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Abstract 

Background Depression serves as a prodromal symptom of dementia, and individuals with depression exhibit a sig‑
nificantly higher risk of developing dementia. The aim of this study is to develop and validate a novel dementia risk 
prediction tool among middle‑aged and elderly individuals with depression based on machine learning algorithms.

Methods This study included 31,587 middle‑aged and elderly individuals with depression who did not have a diag‑
nosis of dementia at baseline from a large UK population‑based prospective cohort. A rigorous variable selection 
strategy was employed to identify risk and protective factors of dementia from an initial pool of 190 candidate vari‑
ables, ultimately retaining 27 variables. Eight distinct data analysis strategies were utilized to develop and validate 
the dementia risk prediction model. The DeLong’s test was applied to compare the statistical differences between dif‑
ferent models.

Results During a median follow‑up of 7.98 years, 896 incident dementia cases were identified among study par‑
ticipants. In model development employing an 8:2 data split (fivefold cross‑validation for training), the Adaboost 
classifier achieved the optimal performance (AUC 0.861 ± 0.003), followed by XGBoost (AUC 0.839 ± 0.005) and Cat‑
Boost (AUC 0.828 ± 0.007) classifiers. To facilitate community generalization and clinical applicability, we develop 
a simplified model through a forward feature subset selection algorithm, retaining 12 variables. The simplified model 
maintained robust performance, with AdaBoost achieving the highest discriminative ability (AUC 0.859 ± 0.002), fol‑
lowed by XGBoost (AUC 0.835 ± 0.001) and CatBoost (AUC 0.821 ± 0.005). The DeLong’s test revealed no statistically 
significant difference in AUC values between models using 12 and 27 variables (p = 0.278). For practical implementa‑
tion, we deployed the optimal model to a web application for visualization and dementia risk assessment, named 
DRP‑Depression.
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Conclusions We developed a practical and easy‑to‑promote risk prediction model based on machine learning 
algorithms, and deployed it to a web application to provide a new and convenient tool for dementia risk prediction 
in the middle‑aged and elderly individuals with depression.
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Background
Dementia, ranked as the seventh leading cause of mor-
tality globally, afflicts an estimated 55 million adults 
worldwide, with epidemiological projections indicat-
ing a doubling of prevalence every two decades [1, 2]. 
Despite significant research investments in elucidating 
etiological pathways and developing preventive strat-
egies, no disease-modifying therapies have achieved 
clinical validation to date. This therapeutic impasse 
underscores the paramount importance of both the 
identification of modifiable risk factors and the  imple-
mentation of early interventions for mitigating disease 
incidence and attenuating pathological progression in 
pre-symptomatic stages [3, 4].

Depressive disorders affect over 300 million people, 
equivalent to 4.4% of the world population, and have 
become the leading cause of global disease burden [5]. 
Evidence reveals a significantly higher risk of develop-
ing dementia in individuals with depression compared 
to those without depression, independent of depression 
onset chronology [6]. This robust association persists 
across longitudinal cohort studies [7–9], necessitating 
enhanced clinical vigilance for neurocognitive decline 
in this population.

Mechanistically, genome-wide association studies 
identify the CALHM2 V136G mutation as a shared 
genetic vulnerability, where impaired astrocytic ATP 
release capacity mediates both depressive symptoma-
tology and Alzheimer-type neurodegeneration [10]. 
These findings corroborate the hypothesis of overlap-
ping neurodegenerative pathways between the two dis-
orders. Dementia-related pathological changes may be 
present in patients’decades before clinical manifesta-
tion appear, with depression frequently presenting as a 
prodromal symptom preceding overt cognitive decline 
by decades [11–14]. Therapeutic challenges emerge in 
geriatric populations. The elderly are more sensitive to 
antidepressants and have more side effects, and some 
elderly patients with executive function deficits show 
do not respond adequately to antidepressant therapy 
[15]. Identifying potential risk factors and implement-
ing timely interventions could help prevent the onset 
of dementia and improve the outcome of dementia 
patients [16, 17]. Therefore, integrating depression-spe-
cific dementia risk prediction algorithms into routine 

psychiatric evaluations could optimize precision pre-
vention frameworks for high-risk populations.

Various clinical decision-support tools have been 
developed to help clinicians to stratify dementia risk 
in clinical practice. Notable examples include: (1) The 
Cardiovascular Risk Factors, Aging, and Incidence of 
Dementia (CAIDE) Risk Score is a tool that estimates 
the risk of developing dementia in 20 years based on 
several vascular risk factors (e.g., education level, stroke, 
total cholesterol, body mass index) [18]; (2) The Brief 
Dementia Screening Index (BDSI) is a primary care-
optimized instrument for dementia that can be used by 
non-specialists [19]; (3) The UK Biobank dementia risk 
prediction (UKB-DRP) model developed by You et  al., 
employed machine learning methods to estimate 5-, 10-, 
and longer-periods risk of dementia in the general popu-
lation [20]. Nevertheless, these models exhibit critical 
limitations for routine implementation, particularly their 
reliance on biomarkers with restricted clinical accessi-
bility (e.g., CAIDE’s total cholesterol, UKB-DRP’s ApoE 
genotype) that hinder cost-effective mass screening. 
Our research team recently addressed these limitations 
by creating a point-based risk score prediction model to 
evaluate the 5-, 9-, and 13-year risk of dementia, which 
demonstrated superior predictive performance (AUC 
= 0.87) using exclusively clinically accessible variables 
[21]. However, existing models are all developed based on 
general population. To our knowledge, reports of devel-
oping clinical decision support tools to predict dementia 
risk specifically tailored for depression population have 
not been found, leaving a critical evidence gap regard-
ing dementia risk stratification in depression comorbidity 
contexts.

In the present large-scale longitudinal diagnostic study, 
we employed machine learning techniques to develop a 
simple and convenient dementia risk prediction tool spe-
cifically tailored for middle-aged and elderly depression 
population. This study is analysed based on data from 
the comprehensive prospective UK Biobank cohort. We 
implemented a rigorous feature selection strategy to 
obtain optimal variables associated with dementia that 
were readily available. To facilitate community gener-
alization and clinical applicability, we deploy a simplified 
and optimal prediction model to an interoperable Web-
based interface application that can automates risk strati-
fication using routinely collected clinical parameters. 
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Our study provides healthcare practitioners with a novel 
digital solution for point-of-care dementia risk stratifica-
tion in depression population.

Methods
Study participants
This study holds de-identified data of 502,386 partici-
pants aged 37–73 enrolled in the UK Biobank between 
March 13, 2006, and October 1, 2010. All participants 
who completed the baseline assessment were included 
from 22 recruitment centers across England, Scotland, 
and Wales.Among the de-identified data of 502,386 
participants, 31,587 (6.29%) case were identified as hav-
ing depression. Comprehensive data collection included 
structured interviews, self-reported questionnaires, 
and standardized assessments capturing demographic 
characteristics, lifestyle factors, health status, physi-
cal measurements, biospecimen data, imaging data, 
and phenotypic characteristics. Ethical approval was 
granted by the North West Multi-Center Research Eth-
ics Committee (REC reference: 16/NW/0274) and the 
Second Affiliated Hospital of Nanchang University. All 
enrolled individuals provided written informed consent 
prior to participation. This study followed the Transpar-
ent Reporting of a Multivariable Prediction Model for 
Individual Prognosis or Diagnosis (TRIPOD) reporting 
guideline and was conducted from March 31 to August 
31, 2023.

Primary outcome
The primary startpoint of this study was the first docu-
mented occurrence of depression, and the primary end-
point was the first documented occurrence of dementia. 
For those who were not identified as incident dementia 
cases during follow-up, the endpoint was March 31, 2023 
or the date of death if the death data occurred earlier. 
Information on disease diagnosis and date of diagno-
sis were coded according to the International Statistical 
Classification of Diseases, 10 th revision (ICD-10) terms 
from UK Biobank data field 41270 and 41280, respec-
tively (dementia, Field ID F01–F05 and G30; depres-
sion, F32–F33, F41.2, and T43.0-T43.2; Supplementary 
eTable  1). The primary outcome of dementia included 
Alzheimer’s disease, vascular dementia, dementia 
unspecified organic amnestic syndrome, and dementia in 
other disorders of other classifications.

Candidate variables
This study initially included all clinically relevant vari-
ables obtained at baseline assessments. Subsequently, 
following multidisciplinary clinical review, procedural 
metric variables that were clinical meaningless (e.g., bio-
specimen processing metrics, diagnosis codes, measure 

device, IDs) and some information variables used to 
record time were excluded. Variable selection was guided 
by three principal considerations: (1) validated dementia 
risk factors from epidemiological studies [22]; (2) depres-
sion-related biomarkers [23]; and (3) clinical phenotypes 
demonstrating mechanistic relevance to neurodegenera-
tion (e.g., sleep disorders, health maintenance behaviors). 
Subsequent categorization organized the final 190 varia-
bles into 9 clinically meaningful domains (Supplementary 
eTable 2), including the demographic characteristics (n = 
5), lifestyle and environmental exposures (n = 51), sleep 
phenotypes (n = 8), socioeconomic status (n = 10), medi-
cations and medical history (n = 53), laboratory tests (n 
= 23), physical measures (n = 10), social and psychologi-
cal factors (n = 29), and a self-generated variable (n = 1).

Variable selection
A rigorous multi-stage selection framework was imple-
mented to optimize feature-outcome associations. The 
variable filtration protocol comprised four sequential 
phases: (1) Statistical filtering employing Chi-square test 
for categorical variables and Mann-Whitney-Wilcoxon 
test for continuous variables, eliminating non-signifi-
cant 87 variables (p > 0.05); (2) Completeness evaluation 
excluding 54 variables with > 5% missing data; (3) Clini-
cal feasibility assessment removing 20 variables requiring 
specialized collection protocols or not easily available; (4) 
multicollinearity association removing 2 variables with 
variance inflation factor (VIF) values > 5 (Supplemen-
tary eFigure  1). The resultant 27 variables were used to 
develop dementia risk prediction model.

