the integrated network extensively and 
reconstructed HSPA5 and its neighboring subnetworks 
as well as APP and MAPT (Fig. 4a). Note that the subnet-
work included other significant moderators, STAMBPL1 
and MAP3K5, suggesting that these factors, in addition 
to HSPA5, could be associated with the Aβ-tau interac-
tion. This subnetwork was characterized by functions in 
neuronal death, positive regulation of kinase activity, cel-
lular response to chemical stress, synapse organization, 
and regulation of autophagy, confirming its relation to 

stress response pathways (Fig.  4b, see also Supplemen-
tary Table S2).

We classified the subnetwork proteins into six com-
munities based on topology and then estimated the cell 
types and biological functions associated with each com-
munity (Figs.  4c, d, and Supplementary Table  S3). We 
found that glial cells were the primary cell type related 
to the stress response subnetwork (Fig.  4c). Addition-
ally, the combined score for each community, calculated 
by multiplying the expression level by the proportion of 
cells, showed enrichment for glial cells (Supplementary 
Fig. S4a). Similar results were obtained using snRNA-
seq data from two different cohorts [21, 22] and different 
regions (Supplementary Figs. S4b, c). However, commu-
nities 2 and 6 were excluded from this analysis owing to 
the small number of genes included. In the APP-related 
Community 3, oligodendrocytes were enriched in protein 
folding, oxidative stress responses, neuronal death, and 

Fig. 6  snRNA-seq Analysis Identifying Enrichment for GPNMB + Microglia in Community 1. a, c Dot plot showing the expression levels of genes 
aggregated by community in each microglial subtype. [21, 22]. b, d Min–max normalized combined score for community 1, calculated 
by multiplying the expression level by the proportion of expressing cells
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autophagy. Community 4, which contained MAPT and 
HSPA5, was characterized by microglia and excitatory 
neurons with enrichment in kinase activity. Other com-
munities such as communities 1 and 5 were also enriched 
in glial cells (Figs. 4c, d). Microglia were detected as a fea-
ture of three of the four significantly enriched submod-
ules (Fig. 4c).

Histopathological data analysis validated the roles 
of microglia and astrocytes in the Aβ‑tau interaction 
in early AD
To further investigate the effect of Aβ-tau interaction, 
we examined publicly available histopathological (ACT 
study) data [45]. This dataset contains extensive multi-
modal histopathological information, including Aβ and 

Fig. 7  GPNMB + microglia as a possible moderator of the Aβ-tau interaction. a, b Heatmaps displaying the correlations between CERAD and Braak 
scores in samples categorized by the top (a) and bottom (b) 35% of GPNMB expression. c Significant results of linear regression analyses for each 
of the four distinct brain regions, with subjects categorized into no-dementia and dementia groups. d Schematic representation summarizing 
the findings supporting the roles of both astrocytes and GPNMB+ microglia in the Aβ-tau interaction
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tau pathology. The distributions of age, sex, CERAD score, 
and Braak score in groups with and without dementia are 
shown in Supplementary Fig. S5. Among these param-
eters, CERAD and Braak scores showed significant differ-
ences between the groups (Fisher’s exact test, p = 0.00237 
and p = 0.000468, respectively). In the no-dementia group, 
the average CERAD score was 1.476 and the average 
Braak score was 3.421. Braak stages I and II indicate that 
neurofibrillary tangles are confined mainly to the entorhi-
nal region of the brain, whereas stages III and IV involve 
the limbic regions, such as the hippocampus.