Forward feature subset selection
Forward feature subset selection is a computationally 
efficient stepwise algorithm balancing model parsi-
mony and predictive power [24]. Our implementation 
protocol comprised: 1) Initialization with null fea-
ture space; 2) Iterative AUC maximization through 
fivefold cross-validation; 3) Greedy incorporation of 
features fj , yielding maximal incremental discrimina-
tion; fj = arg maxfi(AUC(S ∪ {fi})− AUC(S)) ; 4) Termi-
nation upon three consecutive iterations with < 1% AUC 
improvement; 5) Final validation using independent test 
cohorts.

Model development and validation framework
A multi-stratum validation framework was implemented 
on the 31,587 depressed middle-aged and elderly partici-
pants. Eight distinct validation paradigms were system-
atically evaluated (Fig. 1).

1) Full cross-validation schem
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Fig. 1 Experimental flow chart. The panels exhibit the development pipeline of the machine learning model. The diagram shows the key steps 
of model development, as well as sample diagrams of performance evaluation and web application process
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Study 1: 10-fold cross-validation design A 10-fold 
cross-validation was used for model development and 
validation.

Study 2: 5-fold cross-validation design A 5-fold 
cross-validation was used for model development and 
validation.

Study 3: Data splitting by 8:2 We split the 31,587 
depressed participants into training and testing datasets 
by a ratio of 8:2 to perform internal validation. To ensure 
the balanced distribution of patients with dementia 
between the training and testing datasets, we randomly 
split 80% of participants with dementia and 80% of those 
without dementia in the training dataset (9,226 men and 
16,043 women), and 20% of participants with dementia 
and 20% of those without dementia in the testing dataset 
(2,307 men and 4,011 women).

2) Hybrid validation schemes

Study 4: Data splitting by 8:2 and 5-fold cross-validation
Similar to Study 3, the datasets were split into 8:2 for 

training and testing datasets, respectively. A 5-fold cross-
validation was performed in the training datasets.

Study 5: Data splitting by 8:2, 5-fold cross-validation, 
and transfer learning model

Similar to Study 4, 5-fold cross-validation was used to 
develop training model in the 80% of depressed partici-
pants, the training model was then transferred to the 20% 
of depressed participants.

Study 6: Data splitting by 7:3
Similar to Study 3, but the dataset was split by 7:3.
Study 7: Data splitting by 7:3 and 5-fold cross-validation
Similar to Study 4, but the dataset was split by 7:3.
Study 8: Data splitting by 7:3, 5-fold cross-validation, 

and transfer learning model
Similar to Study 5, but the dataset was split by 7:3.

Machine learning classifiers
In this study, three distinct machine learning classi-
fiers were used to assess the performance of dementia 
prediction models:, Categorical Boosting (CatBoost) 
[25], Adaptive Boosting (AdaBoost) [26], and eXtreme 
Gradient Boosting (XGBoost) [27]. CatBoost is a gradi-
ent boosting-based classifier specifically optimized for 
classification features, while AdaBoost and XGBoost 
are ensemble learning methods that iteratively improve 
classification accuracy through weighted error correc-
tion. We dichotomized these models to stratify depressed 
participants into two prognostic categories: class 0 
(expected to remain dementia-free) and class 1 (expected 
to develop incident dementia). Model performance was 
rigorously evaluated using receiver operating character-
istic (ROC) curve analysis, with the area under the curve 

(AUC) serving as the primary evaluation metric. A com-
prehensive set of performance indicators was calculated, 
including classification accuracy, sensitivity, specificity, 
precision, and F1-score.

Sensitivity analysis for temporal confounding
To address potential temporal bias in the depression-
dementia association, we conducted sequential sensi-
tivity analyses employing stratified exclusion criteria. 
The primary analysis excluded participants within 
6 months post-diagnosis of depression (n = 109) to 
account for potential reverse causation, while the 
extended analysis removed those within 2 years (n = 
1,423).. Following these temporal exclusion thresholds, 
we systematically re-evaluated model performance 
metrics (AUC, sensitivity, specificity) on the resultant 
restricted cohorts to assess the robustness of our pre-
dictive framework.

Statistical analysis
Continuous variables are summarized using the mean 
± standard deviation (SD). Categorical variables are pre-
sented as numbers (percentages). Group comparisons 
(dementia-free group vs dementia group) are conducted 
using Chi-square test for categorical variables and Mann-
Whitney-Wilcoxon test for continuous variables. Missing 
data were imputed using the mode.

The DeLong’s test [28] was used to compare the statisti-
cal differences in AUCs between the optimal model using 
27-variable model and the simplified 12-variable model. 
We developed a webpage application for individual risk 
prediction based on the optimal model. Robustness anal-
ysis was used to evaluate the stability of the classification 
models. We used SHAP plots [29] to visualize how much 
each variable affects the target outcome.

To further characterize dementia risk associations, we 
implemented a multivariable Cox proportional hazard 
regression model, deriving adjusted hazard ratios (HRs) 
with 95% confidence intervals. All analyses were per-
formed using IBM SPSS version 26.0 and Scikit-learn 
version 0.24.2 in Python version 3.6.8. Statistical signifi-
cance was determined as P values < 0.05 using two-tailed 
hypothesis testing.

Results
Population characteristics
As shown in Supplementary eFigure 2, our initial cohort 
underwent rigorous exclusion criteria: 470,089 non-
depressed participants and 710 participants whose diag-
nosis data of dementia predate that of depression were 
sequentially excluded. The remaining 31,587 depressed 
participants (mean age, 56.23 ± 8.10 years; 63.50% 
females) were included in the study. During a median 
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follow-up of 7.98 years (interquartile range [IQR], 
4.61–12.08), 896 (2.80%) incident dementia cases (mean 
age, 63.11 ± 5.51 years; 52.30% females) were identi-
fied (dementia group), and 30,691 (97.20%) participants 
(mean age, 56.03 ± 8.07 years; 63.80% females) remained 
dementia-free (dementia-free group).

Table  1 presents the demographic characteristics of 
the study population. The dementia cohort was signifi-
cantly older at baseline compared to dementia-free coun-
terparts (p < 0.001). Compared with the dementia-free 
group, the dementia group showed a higher prevalence 
rates of sleep problems, slow walking pace, obesity and 
high-frequency drinking, and a lower prevalence rates of 
employment status, visiting psychologist, and household 
members. Complete operational definitions and data 
acquisition protocols for all 27 candidate variables are 
shown in Supplementary eTable 3.

Development and validation of 27 variable‑model
After the rigorous multi-stage selection procedure 
from the initial 190 candidate variables, ultimately 
retaining 27 variables that are easily available. These 
variables encompass established those that were vali-
dated to be associated with dementia. CatBoost, Ada-
Boost, and XGBoost were applied to evaluate the 
performance across eight distinct data partitioning 
schemes. As shown in Fig.  2A, comparative analysis 
revealed that AdaBoost achieved the optimal perfor-
mance in Study 4 (AUC 0.861 ± 0.003), followed by 
XGBoost model (AUC 0.839 ± 0.005) and CatBoost 
model (AUC 0.828 ± 0.007).

Detailed performance metrics for Study 4 (Tables  2, 
3) showed: 1) AdaBoost: mean accuracy of 98%, sensi-
tivity of 100%, specificity of 98%, precision of 100%, and 
F1-score of 45.2%; 2) XGBoost: mean accuracy of 97.9%, 
sensitivity of 94.1%, specificity of 98%, precision of 94.1%, 
and F1-score of 44.7%; 3) CatBoost: mean accuracy of 
97.9%, sensitivity of 96.6%, specificity of 97.9%, preci-
sion of 96.6%, and F1-score of 43.8%. All models achieved 
comparable performances, with testing set AUCs 
between 0.81 and 0.87 and training set AUCs between 
0.80 and 0.85 (Supplementary eTable 4).

Development and validation of simplified model
To facilitate community generalization and clinical appli-
cability, we develop a simplified model for web applica-
tion through a forward feature subset selection algorithm 
based on Pearson’s correlation coefficient, ultimately 
retaining 12 variables. The 12 variables included age, sex, 
waist circumference, a doctor visit for mental health, 
guilty feelings, duration of depression, employment sta-
tus, playing computer games, phone use length, number 
in household, daytime dozing, and nap during day.

As shown in Fig.  2B, model predictive capacity ini-
tially exhibited exponential enhancement with sequential 
incorporation of top-ranked variables. This progression 
transitioned to a stabilization phase characterized by 
performance plateauing accompanied by < 5% interquar-
tile fluctuations upon integration of subsequent predic-
tors. Ultimately, the algorithm converged at 12 optimally 
predictive features, with this parsimonious configuration 
achieving peak discriminative performance.

Development and validation of simplified model
To facilitate community generalization and clinical appli-
cability, we develop a simplified model for web applica-
tion through a forward feature subset selection algorithm 
based on Pearson’s correlation coefficient, ultimately 
retaining 12 variables. The 12 variables included age, sex, 
waist circumference, a doctor visit for mental health, 
guilty feelings, duration of depression, employment sta-
tus, playing computer games, phone use length, number 
in household, daytime dozing, and nap during day.

As shown in Fig.  2B, model predictive capacity ini-
tially exhibited exponential enhancement with sequential 
incorporation of top-ranked variables. This progression 
transitioned to a stabilization phase characterized by 
performance plateauing accompanied by < 5% interquar-
tile fluctuations upon integration of subsequent predic-
tors. Ultimately, the algorithm converged at 12 optimally 
predictive features, with this parsimonious configuration 
achieving peak discriminative performance.

As detailed in Fig. 2 C, the 12-variable simplified model 
maintained AdaBoost’s diagnostic superiority in Study 4 
(AUC 0.859 ± 0.002), followed by XGBoost model (AUC 
0.835 ± 0.001) and CatBoost model (AUC 0.821 ± 0.005). 
Detailed performance metrics for Study 4 (Tables 2 and 
4) showed: 1) AdaBoost: mean accuracy of 98%, sensi-
tivity of 100%, specificity of 98%, precision of 100%, and 
F1-score of 45.2%; 2) XGBoost: mean accuracy of 97.9%, 
sensitivity of 91.6%, specificity of 98%, precision of 91.6%, 
and F1-score of 44.5%; 3) CatBoost: mean accuracy of 
97.9%, sensitivity of 93%, specificity of 98%, precision of 
93%, and F1-score of 44.4%. Additionally, all models have 
achieved decent performances with AUCs between 0.79 
and 0.86 in the testing dataset and between 0.79 and 0.85 
in the training dataset (Supplementary eTable 5). Cross-
validation analyses confirmed the robustness of the sim-
plified model, with testing set AUCs spanning 0.79–0.86 
and training set AUCs ranging 0.79–0.85, indicating 
that the model retained generalizability (Supplementary 
Table 5).

Model interpretation and visualization
To elucidate the mechanistic contributions of the 12-var-
iable panel to dementia risk prediction, we employed 
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Table 1 The baseline characteristics of UK Biobank participants involved in the study

Overall Dementia group Dementia‑free group

Characteristic (n=31 587) (n=896) (n=30 691) p‑value

Age (mean±SD), y 56.23 ± 8.10 63.11 ± 5.51 56.03 ± 8.07 <.001

Sex

 Female 20 054 (63.50%) 469 (52.30%) 19 585 (63.80%) <.001

 Male 11 533 (36.50%) 427 (47.70%) 11 106 (36.20%)

Employment status

 In paid 13 677 (43.30%) 155 (17.30%) 13 522 (44.06%) <.001

 Not in paid 17 470 (55.31%) 726 (81.03%) 16 744 (54.56%)

Sleep duration

 7–8 h 17 045 (53.96%) 482 (53.79%) 16 563 (53.97%) .001

 ≤6 h 9 689 (11.68%) 240 (26.79%) 9 449 (30.79%)

 ≥9 h 4 288 (13.58%) 154 (17.19%) 4 134 (13.47%)

Nap during day

 Never/rarely 14 144 (44.78%) 336 (37.50%) 13 808 (44.99%) <.001

 Sometimes 14 386 (45.54%) 421 (46.99%) 13 965 (45.50%)

 Usually 2 891 (9.15%) 134 (14.96%) 2 757 (8.98%)

Sleeplessness

 Never 4 429 (14.02%) 156 (17.41%) 4 273 (13.92%) .003

 Sometimes/usually 27 026 (85.56%) 736 (82.14%) 26 290 (85.66%)

Daytime dozing

 Never 21 036 (66.60%) 528 (58.93%) 20 508 (66.82%) <.001

 Sometimes 8 252 (26.12%) 273 (30.47%) 7 979 (26.00%)

 Usually 1 899 (6.01%) 80 (8.93%) 1 819 (5.93%)

Getting up in morning

 Not very easy 10 573 (33.47%) 275 (30.69%) 10 298 (33.55%) <.001

 Fairly easy 13 409 (42.45%) 348 (38.84%) 13 061 (42.56%)

 Very easy 7 129 (22.57%) 261 (29.13%) 6 868 (22.38%)

BMI

 <25 8 224 (26.04%) 197 (21.99%) 8 027 (26.15%) .011

 ≥25 22 998 (72.81%) 675 (75.33%) 22 323 (72.73%)

Smoking status

 Never/previous 25 375 (80.33%) 742 (82.81%) 24 633 (80.26%) .019

 Current 5 965 (18.88%) 141 (15.74%) 5 824 (18.98%)

Alcohol drinker status

 Never 1 835 (5.81%) 75 (8.37%) 1 760 (5.73%) <.001

 Previous/current 29 539 (93.52%) 816 (91.07%) 28 723 (93.59%)

Alcohol intake frequency

 Never 9 526 (30.16%) 317 (35.38%) 9 209 (30.01%) <.001

 <3 times/week 11 072 (35.05%) 260 (29.02%) 10 812 (35.23%)

 ≥3 times/week 10 797 (34.18%) 316 (35.27%) 10 481 (34.15%)

 Waist circumference (mean±SD), cm 93.20 ± 14.75 96.12 ± 14.59 93.12 ± 14.75 <.001

Usual walking pace

 Slow pace 6 220 (19.69%) 276 (30.80%) 5 944 (19.37%) <.001

 Normal pace 16 043 (50.79%) 413 (46.09%) 15 630 (50.93%)

 Brisk pace 8 602 (27.23%) 171 (19.08%) 8 431 (27.47%)

Stair climbs in 4 weeks

 ≤5 times/day 11 436 (36.20%) 383 (42.75%) 11 053 (36.01%) <.001

 6–15 times/day 14 988 (47.45%) 368 (41.07%) 14 620 (47.64%)

 ≥16 times/day 4 074 (12.90%) 93 (10.38%) 3 981 (12.97%)
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variable contribution ranking and SHapley Additive 
exPlanations (SHAP) plot analysis. Figure  2D shows 
the feature importance ranking of 12 variables in the 
optimized AdaBoost model. In our study, the contri-
bution to the model in descending order were age, 
duration of depression, employment status, napping, 
waist circumference, phone use, sex, computer games, 
household number, daytime dozing, guilty feelings and 
doctor visit for mental health. Figure  2E demonstrates 
the SHAP value distribution through a beeswarm plot, 

quantitatively mapping each feature’s non-linear impact 
on dementia probability. Analysis of SHAP value showed 
that age, duration of depression, and employment status 
had the greatest magnitude of effect, showing superior 
discrimination.

Multivariable Cox regression model of 12 variables
Based on the 12 variables of the simplified model, we 
constructed a multivariate Cox proportional hazard 
regression analysis. In the final full variable model, 

Continuous variables are presented as mean ± SD and categorical variables as number (%). P values were calculated based on Chi-square test for categorical variables 
and Mann-Whitney-Wilcoxon test for continuous variables

Abbreviations: BMI Body mass index, SD Standard deviation

Table 1 (continued)

Overall Dementia group Dementia‑free group

Phone use length

 ≤1 year 5 576 (17.65%) 282 (31.47%) 5 294 (17.25%) <.001

 ≥2 years 25 299 (80.09%) 575 (64.17%) 24 724 (80.56%)

Playing computer games

 No 24 427 (77.33%) 742 (82.81%) 23 685 (77.17%) <.001

 Yes 6 998 (22.15%) 147 (16.41%) 6 851 (22.32%)

Use of ultraviolet protection

 Always/don’t go out in sunshine 7 081 (22.42%) 181 (20.20%) 6 900 (22.48%) <.001

 Most of the time 9 909 (31.37%) 234 (26.12%) 9 675 (31.52%)

 Never/sometimes 14 112 (44.68%) 462 (51.56%) 13 650 (44.48%)

 Number in household (mean±SD), unit 2.24 ± 1.43 1.92 ± 1.08 2.25 ± 1.44 <.001

Able to confide

 ≥1 time/week 20 555 (65.07%) 528 (58.93%) 20 027 (65.25%) <.001

 <1 time/week 9 938 (31.46%) 327 (36.50%) 9 611 (31.32%)

Mood swings

 No 7 189 (22.76%) 241 (26.90%) 6 948 (22.64%) .002

 Yes 23 687 (74.99%) 628 (70.09%) 23 059 (75.13%)

Long worry after shame

 No 11 523 (36.48%) 384 (42.86%) 11 139 (36.29%) <.001

 Yes 18 734 (59.31%) 452 (50.45%) 18 282 (59.57%)

 Duration of depression, mean (mean±SD), year 9.12 ± 5.78 5.36 ± 4.91 9.23 ± 5.76 <.001

Guilty feelings

 No 15 472 (48.98%) 535 (59.71%) 14 937 (48.67%) <.001

 Yes 14 950 (47.33%) 320 (35.71%) 14 630 (47.67%)

Lethargy frequency in 2 weeks

 Not at all 7 107 (22.50%) 253 (28.24%) 6 854 (22.33%) <.001

 Several days 13 837 (43.81%) 354 (39.51%) 13 483 (43.93%)

 More than half the days 3 482 (11.02%) 84 (9.38%) 3 398 (11.07%)

 Nearly every day 6 087 (19.27%) 163 (18.19%) 5 924 (19.30%)

Doctor visit for mental health

 No 5 461 (17.29%) 244 (27.23%) 5 217 (17.00%) <.001

 Yes 25 769 (81.58%) 634 (70.76%) 25 135 (81.90%)

Pace‑maker

 No 31 258 (98.96%) 874 (97.54%) 30 384 (99.00%) .001

 Yes 155 (0.49%) 11 (1.23%) 144 (0.47%)
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unemployment status (HR, 1.51; 95% CI, 1.30–1.77), 
male gender (HR, 1.25; 95% CI, 1.09–1.43) and age (HR, 
1.08; 95% CI, 1.07–1.09) were identified as risk factors for 
dementia (Supplementary eFigure  5). Conversely, three 
protective factors were identified: phone use length of 
two years or more (HR, 0.73; 95% CI, 0.63–0.85), having 
guilty feelings (HR, 0.78; 95% CI, 0.69–0.89) and doctor 
visit for mental health in the past (HR, 0.56; 95% CI, 0.48 
to 0.65).. These findings were confirmed by SHAP value 
analysis, which showed consistency in identifying the 
directionality of protective/risk factors (Fig. 2E).