We analyzed the effect of the interaction between tau 
and Aβ using a linear modeling approach. Tau2, an anti-
body for a mature neurofibrillary tangles and dystrophic 
neurites, was used as the dependent variable, whereas Aβ, 
along with GFAP or IBA1 (activated astrocyte or micro-
glia markers, respectively), was used as the independent 
variable. We investigated the interaction between GFAP 
or IBA1 and Aβ, stratifying the analysis by the dementia 
status and across four brain regions (Fig. 5a). For GFAP, 
a significant positive contribution to the interaction 
was observed in the hippocampus of both the dementia 
and no-dementia groups (HIP, β = 43.59, p = 0.022 and 
β = 24.852 and p = 0.001, respectively) and in the tempo-
ral neocortex of the no-dementia group (TCx, β = 13.873 
and p < 0.001). In the case of IBA1, a positive contribution 
trend was observed in the HIP of the no-dementia group, 
though the relationship was not significant (β = 4.678 
and p = 0.338), whereas a significant positive contribu-
tion was observed in the TCx (β = 4.352 and p < 0.001). 
Conversely, in the dementia group, a significant nega-
tive contribution was noted in the TCx (β = −11.124, 
p = 0.04; Fig.  5b and Supplementary Table S4). Analyses 
of AT8, an antibody that recognizes phospho-tau (Ser202 
and Thr205) showed the same trend in the no-dementia 
group: GFAP (β = 33.912 and p = 0.235 in HIP; β = 62.732 
and p < 0.001 in TCx) and IBA1 (β = 14.442 and p = 0.36 
in HIP; β = 16.344 and p < 0.001 in TCx) (Supplementary 
Table S5). Of note, interactions were observed only in the 
HIP and TCx regions, which are vulnerable in patients 
with early-stage AD [65].

The average CERAD and Braak scores in the no-
dementia group mentioned earlier suggest that, although 
not exhibiting dementia, this group exhibited mild pro-
gression of AD pathology (Supplementary Figs. S5c, d). 
Collectively, these results support the hypothesis that 
astrocytes and microglia moderate the Aβ-tau interac-
tion in early-stage AD.

GPNMB + microglia function as moderators of the Aβ‑tau 
interaction
We further examined microglial subtypes that contrib-
ute to Aβ-tau interactions. Microglia-overexpressing 

neuroinflammation-related processes can be assigned 
to subtypes that exhibit different cellular states under 
different AD conditions [66]. We evaluated whether 
a certain subtype of microglia moderates the Aβ-tau 
interaction in early-stage AD. We accessed recently 
reported snRNA-seq data [22] from frontal cortex 
biopsies of 52 patients with hydrocephalus (NPH). This 
cohort included samples with confirmed amyloid and 
tau pathologies, in which AD was in an asymptomatic 
stage. Of the 52 living biopsies, Aβ plaques were identi-
fied in 19 subjects, Aβ plaques and phosphorylated tau 
pathology in eight subjects, and no pathology in the 
remaining 25 subjects; for subjects with Aβ pathology, 
the subsequent onset of AD was determined in longi-
tudinal studies. In total, 892,828 high-quality single-
nucleus profiles were included in analyses. Here, we 
focused on the microglial cell populations.

We performed an enrichment analysis of each micro-
glial subtype for the stress response-related subnet-
work communities (communities 1–6) based on the 
integrated network. GPNMB + microglia were signifi-
cantly enriched in community 1 (Fig.  6). The expres-
sion level and proportion of cells identified as the 
GPNMB + microglial subtype was high for the com-
munity 1 signature score (Fig.  6a). In addition, we 
compared the compositions of cell subtypes across dif-
ferent statuses in the same cohort. The frequency of 
GPNMB + microglia was significantly higher in Aβ + and 
Aβ + Tau + samples than in the control group (Sup-
plementary Fig. S6 and Supplementary Table  S6). The 
combined score for Community 1, calculated by multi-
plying the expression level and the proportion of cells 
with positive expression, further confirmed that the 
GPNMB + microglial subtype was the highest ranked 
among the examined subtypes (Fig. 6b). Importantly, the 
GPNMB + microglial subtype is expressed in the early 
stages of AD and expands as the disease progresses [22].