Model comparison and robustness analysis
In Study 4, comparative analyses of model performance 
by DeLong’s test revealed no statistically significant dif-
ferences in AUC values between the 12-variable and the 
27-variable models (XGBoost, p = 0.131; CatBoost, p = 

0.124; AdaBoost, p = 0.278; Fig. 3A; Supplementary eTa-
ble  6), demonstrating no significant superiority of the 
more complex 27-variable models (AUC range: 0.828–
0.861) compared to the simplified 12-variable models 
(AUC range: 0.821–0.859), and the feasibility of simpli-
fied model through feature optimization.

DeLong’s test was used to compare the AUC val-
ues between different machine learning classifiers for 
12-variable (Fig.  3B) and 27-variable (Fig.  3C) mod-
els, respectively. Further comparative analysis revealed 
significant performance differences between different 
machine learning classifiers, with the AdaBoost dem-
onstrating optimal performance in both the 12-variable 
an 0.27-variable models. Robustness analysis was used 
to evaluate the model stability of model performance 
through random subsampling calculations with 50 itera-
tions. Figure 3D shows the AUC values within a narrow 

Fig. 2 Model performance, feature selection results, and model interpretation. Area under the receiver operating characteristic curve (AUC) plots 
of different classifiers of 27 variables in Study 4. A The line chart depicts the change in AUC during the selection of a subset of features. 12 variables 
were finally remained for model optimization. B Area under the receiver operating characteristic curve (AUC) plots of different classifiers of 12 
variables in Study 4. C The bar chart represents the sorted 12 variables based on their importance to the AdaBoost in Study 4. D SHAP visualization 
plot of the selected 12‑variable simplified model. The specific effect of each variable on the model can be interpreted by its value magnitude 
(encoded by the color gradient) and tendency direction (on the horizontal axis) for the SHAP plot, where each datapoint represents an individual 
case’s feature contribution in each row, with superimposed violin plots illustrating population‑level effect size distributions (a red point represents 
a large feature value, and a blue point represents a small feature value). The horizontal displacement indicates effect direction (rightward: risk 
elevation; leftward: protective effect). When the SHAP value is greater than zero (right side), a larger value magnitude represents a higher risk 
of developing dementia. In contrast, when the SHAP value is less than zero (left side), a smaller value magnitude represents a larger likelihood 
against developing dementia. Taking age as an example, older participants (colored in red) were more likely to develop dementia (right side), 
and younger participants (colored in blue) had a larger likelihood against developing dementia (left side)
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Table 2 Performance of AdaBoost model

Abbreviations: AdaBoost Adaptive Boosting

Accuracy Sensitivity Specificity Precision FI‑score AUC 

27 Variables

 Study 1 0.979 ± 0.003 0.996 ± 0.013 0.979 ± 0.003 0.996 ± 0.013 0.397 ± 0.046 0.848 ± 0.027

 Study 2 0.979 ± 0.001 0.991 ± 0.011 0.979 ± 0.001 0.991 ± 0.011 0.398 ± 0.028 0.849 ± 0.016

 Study 3 0.978 (0.963–0.993) 1.000 (1.000‑1.000) 0.978 (0.963–0.993) 1.000 (1.000‑1.000) 0.365 (0.328–0.403) 0.851 (0.816–0.887)

 Study 4 0.980 ± 0.000 1.000 ± 0.000 0.980 ± 0.000 1.000 ± 0.000 0.452 ± 0.003 0.861 ± 0.003

 Study 5 0.977 ± 0.004 0.810 ± 0.102 0.979 ± 0.004 0.810 ± 0.102 0.396 ± 0.081 0.846 ± 0.030

 Study 6 0.978 (0.966–0.991) 0.985 (0.974–0.995) 0.978 (0.966–0.991) 0.985 (0.974–0.995) 0.383 (0.352–0.414) 0.852 (0.823–0.881)

 Study 7 0.979 ± 0.000 1.000 ± 0.000 0.979 ± 0.000 1.000 ± 0.000 0.449 ± 0.003 0.858 ± 0.004

 Study 8 0.978 ± 0.004 0.862 ± 0.109 0.979 ± 0.004 0.862 ± 0.109 0.412 ± 0.056 0.841 ± 0.038

12 Variables

 Study 1 0.979 ± 0.003 0.996 ± 0.013 0.979 ± 0.003 0.996 ± 0.013 0.397 ± 0.046 0.848 ± 0.025

 Study 2 0.979 ± 0.001 0.996 ± 0.009 0.979 ± 0.001 0.996 ± 0.009 0.398 ± 0.028 0.846 ± 0.016

 Study 3 0.978 (0.963–0.993) 0.976 (0.960–0.992) 0.978 (0.963–0.993) 0.976 (0.960–0.992) 0.364 (0.327–0.401) 0.853 (0.817–0.888)

 Study 4 0.980 ± 0.000 1.000 ± 0.000 0.980 ± 0.000 1.000 ± 0.000 0.452 ± 0.003 0.859 ± 0.002

 Study 5 0.979 ± 0.003 0.906 ± 0.057 0.979 ± 0.003 0.906 ± 0.057 0.420 ± 0.082 0.833 ± 0.037

 Study 6 0.978 (0.966–0.990) 0.970 (0.955–0.984) 0.978 (0.966–0.991) 0.970 (0.955–0.984) 0.382 (0.351–0.413) 0.849 (0.820–0.878)

 Study 7 0.979 ± 0.000 0.995 ± 0.009 0.979 ± 0.000 0.995 ± 0.009 0.449 ± 0.003 0.855 ± 0.003

 Study 8 0.979 ± 0.004 0.958 ± 0.052 0.979 ± 0.004 0.958 ± 0.052 0.419 ± 0.055 0.842 ± 0.028

Table 3 Performance of XGBoost and CatBoost with 27 variables

Abbreviations: XGBoost eXtreme Gradient Boosting, CatBoost Categorical Boosting

Accuracy Sensitivity Specificity Precision FI‑score AUC 

Study1

 XGBoost 0.978 ± 0.003 0.931 ± 0.028 0.979 ± 0.003 0.931 ± 0.028 0.399 ± 0.043 0.827 ± 0.024

 CatBoost 0.978 ± 0.003 0.934 ± 0.055 0.978 ± 0.003 0.934 ± 0.055 0.386 ± 0.044 0.818 ± 0.018

Study2

 XGBoost 0.978 ± 0.001 0.903 ± 0.052 0.979 ± 0.001 0.903 ± 0.052 0.394 ± 0.027 0.823 ± 0.013

 CatBoost 0.978 ± 0.001 0.929 ± 0.020 0.978 ± 0.001 0.929 ± 0.020 0.385 ± 0.024 0.814 ± 0.013

Study3

 XGBoost 0.978 (0.962–0.993) 0.930 (0.904–0.956) 0.978 (0.963–0.993) 0.930 (0.904–0.956) 0.360 (0.323–0.397) 0.811 (0.773–0.850)

 CatBoost 0.978 (0.962–0.993) 0.930 (0.904–0.956) 0.978 (0.963–0.993) 0.930 (0.904–0.956) 0.360 (0.323–0.397) 0.814 (0.776–0.853)

Study4

 XGBoost 0.979 ± 0.000 0.941 ± 0.029 0.980 ± 0.000 0.941 ± 0.029 0.447 ± 0.005 0.839 ± 0.005

 CatBoost 0.979 ± 0.000 0.966 ± 0.013 0.979 ± 0.000 0.966 ± 0.013 0.438 ± 0.013 0.828 ± 0.007

Study5

 XGBoost 0.978 ± 0.004 0.835 ± 0.039 0.979 ± 0.003 0.835 ± 0.039 0.396 ± 0.089 0.838 ± 0.032

 CatBoost 0.978 ± 0.004 0.952 ± 0.066 0.979 ± 0.004 0.952 ± 0.066 0.389 ± 0.095 0.843 ± 0.029

Study6

 XGBoost 0.978 (0.965–0.990) 0.880 (0.853–0.907) 0.978 (0.966–0.991) 0.880 (0.853–0.907) 0.384 (0.353–0.415) 0.824 (0.793–0.855)

 CatBoost 0.978 (0.966–0.991) 0.985 (0.974–0.995) 0.978 (0.966–0.991) 0.985 (0.974–0.995) 0.383 (0.352–0.414) 0.814 (0.783–0.846)

Study7

 XGBoost 0.978 ± 0.000 0.923 ± 0.022 0.979 ± 0.000 0.923 ± 0.022 0.439 ± 0.006 0.832 ± 0.007

 CatBoost 0.978 ± 0.000 0.914 ± 0.012 0.978 ± 0.000 0.914 ± 0.012 0.427 ± 0.007 0.830 ± 0.007

Study8

 XGBoost 0.978 ± 0.004 0.865 ± 0.166 0.979 ± 0.004 0.865 ± 0.166 0.407 ± 0.079 0.833 ± 0.027

 CatBoost 0.978 ± 0.004 0.912 ± 0.064 0.979 ± 0.004 0.912 ± 0.064 0.402 ± 0.054 0.828 ± 0.025
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range of 0.8–0.86 across all classifiers. Therefore, we 
deployed the optimal simplified 12-variable model by the 
AdaBoost classifier to a web application for visualization 
and dementia risk assessment, named DRP-Depression 
(Fig. 3E).

Webpage application deployment
The DRP-Depression model provides individualized 
dementia risk prediction for middle-aged and elderly 
individuals with depression. Baseline characteristic 
are inputted on the left-side operation bar. The upper 
right bar displays dementia risk via pie charts, while the 
middle-right panel displays detailed test reports. The 
lower-right interface generates reasonable personalized 
prevention recommendations that are derived based on 
the respective risk profiles provided by the tester. In addi-
tion, the DRP-Depression web interface includes promi-
nent disclaimers clarifying that the tool is intended for 
risk stratification only, not clinical diagnosis.

Figure  3E illustrates a clinical case example of a 
54-year-old male participant with a 19-year history of 
depression. The left panel displays his baseline char-
acteristics, including a waist circumference of 105 cm, 

unemployment status, and single-person household 
composition. The DRP-Depression outputs calculated 
a dementia risk score of 67.36% for this individual, who 
subsequently received a clinical dementia diagnosis on 
April 15, 2017, during hospitalization.

The interface provides context-specific preventive 
guidance in the bottom-right section, such as ensure 
sufficient sleep and regular sleep patterns and adhering 
to prescribed depression treatment regimens. The web 
application is publicly accessible online at http:// www. 
xijian- dai- lab. com. cn/ model Index.

Sensitivity analyses
Sensitivity analyses evaluated the temporal generalizabil-
ity of the 12-variable simplified model by excluding cases 
with a recent diagnosis of depression (Supplementary 
eFigure 6): 

1) excluding cases diagnosed with depression within 
six-months: dementia group (n=787) vs dementia-
free group (n=30691), AUC=0.838, (95%CI 0.832–
0.845).

Table 4 Performance of XGBoost and CatBoost with 12 variables

Abbreviations: XGBoost eXtreme Gradient Boosting, CatBoost Categorical Boosting

Accuracy Sensitivity Specificity Precision FI‑score AUC 

Study1

 XGBoost 0.978 ± 0.003 0.932 ± 0.061 0.979 ± 0.003 0.932 ± 0.061 0.396 ± 0.047 0.824 ± 0.025

 CatBoost 0.978 ± 0.003 0.893 ± 0.061 0.978 ± 0.003 0.893 ± 0.061 0.381 ± 0.048 0.802 ± 0.016

Study2

 XGBoost 0.978 ± 0.001 0.945 ± 0.040 0.979 ± 0.001 0.945 ± 0.040 0.397 ± 0.025 0.822 ± 0.013

 CatBoost 0.978 ± 0.001 0.908 ± 0.031 0.978 ± 0.001 0.908 ± 0.031 0.383 ± 0.021 0.801 ± 0.011

Study3

 XGBoost 0.978 (0.963–0.993) 0.952 (0.931–0.974) 0.978 (0.963–0.993) 0.952 (0.931–0.974) 0.362 (0.325–0.399) 0.820 (0.782–0.858)

 CatBoost 0.978 (0.963–0.993) 0.952 (0.931–0.974) 0.978 (0.963–0.993) 0.952 (0.931–0.974) 0.362 (0.325–0.399) 0.795 (0.756–0.835)

Study4

 XGBoost 0.979 ± 0.000 0.916 ± 0.040 0.980 ± 0.000 0.916 ± 0.040 0.445 ± 0.006 0.835 ± 0.001

 CatBoost 0.979 ± 0.000 0.930 ± 0.014 0.980 ± 0.000 0.930 ± 0.014 0.444 ± 0.004 0.821 ± 0.005

Study5

 XGBoost 0.976 ± 0.004 0.719 ± 0.059 0.979 ± 0.003 0.719 ± 0.059 0.395 ± 0.082 0.832 ± 0.024

 CatBoost 0.978 ± 0.004 0.873 ± 0.097 0.979 ± 0.004 0.873 ± 0.097 0.383 ± 0.098 0.826 ± 0.014

Study6

 XGBoost 0.978 (0.966–0.990) 0.928 (0.906–0.949) 0.978 (0.966–0.991) 0.928 (0.906–0.949) 0.379 (0.348–0.410) 0.806 (0.774–0.837)

 CatBoost 0.978 (0.966–0.990) 0.955 (0.938–0.973) 0.978 (0.966–0.991) 0.955 (0.938–0.973) 0.381 (0.350–0.412) 0.803 (0.771–0.835)

Study7

 XGBoost 0.978 ± 0.000 0.915 ± 0.027 0.979 ± 0.000 0.915 ± 0.027 0.439 ± 0.004 0.831 ± 0.005

 CatBoost 0.978 ± 0.000 0.875 ± 0.031 0.979 ± 0.000 0.875 ± 0.031 0.429 ± 0.008 0.820 ± 0.004

Study8

 XGBoost 0.978 ± 0.005 0.850 ± 0.096 0.979 ± 0.004 0.850 ± 0.096 0.407 ± 0.055 0.819 ± 0.022

 CatBoost 0.978 ± 0.004 0.848 ± 0.094 0.979 ± 0.004 0.848 ± 0.094 0.397 ± 0.062 0.815 ± 0.041

http://www.xijian-dai-lab.com.cn/modelIndex
http://www.xijian-dai-lab.com.cn/modelIndex
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2) excluding cases diagnosed with depression within 
two-years: dementia group (n=630) vs dementia-free 
group (n=29534), AUC=0.802, (95%CI 0.797–0.807).

These findings demonstrated consistency with the pri-
mary analysis, reinforcing model robustness across tem-
poral constraints.

Discussion
In this prospective study of a large-scale UK Biobank 
cohort, several novel findings are noteworthy. First, we 
developed a dementia risk prediction model to identify 
high risk individuals among middle-aged and elderly 
adults with depression using machine learning algo-
rithms applied to extensive UK Biobank data. The predic-
tive model provides a straightforward and user-friendly 
interface for assessing dementia risk in depressed indi-
viduals. Second, our proposed dementia screening 
tool demonstrated a relatively high classification accu-
racy (98%) and an AUC value of 0.859 ± 0.002 in spe-
cific depressed population. Third, during the modeling 
process, feature importance ranking and SHAP value 
analysis were employed to evaluate the contribution 

and interpretability of each variable in the model out-
put. Model stability was verified through eight distinct 
validation paradigms and robustness analyses. The Cox 
regression model and SHAP analysis showed consistent 
findings in identifying the directionality of protective/
risk factors. Fourth, the variables included in the demen-
tia screening tool are easily obtained, facilitating practical 
implementation and enhancing generalizability. Finally, 
we deployed the optimal-performing population-general-
ized model, named DRP-Depression, into an online pub-
licly accessible web application.

To identify the optimal predictive model and sys-
tematically evaluate its stability and systematically, we 
employed rigorous dataset splitting strategies (e.g., trans-
fer and validation) on large-scale data samples and imple-
mented eight distinct validation paradigms incorporating 
three machine learning classifiers. Comprehensive evalu-
ation showed that our machine learning framework has 
excellent stability (accuracy variance < 1%) and robust 
generalization capacity across heterogeneous datasets. 
The superior performance of the classifiers is mainly 
attributed to the ability of machine learning algorithms 
to process and analyze high-dimensional biomedical data 

Fig. 3 Model performance comparison charts, robustness analysis line charts, and Webpage interface of predictive model. A Comparison of models 
performance between 27 variables and 12 variables in Study 4 using the DeLong’s test, and p < 0.05 suggested that there was a significant 
difference. B Comparison of the 3 classifiers (27 variables) in Study 4 using the DeLong’s test, and p < 0.05 suggested that there was a significant 
difference. C Comparison of the 3 classifiers (12 variables) in Study 4 using the DeLong’s test, and p < 0.05 suggested that there was a significant 
difference. D The line chart shows the robustness of the model after 50 random seed selections in Study 4. E The baseline characteristics can be 
entered on the left operation bar, and the right display bar shows the dementia risk in a pie chart and a dashboard form and provides reasonable 
prevention suggestions based on the baseline situation
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through automated variable selection mechanism, par-
ticularly in capturing nonlinear associations and com-
plex multi-variable interactions among variables [30]. 
Notably, these data-driven approaches effectively cir-
cumvent limitations inherent to conventional statistical 
approaches, which frequently impose restrictive para-
metric assumptions that compromise both predictive 
accuracy and model stability. Emerging evidence suggests 
that these computational methodologies are revolution-
izing dementia diagnostics, with recent applications 
demonstrating high differential diagnostic accuracy in 
prodromal Alzheimer’s disease cohorts when integrated 
with multimodal biomarkers [20, 31, 32].

Current diagnostic paradigms for dementia mainly 
rely on multimodal approaches including cognitive 
assessment scales (e.g., MMSE, MoCA), neuroimaging 
biomarkers (β-amyloid PET, FDG-PET), cerebrospinal 
fluid analysis (Aβ42/t-tau ratio), and emerging liquid 
biopsy techniques (peripheral blood autoantibody profil-
ing, and neuron-derived exosome quantification). Not-
withstanding these advances, early detection remains 
clinically challenging, as patients typically present for 
medical evaluation during advanced disease stages when 
irreversible neuropathological changes and significant 
comorbidities have already manifested. This diagnostic 
latency highlights the urgent need for validated predic-
tive models to identify preclinical dementia risk in vul-
nerable populations [33]. Accumulating longitudinal 
evidences establish that depression may be a prodromal 
neuropsychiatric symptom and independent risk factor 
for dementia progression [12, 34]. Despite the identifi-
cation of this etiologic link, there is still a conspicuous 
research gap in developing a mechanism-based screen-
ing framework, particularly for dementia conversion in 
depression cohorts. Current research on the progression 
of depression population to dementia mainly focuses on 
the epidemiological correlation of risk factors rather than 
the development of predictive models. For example, Xu 
et al., [35] found that adverse lifestyle factors were asso-
ciated with a high risk of conversion from depression to 
dementia. Larsen et al., [36] found that men who devel-
oped depression before middle-aged and elderly had a 
higher risk of dementia in late-life.