To further validate the involvement of GPNMB + micro-
glia in the Aβ-tau interaction in early-stage AD, we 
used another large-scale snRNA-seq data set for micro-
glia subtypes in AD [21], including transcriptome data 
for 194,000 single-nuclear microglia and multiple AD 
pathological phenotypes in 443 human subjects. The 
cell subtypes were annotated based on a previous study 
[22]. We found the same trend towards enrichment for 
GPNMB + in Module 1 (Figs. 6c, d). These results suggest 
that the stress response module moderating Aβ-tau inter-
actions in early AD corresponds to GPNMB + microglia.

Aβ‑tau stress response mediators are activated prior 
to GPMNB + microglial activation
We further examined the relationship between stress 
response-related mediators of the Aβ-tau interaction and 
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GPNMB + microglia. Previous studies have reported that 
ER stress induces GPNMB expression in neurons but not 
in microglia [67]. We hypothesized that stress response 
mediators are involved in the transition of microglia from 
a homeostatic state to an activated GPNMB + state in the 
human brain. To test this hypothesis, trajectory analysis 
of the two snRNA-seq datasets used in the previous anal-
yses was performed using Slingshot [68]. Briefly, in this 
analysis, cells are embedded in the manifold space based 
on expression similarity between cells. This trajectory 
reflects the cellular state and can be treated as a “pseudo-
time” axis. Multiple branched trajectories were identified. 
For each trajectory, we identified the GPNMB + micro-
glial coordinates on the pseudo-time trajectories (Sup-
plementary Figs. S7a, c).

Next, we analyzed the points at which the candidate 
Aβ-tau-moderating factors related to the stress response 
predicted using MINDy were expressed in the pseudo-
time analysis. In both datasets, the moderator proteins 
were highly expressed prior to GPNMB + microglia in 
all pseudo-time trajectories (Supplementary Figs. S7b, 
d). Similar results were obtained for HSPA5, a moder-
ating factor based on the amyloidome (i.e., the collec-
tion of amyloid peptides and related proteins, peptides, 
and other molecules) [42] and tau interactome [43]. 
These results suggest that stress factors moderating the 
Aβ-tau interaction may act through the activation of 
GPNMB + microglia.

GPNMB + microglia share limited similarity 
to disease‑associated microglia observed in mouse models
Previous studies have shown that GPNMB is expressed 
in both disease-associated microglia (DAM) and micro-
glial neurodegenerative phenotype (MGnD) [66, 69]. To 
further investigate the relationship between these micro-
glial subtypes and GPNMB + microglia, we conducted a 
comparative analysis. Our results revealed that the num-
ber of shared marker genes between these subtypes was 
limited (Fig. S8a). Additionally, we calculated the Jac-
card index, a metric for quantifying similarity between 
sets, which supported these findings (Fig. S8b). Further-
more, a detailed comparison of marker gene distributions 
reported in the literature showed that while GPNMB, 
LPL, CD9, and LGALS3 exhibited similar expression 
patterns, LILRB4 expression was significantly lower in 
GPNMB + microglia (Fig. S8c).

GPMNB protein expression is correlated with the clinical 
severity of AD
We evaluated the hypothesis that GPMNB + microglia 
moderate Aβ-tau interactions in early AD. In particu-
lar, we examined whether GPMNB could serve as a bio-
marker for the clinical severity of AD.

For this purpose, we assessed brain tissue protein 
expression and clinical parameters from the ROSMAP 
cohort data using CERAD and Braak scores as indi-
cators of the clinical severity of AD. We stratified the 
patients into two groups based on GPNMB protein 
expression: the top 35% and bottom 35%. The GPNMB 
high- and low-expression groups corresponded to 
the GPNMB + microglia-activated and non-activated 
groups, respectively. Within the ROSMAP cohort, the 
CERAD score is a semi-quantitative measure of neuritic 
plaques, where 1 indicates definite AD, 2 is probable 
AD, 3 is possible AD, and 4 represents no AD. The top 
35% showed greater disease progression based on both 
CERAD and Braak scores than that of the bottom 35% 
(Figs.  7a, b). A replication study using the Mount Sinai 
Brain Bank (MSBB) cohort yielded similar results in the 
parahippocampal gyrus proteomics data (Figs. S9a, b). 
Furthermore, in the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) study cohort, we evaluated the relation-
ship between GPNMB expression levels in cerebrospinal 
fluid (CSF), as measured by SOMAscan proteomics [46], 
and the protein levels of CSF Aβ42, Tau, and pTau181 
[47]. While no significant differences were observed for 
Aβ42, Tau and pTau181 levels were significantly elevated 
in the group with higher GPNMB expression (Fig. S9c).