Existing dementia risk stratification models for general 
populations exhibit substantial implementation barri-
ers in real-world clinical settings. Kivipelto et al., devel-
oped a dementia risk score prediction model that took 
advantage of high age (> or = 47 years), low education 
(< 10 years), hypertension, hypercholesterolaemia, and 
obesity, and achieved a suboptimal predictive perfor-
mance (AUC, 0.77; 95% CI 0.71–0.83). [18] Li et al. [37] 
used seven exposure factors to develop a dementia risk 
score model with a prediction accuracy of over 90%, but 

their model had relatively low discrimination (C statistic 
= 0.716). Our team developed a dementia risk score pre-
diction model with better prediction performance [21]. 
The Rotterdam Study by Licher et al. [38] yielded a sub-
optimal predictive performance for predicting dementia 
(C-statistic, 0.78 [95% CI 0.75, 0.81]) using age, history 
of stroke, subjective memory decline, and need for assis-
tance with finances or medication as predictors.. devel-
oped a machine learning-driven model for dementia 
risk stratification and deployed it into an online publicly 
accessible web application. Dementia risk prediction 
tools have three key translational advantages: 1) requires 
only 12 routinely documented and easily accessible clini-
cal parameters, eliminating dependency on not directly 
available variables (e.g., cognitive assessment scales, neu-
roimaging biomarkers, CSF analysis, and emerging liquid 
biopsy techniques); 2) achieves superior predictive accu-
racy; 3) user-friendly interface, requiring short time for 
assessment.

Our longitudinal analysis revealed that chronologi-
cal age emerged as the predominant risk determinant, 
which was consistent with established epidemiological 
patterns of exponential risk escalation beyond 65 years. 
Age remains the most significant established risk factor 
for dementia [39], with increasing age demonstrating 
a strong association with increased dementia risk pro-
gression [40]. Furthermore, emerging evidence suggests 
that aging process may be involved in the pathogenesis 
of dementia through dual mechanisms: dysbiosis of gut 
microbiota and progressive brain atrophy [41, 42]. Lon-
gitudinal analyses reveal that individuals diagnosed with 
depression at any life stage (early, middle, or late) exhibit 
a higher risk of dementia [6]. In this study cohort, we 
found that individuals with socioeconomic adversity (e.g., 
unemployed status) had a higher risk of dementia, which 
may be attributed to greater financial hardship, leading to 
more depression [43].

Our investigation revealed significant associations 
between modifiable risk factors and dementia suscep-
tibility. Individuals who are prone to daytime sleepiness 
might have higher levels of longitudinal β-amyloid pep-
tide deposition and thinner cortical thickness, which are 
considered as risk factors for dementia [44, 45], and this 
phenomenon may account for the higher risk of chronic 
sleepiness in persons with dementia. Our analysis further 
identified larger waist circumference as an independent 
predictor of dementia risk. Our analysis demonstrated 
that midlife overweight and obesity, when assessed using 
established anthropometric parameters for BMI and 
waist circumference, showed significant associations 
with dementia [46]. These findings confirm the dura-
ble predictive validity of traditional body composition 
measures for neurodegeneration risk stratification. Our 
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findings also suggest that behavioral activities that relieve 
depressive mood could reduce the risk of dementia, such 
as receiving treatment from a psychiatrist, using a mobile 
phone, or playing computer games, can relieve psycho-
logical stress and reduce the risk of dementia. In addi-
tion, we found gender differences in the risk of dementia. 
Previous studies have shown that men have a higher risk 
of vascular dementia than women, which may be related 
to blood pressure [47] and cerebral perfusion levels [48] 
in men.

Strengths and limitations
The major strengths of this study are the prospective 
design, large sample size, rigorous feature selection 
methods, easily accessible variables, clinical user-friendly 
interface, and superior predictive accuracy. However, 
our study has some limitations. First, the predominantly 
European ancestry composition of the cohort necessi-
tate subsequent validation with a multiethnic cohort to 
confirm generalizability across different ethnicity. Sec-
ond, some variables in the UK Biobank were assessed by 
human subjective evaluation, which may lead to misclas-
sification. Third, all the study population were treated 
in hospital, which may cause population selection bias. 
Fourth, although we implemented very strict feature 
selection criteria, some potential variables may not have 
been taken into account. Fifth, because of the large differ-
ence in the number of people in the dementia, and non-
dementia groups, there may be a class imbalance in the 
dataset.

Conclusion
In this dementia diagnosis study in the middle-aged and 
elderly population with depression, we identified 27 clini-
cally accessible predictors to develop and cross-validated 
an interpretable machine learning prediction framework 
to predict depression progression to dementia. We then 
developed and validated a simplified, reliable and clini-
cally applicable machine learning-based prognostic tool 
and deployed it into an interoperable Web-based inter-
face application to provide easy-to-promote in the com-
munity generalization. This cloud-based solution enables 
real-time dementia risk quantification in community 
and mental health settings, helps depression popula-
tion identify their potential risk property, and provids 
personalized prevention recommendations through the 
intuitive interface. This pragmatic tool effectively bridges 
artificial intelligence innovation with clinical workflows, 
demonstrating significant potential for population-scale 
dementia prevention through its unique combination of 
algorithmic sophistication (XGBoost/SHAP integration) 
and practical implementability.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13195‑ 025‑ 01750‑6.

Supplementary Material 1: eTable 1 The ICD‑10 codes used for dementia 
and depression diagnosis in UKB. eTable 2 Candidate Variables Used in 
Machine Learning Models. eTable 3 Acquisition and evaluation of predic‑
tive factors. eTable 4 Model performance of training set in study 4, 5, 7, 
and 8 with 27 variables. eTable 5 Model performance of training set in 
study 4, 5, 7, and 8 with 12 variables. eTable 6 Use the DeLong’s test to 
compare the AUC between the models with 27 variables and the models 
with 12 variables in Study4. eTable 7 The SHAP values of the 12 variables in 
the model were finally selected

Supplementary Material 2: eFigure 1 Correlation heatmap of included 
variables

Supplementary Material 3: eFigure 2 Flowchart of the selection of 
participants and variables. Note:"Variables are not easily available"refers to 
variables that cannot be obtained by asking or directly measuring

Supplementary Material 4: eFigure 3 27‑variable model performance 
for the remaining seven data splitting designs. Area under the receiver 
operating characteristic curve (AUC) plots of different classifiers. Figure 
A‑G depict Study 1, Study 2, Study 3, Study 5, Study 6, Study 7 and Study 
8 respectively

Supplementary Material 5: eFigure 4 12‑variable model performance 
for the remaining seven data splitting designs. Area under the receiver 
operating characteristic curve (AUC) plots of different classifiers. Figure 
A‑G depict Study 1, Study 2, Study 3, Study 5, Study 6, Study 7 and Study 
8 respectively

Supplementary Material 6: eFigure 5 Hazard ratios of included variables for 
dementia risk prediction model. The point estimate of the Cox propor‑
tional hazards model’s hazard ratio is depicted by the centre of the Forest 
plot, and the two‑sided 95% confidence intervals are indicated by the 
error bars, the vertical line is the line of no effect

Supplementary Material 7: eFigure 6 AUC curve based on sensitivity analy‑
sis of the final selection model. A shows the AUC curve of the model after 
6 months of excluding depression. B shows the AUC curve of the model 
after 2 years of excluding depression

Supplementary Material 8: eFigure 7 Enlarged version of the web interface 
diagram

Authors’contributions
XJ. D and LG. G had the idea for and designed this study, had full access to 
all the data and verified the data in this study. XX and XJ. D wrote the first 
draft. XX, YH. L, QBY. W, XT. L, XC, MP. L, JJ.L, LG. G and XJ. D take responsibility 
for double check of the data analysis. XX, YH. L, and XJ. D contributed to the 
statistical analysis. XJ. D and LG. G was responsible for the decision to submit 
the manuscript. All authors participated in a critical review and revision of the 
report and have approved the final draft.

Funding
This research was conducted using the UK Biobank Resource under 
Application Number 94653 (PI: Xi‑jian DAI). This study was supported 
by National Natural Science Foundation of China (grant No. 82460341), 
Science Foundation for Distinguished Young Scholars of Jiangxi Prov‑
ince (grant No. 20242BAB23086), GanPo Talent plan of Jiangxi Province 
(grant No. gpyc20240213), Natural Science Foundation of Jiangxi Province 
(grant 20224BAB216077) and Hunan Province (grant 2022 JJ40417 and 
2021SK52203), and open funding from Key Laboratory of Medical Imaging 
and Artificial Intelligence of Hunan Province (YXZN2021003).

Data availability
All the data used in this study are accessible on request from UK Biobank at: 
https://biobank.ndph.ox.ac.uk/ukb/. The codes used for data analysing in our 
study can be requested from the corresponding author (XJ. D).

https://doi.org/10.1186/s13195-025-01750-6
https://doi.org/10.1186/s13195-025-01750-6


Page 15 of 16Xiao et al. Alzheimer’s Research & Therapy          (2025) 17:103  

Declarations

Ethics approval and consent to participate
Our study was approved by the North West Multi‑Center Research Ethics 
Committee (REC reference: 16/NW/0274). All participants were asked to 
sign an informed consent form before participating in this study. Our study 
followed the Transparent Reporting of a Multivariable Prediction Model for 
Individual Prognosis or Diagnosis (TRIPOD) reporting guideline

Competing interests
The authors declare no competing interests.

Author details
1 Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical 
College, Nanchang University, Minde Road No. 1, Nanchang, Jiangxi Prov‑
ince 330006, China. 2 Jiangxi Provincial Key Laboratory of Intelligent Medical 
Imaging, Nanchang 330006, China. 

Received: 21 October 2024   Accepted: 25 April 2025

References
 1. World Health Organization. Life expectancy and leading causes of death 

and disability. https:// www. who. int/ data/ gho/ data/ themes/ morta lity‑ 
and‑ global‑ health‑ estim ates. Accessed 16 Oct 2022. 