GPNMB shows significant Aβ‑tau interaction effects 
in the preclinical stage
We further examined whether GPNMB moderates the 
effect of the Aβ-tau interaction in early-stage AD. To this 
end, we assessed the histopathological and AD diagnostic 
information from the ACT study as well as gene expres-
sion data. We tested interaction effects of GPNMB gene 
expression on Aβ and tau by linear regression analyses 
(Fig. 7c, Supplementary Tables S7 and S8).

There were significant positive interaction effects of 
GPNMB gene expression on Aβ-tau in the non-demen-
tia group in the HIP and TCx brain regions (β = 0.089, 
p = 0.02 and β = 0.026, p < 0.001 in HIP and TCx, respec-
tively). Notably, no significant interaction effects were 
observed at the same sites in the dementia group. Col-
lectively, these findings suggest that GPNMB + microglia 
and astrocyte moderate the Aβ-tau interaction in the 
early stages of AD (Fig. 7d).

Establishment of an integrated network analysis tool, 
AlzPPMap
Finally, we developed a tool named AlzPPMap (Alzhei-
mer’s disease Proteomics PPI Integrated Network Map) 
for the analysis and visualization of integrated networks. 
This tool enables users to analyze the integrated func-
tional network derived from proteomics data alongside 
physical networks derived from PPIs. Users can select 



Page 15 of 19Kitani et al. Alzheimer’s Research & Therapy           (2025) 17:70 	

one or more genes of interest and, as demonstrated in 
this study, choose a specific percentage of closely related 
genes within the network based on their proximity to 
the selected gene(s). The selected genes are then used 
to construct, visualize, and detect communities within 
a subnetwork. AlzPPMap facilitates the identification of 
molecules and molecular pathways that are both func-
tionally and physically associated with the target genes. 
In this study, we employed AlzPPMap as a proof-of-
concept, constructing a subnetwork centered on HSPA5, 
APP, and MAPT. This approach revealed that astrocytes 
and GPNMB + microglia moderate the Aβ-tau interac-
tion through stress responses. The tool can be accessed 
at: https://​igcore.​cloud/​GerOm​ics/​AlzPP​Map.

Discussion
The number of individuals with AD is expected to con-
tinue increasing [70], making the development of effec-
tive treatments a pressing issue. As mentioned in the 
Introduction, whereas Aβ and tau proteins are known to 
contribute to AD pathology, the details of their involve-
ment remain unclear [1, 2]. The specific interactions 
between them have been reported [4–7], but not the 
underlying mechanisms. In this study, we employed a 
deep learning-based network integration analysis to 
investigate the mechanisms of the Aβ-tau interaction in 
patients with early-stage AD. The study was conducted 
in four steps: (1) network integration, (2) identification of 
moderators and subnetwork construction, (3) validation 
analysis using histopathological data, and (4) develop-
ment of a user-friendly web application.

In the first phase, we constructed an integrated func-
tional-physical interaction network where two different 
data types—protein co-expression and physical PPIs—
were combined into a single network using BIONIC 
[30]. Interestingly, enrichment analysis and snRNA-seq 
data showed that the integrated network captured rel-
evant cell types and pathways. We also confirmed that 
Aβ and tau were present in neighboring modules in the 
integrated network. Notably, neither co-expression infor-
mation nor physical interaction data alone could capture 
the Aβ-tau interaction, emphasizing the need to evalu-
ate functional and physical interactions simultaneously. 
Co-expression network analyses are widely used in AD 
research [23–25], but it is difficult to represent physical 
interactions, such as Aβ-tau interactions or the amyloi-
dome. Therefore, an approach that integrates networks 
based on different types of biological information may be 
effective in elucidating the complex molecular pathogen-
esis of AD.

In the second phase, we used the MINDy [41] algo-
rithm to search for factors that moderate the Aβ-tau 
interaction using proteomics expression data. We 

identified ER stress markers such as HSPA5, along with 
other stress response-related factors, including HSPD1, 
USP48, KBTBD6, UBE2D4, STAMBPL1, and MAP3K5, 
as potential moderators. Although ER stress responses 
have been frequently reported to be associated with AD 
[55–63], their detailed mechanisms remain unclear. In 
this study, our findings suggested that stress response 
pathways were associated with the Aβ-tau interaction, 
indicating that elucidating how these pathways influ-
ence the progression of AD could be a focus for future 
research. In particular, understanding how ER stress 
responses are involved in the Aβ-tau interaction and 
transmitted through glial cells could contribute to the 
development of novel therapeutic strategies. We next 
identified molecules, cell types, and pathways involved in 
the Aβ-tau interaction by constructing subnetworks from 
the factors identified in the second phase, extracting 
genes closely related to the two proteins within the inte-
grated network. The results suggested that glial cells, par-
ticularly GPNMB + microglia, are involved in the Aβ-tau 
interaction.

In the third phase, we validated the findings using an 
independent dataset with histopathological data from 
the ACT study [45]. Through linear regression analy-
sis, we examined the interaction between GFAP, IBA1, 
and GPNMB with Aβ in the hippocampus and tempo-
ral neocortex in the non-dementia group. Furthermore, 
in the ROSMAP, MSBB, and ADNI cohorts, variations 
in Aβ and tau pathology progression based on GPNMB 
expression levels not only confirmed the reproducibil-
ity of the GPNMB-mediated Aβ-tau interaction but also 
provided novel insights. In the ADNI cohort, analysis 
of CSF protein levels revealed that patients with high 
GPNMB expression also exhibited elevated CSF tau lev-
els, suggesting the GPNMB’s potential as a biomarker 
for disease progression. On the other hand, results for 
Aβ levels did not align between CSF and brain tissue. 
This discrepancy may stem from the well-documented 
inverse correlation between CSF and brain Aβ levels 
in AD patients [71]. Significant positive interactions 
were detected in multiple cohorts, further suggest-
ing that astrocytes and GPNMB + microglia are mod-
erators of the Aβ-tau interaction in early-stage AD. 
GPNMB + microglia, a recently identified subtype, are 
elevated in the frontal white matter and cortex of patients 
with AD [72]. Additionally, GPNMB is expressed in acti-
vated microglia [73] and is associated with AD pathology 
[66]. Furthermore, the expression of GPNMB in micro-
glia is correlated with recently reported subtypes, such 
as disease-associated microglia (DAM) [69] and micro-
glial neurodegenerative phenotype (MGnD) [22], which 
are closely associated with plaques and neurodegen-
eration. However, their specific functions related to Aβ 