 2. Alzheimer’s Disease International. Dementia statistics. https:// www. alzint. 
org/ about/ demen tia‑ facts‑ figur es/ demen tia‑ stati stics/. Accessed 16 Oct 
2022.

 3. The DT, Initiative EDP. Lancet Neurol. 2013;12(3):227–8. https://doi.
org/10.1016/S14744422(13)70030‑9.

 4. Yang L, Deng YT, Leng Y, Ou YN, Li YZ, Chen SD, He XY, Wu BS, Huang 
SY, Zhang YR, Kuo K, Feng W, Dong Q, Feng JF, Suckling J, Smith AD, Li F, 
Cheng W, Yu JT. Depression, depression treatments, and risk of incident 
dementia: a prospective cohort study of 354,313 participants. Biol Psy‑
chiatry. 2023;93(9):802–9. https:// doi. org/ 10. 1016/j. biops ych. 2022. 08. 026. 
Epub 2022 Sep 5 PMID: 36526487.

 5. WHO. Depression and other common mental disorders: global health 
estimates. Geneva: World Health Organization; 2017.

 6. Elser H, Horváth‑Puhó E, Gradus JL, Smith ML, Lash TL, Glymour MM, 
Sørensen HT, Henderson VW. Association of early‑, middle‑, and late‑life 
depression with incident dementia in a Danish cohort. JAMA Neurol. 
2023;80(9):949–58. https:// doi. org/ 10. 1001/ jaman eurol. 2023. 2309. PMID: 
37486689; PMCID: PMC10366950.

 7. Diniz BS, Butters MA, Albert SM, Dew MA, Reynolds CF 3rd. Late‑life 
depression and risk of vascular dementia and Alzheimer’s disease: 
systematic review and meta‑analysis of community‑based cohort studies. 
Br J Psychiatry. 2013;202(5):329–35. https:// doi. org/ 10. 1192/ bjp. bp. 112. 
118307. PMID: 23637108; PMCID: PMC3640214.

 8. Ly M, Karim HT, Becker JT, Lopez OL, Anderson SJ, Aizenstein HJ, Reynolds 
CF, Zmuda MD, Butters MA. Late‑life depression and increased risk of 
dementia: a longitudinal cohort study. Transl Psychiatry. 2021;11(1):147. 
https://doi.org/10.1038/s41398‑021‑01269‑y. PMID: 33654078; PMCID: 
PMC7925518.

 9. Lin WC, Hu LY, Tsai SJ, Yang AC, Shen CC. Depression and the risk of vascu‑
lar dementia: a population‑based retrospective cohort study. Int J Geriatr 
Psychiatry. 2017;32(5):556–63. https:// doi. org/ 10. 1002/ gps. 4493. Epub 
2016 May 9 PMID: 27161941.

 10. Liao Y, Wang Y, Tao QQ, Yang C, Wang J, Cheng J, Ma J, Wu ZY, Pan RY, 
Yuan Z. CALHM2 V136G polymorphism reduces astrocytic ATP release 
and is associated with depressive symptoms and Alzheimer’s disease risk. 
Alzheimers Dement. 2023. https:// doi. org/ 10. 1002/ alz. 13366. Epub ahead 
of print. PMID: 37493186.

 11. Rubin R. Exploring the relationship between depression and dementia. 
JAMA. 2018;320(10):961–2. https:// doi. org/ 10. 1001/ jama. 2018. 11154. 
PMID: 30140930.

 12. Singh‑Manoux A, Dugravot A, Fournier A, Abell J, Ebmeier K, Kivimäki M, 
Sabia S. Trajectories of depressive symptoms before diagnosis of demen‑
tia: a 28‑year follow‑up study. JAMA Psychiatry. 2017;74(7):712–8. https:// 

doi. org/ 10. 1001/ jamap sychi atry. 2017. 0660. PMID: 28514478; PMCID: 
PMC5710246.

 13. Korhonen K, Tarkiainen L, Leinonen T, Einiö E, Martikainen P. Association 
between a history of clinical depression and dementia, and the role 
of sociodemographic factors: population‑based cohort study. Br J Psy‑
chiatry. 2022;221(1):410–6. https:// doi. org/ 10. 1192/ bjp. 2021. 217. PMID: 
35043777.

 14. Sulkava S, Haukka J, Sulkava R, Laatikainen T, Paunio T. Association 
between psychological distress and incident dementia in a population‑
based cohort in Finland. JAMA Netw Open. 2022;5(12):e2247115. https:// 
doi. org/ 10. 1001/ jaman etwor kopen. 2022. 47115. PMID: 36520436; PMCID: 
PMC9856411.

 15. Pimontel MA, Rindskopf D, Rutherford BR, Brown PJ, Roose SP, Sneed JR. 
A meta‑analysis of executive dysfunction and antidepressant treatment 
response in late‑life depression. Am J Geriatr Psychiatry. 2016;24(1):31–41. 
https:// doi. org/ 10. 1016/j. jagp. 2015. 05. 010. Epub 2015 May 21. PMID: 
26282222; PMCID: PMC4928373.

 16. Frankish H, Horton R. Prevention and management of dementia: a 
priority for public health. Lancet. 2017;390(10113):2614–5. https://doi.
org/10.1016/S0140‑6736(17)31756‑7.

 17. Livingston G, Sommerlad A, Orgeta V, et al. Dementia prevention, 
intervention, and care. Lancet. 2017;390(10113):2673–734. 10.1016/
S0140‑6736(17)31363‑6.

 18. Kivipelto M, Ngandu T, Laatikainen T, Winblad B, Soininen H, Tuomilehto 
J. Risk score for the prediction of dementia risk in 20 years among middle 
aged people: a longitudinal, population‑based study. Lancet Neurol. 
2006;5(9):735–41. https://doi.org/10.1016/S1474‑4422(06)70537‑3. PMID: 
16914401.

 19. Barnes DE, Beiser AS, Lee A, Langa KM, Koyama A, Preis SR, Neuhaus J, 
McCammon RJ, Yaffe K, Seshadri S, Haan MN, Weir DR. Development 
and validation of a brief dementia screening indicator for primary care. 
Alzheimers Dement. 2014;10(6):656–665.e1. https:// doi. org/ 10. 1016/j. jalz. 
2013. 11. 006. Epub 2014 Feb 1. PMID: 24491321; PMCID: PMC4119094.

 20. You J, Zhang YR, Wang HF, Yang M, Feng JF, Yu JT, Cheng W. Development 
of a novel dementia risk prediction model in the general population: a 
large, longitudinal, population‑based machine‑learning study. EClini‑
calMedicine. 2022;23(53):101665. https:// doi. org/ 10. 1016/j. eclinm. 2022. 
101665. PMID: 36187723; PMCID: PMC9519470.

 21. Ren L, Liang J, Wan F, Wang Y, Dai XJ. Development of a clinical risk score 
prediction tool for 5‑, 9‑, and 13‑year risk of dementia. JAMA Netw Open. 
2022;5(11):e2242596. https:// doi. org/ 10. 1001/ jaman etwor kopen. 2022. 
42596. PMID: 36394871; PMCID: PMC9672974.

 22. Livingston G, Huntley J, Sommerlad A, et al. Dementia prevention, 
intervention, and care: 2020 report of the Lancet Commission [published 
correction appears in Lancet. 2023 Sep 30;402(10408):1132. 10.1016/
S0140‑6736(23)02043‑3.]. Lancet. 2020;396(10248):413–46. https://doi.
org/10.1016/S0140‑6736(20)30367‑6.

 23. Byers AL, Yaffe K. Depression and risk of developing dementia. Nat Rev 
Neurol. 2011;7(6):323–31. https:// doi. org/ 10. 1038/ nrneu rol. 2011. 60.

 24. Guyon I, Elisseeff A. An introduction to variable and feature selection. J 
Mach Learn Res. 2003;3:1157–82.

 25. Hancock JT, Khoshgoftaar TM. CatBoost for big data: an interdisciplinary 
review. J Big Data. 2020;7(1):94. https://doi.org/10.1186/s40537‑020‑
00369‑8. Epub 2020 Nov 4. PMID: 33169094; PMCID: PMC7610170.

 26. Shen J, Zhao Y, Liu JK, Wang Y. HybridSNN: combining bio‑machine 
strengths by boosting adaptive spiking neural networks. IEEE Trans Neu‑
ral Netw Learn Syst. 2023;34(9):5841–55. https:// doi. org/ 10. 1109/ TNNLS. 
2021. 31313 56. Epub 2023 Sep 1 PMID: 34890341.

 27. Chen T, Guestrin C. XGBoost: a scalable tree boosting system. arXiv. 2016. 
(Preprint). https:// doi. org/ 10. 48550/ arXiv. 1603. 02754.

 28. DeLong ER, DeLong DM, Clarke‑ Pearson DL. Comparing the areas under 
two or more correlated receiver operating characteristic curves: a non‑
parametric approach. Biometrics. 1988;44:837–45.

 29. Lundberg SM, Lee SI. A unified approach to interpreting model predic‑
tions. Adv Neural Inf Process Syst. 2017:4765–74.

 30. Breiman L. Statistical modeling: the two cultures (with comments and a 
rejoinder by the author). Statist Sci. 2001;16(3):199–231.