https://igcore.cloud/GerOmics/AlzPPMap
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and tau have not been fully elucidated. Our comparative 
study between GPNMB + microglia, DAM, and MGnD 
demonstrated that the number of shared marker genes 
between these subtypes and GPNMB + microglia is lim-
ited. One potential reason for this finding is that DAM 
and MGnD were originally identified in studies using the 
5XFAD and APP-PS1 mouse models, respectively. These 
mouse models fail to replicate tau pathology observed 
in human AD patients, which may account for the dif-
ferences in gene expression profiles. Our results suggest 
that the distinct marker gene profile of GPNMB + micro-
glia may indicate a unique role in AD pathogenesis, pro-
viding new insights into their potential as a therapeutic 
target. Modulating GPNMB + microglia may help sup-
press tau aggregation and, consequently, mitigate neu-
ronal death and cognitive decline. However, the precise 
mechanisms by which GPNMB + microglia contribute 
to the Aβ-tau interaction remain unknown. To translate 
these findings into clinical applications, further stud-
ies are required to elucidate the underlying molecu-
lar and cellular pathways. The present study along with 
recent work by Vahid Gazestani et  al. [26–30] ulilizing 
meta-analysis of snRNA-seq data has reported that the 
transcriptional states of GPNMB + microglia differ from 
those of microglial subtypes identified in mouse models. 
This discrepancy highlights the necessity of establishing 
experimental systems that accurately model the unique 
characteristics of GPNMB + microglia in humans. Addi-
tionally, our trajectory analysis using snRNA-seq data 
from microglia suggests that GPNMB + microglial activa-
tion may be influenced by stress response pathways. This 
finding raises the possibility that the HSPA5-mediated 
stress response contributes to GPNMB + microglial acti-
vation and the moderation of the Aβ-tau interaction. By 
developing such experimental systems and performing 
detailed mechanistic analyses, it may become possible 
to further elucidate how stress responses influence the 
activation of GPNMB + microglia and their involvement 
in the Aβ-tau interaction, potentially revealing action-
able pathways and molecular targets for therapeutic 
intervention.

In summary, network integration analysis has been 
extensively reported in cancer research [30], but its use 
in AD research remains limited. Through this study, we 
were able to identify potential moderators of the Aβ-tau 
interaction by integrating proteomics and PPI data using 
BIONIC [22]. Future analyses using a framework like the 
one presented in this study, integrating other omics data, 
could lead to new insights into the mechanisms of AD 
and other disease areas. Additionally, in the last phase, 
we developed a tool named AlzPPMap to evaluate the 
integrated network constructed in this study. This tool 
enables the analysis and visualization of relationships 

between other genes, potentially providing new insights 
and ideas for experimental validation. However, as men-
tioned in the Limitations section below, AlzPPMap does 
not distinguish between different gene isoforms or post-
translational modifications of proteins, so incorporat-
ing these factors would be necessary for a more detailed 
identification of molecular interactions. Moreover, 
although AlzPPMap considers physical molecular inter-
actions, it does not focus exclusively on AD-associated 
PPIs, which may result in false positives.

This study had several limitations. First, except for the 
GPNMB + microglial data [73] and ADNI analyses, all 
data were derived from postmortem brains. This intro-
duces potential confounding factors between postmor-
tem effects and AD pathology. To validate the findings 
of GPNMB + microglia of this study in  vivo, the devel-
opment of PET probes is necessary. Notably, P2X7R and 
P2Y12R have been highlighted as tracers for pro-inflam-
matory and anti-inflammatory phenotypes, respectively 
[74], and GPNMB also has the potential to serve as a 
tracer for microglial subtypes. Additionally, due to the 
postmortem nature of the brain samples, it is possible 
that the degradation of specific proteins was acceler-
ated, potentially influencing the structure of the Aβ-tau 
interaction network. In particular, this factor could have 
impacted the detection of neuron-associated interac-
tions within the Aβ-tau network. Second, in the analyses 
summarized in Fig. 4, protein expression was aggregated 
by genes, not accounting for multiple isoforms or post-
translational modifications, especially in APP and MAPT. 
For example, Aβ40 and Aβ42 are produced from APP 
through different processes, and Tau in MAPT under-
goes various phosphorylation modifications [75], impact-
ing the disease differently. Histopathological evaluations 
of Aβ and tau were used to validate the integrated pro-
tein network analysis results. Third, the GPNMB gene 
expression analysis was based on bulk RNA-seq data, 
which may not specifically reflect GPNMB + microglia. A 
detailed analysis of the role of GPNMB + microglia in AD 
requires further experimental studies. Fourth, although 
we applied a significance threshold of P < 0.05 with the 
Benjamini–Hochberg correction, there is ongoing discus-
sion in the field regarding the potential benefits of using 
a more stringent threshold. Future studies with larger 
sample sizes could help to further support our findings. 
Nonetheless, our findings offer valuable new insights into 
the Aβ-tau interaction and highlight potential directions 
for the development of AD therapeutics.
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