 31. James C, Ranson JM, Everson R, Llewellyn DJ. Performance of machine 
learning algorithms for predicting progression to dementia in memory 
clinic patients. JAMA Netw Open. 2021;4(12):e2136553. https:// doi. 

https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates
https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates
https://www.alzint.org/about/dementia-facts-figures/dementia-statistics/
https://www.alzint.org/about/dementia-facts-figures/dementia-statistics/
https://doi.org/10.1016/j.biopsych.2022.08.026
https://doi.org/10.1001/jamaneurol.2023.2309
https://doi.org/10.1192/bjp.bp.112.118307
https://doi.org/10.1192/bjp.bp.112.118307
https://doi.org/10.1002/gps.4493
https://doi.org/10.1002/alz.13366
https://doi.org/10.1001/jama.2018.11154
https://doi.org/10.1001/jamapsychiatry.2017.0660
https://doi.org/10.1001/jamapsychiatry.2017.0660
https://doi.org/10.1192/bjp.2021.217
https://doi.org/10.1001/jamanetworkopen.2022.47115
https://doi.org/10.1001/jamanetworkopen.2022.47115
https://doi.org/10.1016/j.jagp.2015.05.010
https://doi.org/10.1016/j.jalz.2013.11.006
https://doi.org/10.1016/j.jalz.2013.11.006
https://doi.org/10.1016/j.eclinm.2022.101665
https://doi.org/10.1016/j.eclinm.2022.101665
https://doi.org/10.1001/jamanetworkopen.2022.42596
https://doi.org/10.1001/jamanetworkopen.2022.42596
https://doi.org/10.1038/nrneurol.2011.60
https://doi.org/10.1109/TNNLS.2021.3131356
https://doi.org/10.1109/TNNLS.2021.3131356
https://doi.org/10.48550/arXiv.1603.02754
https://doi.org/10.1001/jamanetworkopen.2021.36553


Page 16 of 16Xiao et al. Alzheimer’s Research & Therapy          (2025) 17:103 

org/ 10. 1001/ jaman etwor kopen. 2021. 36553. PMID: 34913981; PMCID: 
PMC8678688.

 32. Yang P, Xiao X, Li Y, Cao X, Li M, Liu X, Gong L, Liu F, Dai XJ. Development 
and validation of a convenient dementia risk prediction tool for diabetic 
population: a large and longitudinal machine learning cohort study. J 
Affect Disord. 2025;380:298–307. https:// doi. org/ 10. 1016/j. jad. 2025. 03. 
135. Epub ahead of print. PMID: 40147608.

 33. Hermann P, Zerr I. Rapidly progressive dementias ‑ aetiologies, diagnosis 
and management. Nat Rev Neurol. 2022;18(6):363–76.

 34. Mirza SS, Wolters FJ, Swanson SA, Koudstaal PJ, Hofman A, Tiemeier 
H, Ikram MA. 10‑year trajectories of depressive symptoms and risk of 
dementia: a population‑based study. Lancet Psychiatry. 2016;3(7):628–35. 
https://doi.org/10.1016/S2215‑0366(16)00097‑3. Epub 2016 Apr 29 PMID: 
27138970.

 35. Xu C, Cao Z, Huang X, Wang X. Associations of healthy lifestyle with 
depression and post‑depression dementia: a prospective cohort study. J 
Affect Disord. 2023;327:87–92. https:// doi. org/ 10. 1016/j. jad. 2023. 01. 111. 
Epub 2023 Feb 2 PMID: 36736794.

 36. Larsen EN, Sloth MM, Osler M, Wium‑Andersen IK, Jørgensen TSH. Depres‑
sion in adulthood and risk of dementia later in life: a Danish register‑
based cohort study of 595,828 men. J Affect Disord. 2022;302:25–32. 
https:// doi. org/ 10. 1016/j. jad. 2022. 01. 083. Epub 2022 Jan 20 PMID: 
35066008.

 37. Li J, Ogrodnik M, Devine S, Auerbach S, Wolf PA, Au R. Practical risk 
score for 5‑, 10‑, and 20‑year prediction of dementia in elderly persons: 
Framingham heart study. Alzheimers Dement. 2018;14(1):35–42. https:// 
doi. org/ 10. 1016/j. jalz. 2017. 04. 013.

 38. Licher S, Leening MJG, Yilmaz P, et al. Development and validation of a 
dementia risk prediction model in the general population: an analysis of 
three longitudinal studies. Am J Psychiatry. 2019;176(7):543–51. https:// 
doi. org/ 10. 1176/ appi. ajp. 2018. 18050 566.

 39. Arvanitakis Z, Shah RC, Bennett DA. Diagnosis and management of 
dementia: review. JAMA. 2019;322(16):1589–99. https:// doi. org/ 10. 1001/ 
jama. 2019. 4782. PMID: 31638686; PMCID: PMC7462122.

 40. Wahl D, Anderson RM, Le Couteur DG. Antiaging therapies, cogni‑
tive impairment, and dementia. J Gerontol A Biol Sci Med Sci. 
2020;75(9):1643–52. https:// doi. org/ 10. 1093/ gerona/ glz135.

 41. Kesika P, Suganthy N, Sivamaruthi BS, Chaiyasut C. Role of gut‑brain axis, 
gut microbial composition, and probiotic intervention in Alzheimer’s dis‑
ease. Life Sci. 2021;264: 118627. https:// doi. org/ 10. 1016/j. lfs. 2020. 118627.

 42. Suzuki H, Venkataraman AV, Bai W, et al. Associations of regional brain 
structural differences with aging, modifiable risk factors for dementia, 
and cognitive performance. JAMA NetwOpen. 2019;2(12):e1917257. 
https:// doi. org/ 10. 1001/ jaman etwor kopen. 2019. 17257.

 43. Rautio N, Kautiainen H, Koponen H, Mäntyselkä P, Timonen M, Niskanen 
L, Saaristo T, Oksa H, Peltonen M, Puolijoki H, Vanhala M, Keinänen‑
Kiukaanniemi S. Financial satisfaction and its relationship to depressive 
symptoms in middle‑aged and older adults: results from the FIN‑D2D 
survey. Int J Soc Psychiatry. 2013;59(3):239–46. https:// doi. org/ 10. 1177/ 
00207 64011 433635. Epub 2012 Jan 9 PMID: 22234975.

 44. Carvalho DZ, St Louis EK, Knopman DS, et al. Association of excessive 
daytime sleepiness with longitudinal β‑amyloid accumulation in elderly 
persons without dementia. JAMA Neurol. 2018;75(6):672–80. https:// doi. 
org/ 10. 1001/ jaman eurol. 2018. 0049.

 45. Carvalho DZ, St Louis EK, Boeve BF, et al. Excessive daytime sleepiness 
and fatigue may indicate accelerated brain aging in cognitively normal 
late middle‑aged and older adults. Sleep Med. 2017;32:236–43. https:// 
doi. org/ 10. 1016/j. sleep. 2016. 08. 023.

 46. Kiliaan AJ, Arnoldussen IA, Gustafson DR. Adipokines: a link between 
obesity and dementia? Lancet Neurol. 2014;13(9):913–23. https://
doi.org/10.1016/S1474‑4422(14)70085‑7. PMID: 25142458; PMCID: 
PMC4228955.

 47. Gong J, Harris K, Peters SAE, Woodward M. Sex differences in the associa‑
tion between major cardiovascular risk factors in midlife and dementia: a 
cohort study using data from the UK Biobank. BMC Med. 2021;19(1):110. 
https:// doi. org/ 10. 1186/ s12916‑ 021‑ 01980‑z. PMID: 34006267; PMCID: 
PMC8132382.

 48. Wolters FJ, Zonneveld HI, Hofman A, van der Lugt A, Koudstaal PJ, 
Vernooij MW, Ikram MA, Heart‑Brain Connection Collaborative Research 
Group. Cerebral perfusion and the risk of dementia: a population‑based 

study. Circulation. 2017;136(8):719–28. https:// doi. org/ 10. 1161/ CIRCU 
LATIO NAHA. 117. 027448. Epub 2017 Jun 6. PMID: 28588075.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.1001/jamanetworkopen.2021.36553
https://doi.org/10.1016/j.jad.2025.03.135
https://doi.org/10.1016/j.jad.2025.03.135
https://doi.org/10.1016/j.jad.2023.01.111
https://doi.org/10.1016/j.jad.2022.01.083
https://doi.org/10.1016/j.jalz.2017.04.013
https://doi.org/10.1016/j.jalz.2017.04.013
https://doi.org/10.1176/appi.ajp.2018.18050566
https://doi.org/10.1176/appi.ajp.2018.18050566
https://doi.org/10.1001/jama.2019.4782
https://doi.org/10.1001/jama.2019.4782
https://doi.org/10.1093/gerona/glz135
https://doi.org/10.1016/j.lfs.2020.118627
https://doi.org/10.1001/jamanetworkopen.2019.17257
https://doi.org/10.1177/0020764011433635
https://doi.org/10.1177/0020764011433635
https://doi.org/10.1001/jamaneurol.2018.0049
https://doi.org/10.1001/jamaneurol.2018.0049
https://doi.org/10.1016/j.sleep.2016.08.023
https://doi.org/10.1016/j.sleep.2016.08.023
https://doi.org/10.1186/s12916-021-01980-z
https://doi.org/10.1161/CIRCULATIONAHA.117.027448
https://doi.org/10.1161/CIRCULATIONAHA.117.027448

	Development and validation of a novel predictive model for dementia risk in middle-aged and elderly depression individuals: a large and longitudinal machine learning cohort study
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Background
	Methods
	Study participants
	Primary outcome
	Candidate variables
	Variable selection
	Forward feature subset selection
	Model development and validation framework
	Machine learning classifiers
	Sensitivity analysis for temporal confounding
	Statistical analysis

	Results
	Population characteristics
	Development and validation of 27 variable-model
	Development and validation of simplified model
	Development and validation of simplified model
	Model interpretation and visualization
	Multivariable Cox regression model of 12 variables
	Model comparison and robustness analysis
	Webpage application deployment
	Sensitivity analyses

	Discussion
	Strengths and limitations

	Conclusion
	References


