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Abstract
Background Mild cognitive impairment (MCI) is a heterogeneous disorder with significant individual variabilities 
in clinical and biological features. Abnormal inter-regional structural covariance suggests disruption of the brain 
structural network in MCI. Most studies have examined group-level structural covariance alterations while ignoring 
individual-level differences. Hence, we aimed to investigate the heterogeneity of MCI using individual differential 
structural covariance network (IDSCN) analysis.

Methods T1-weighted images of 596 MCI patients and 309 cognitively normal (CN) were collected from the 
ADNI database as discovery dataset, and 122 MCI and 117 CN from the OASIS-3 dataset as validation cohort. We 
constructed each patient’s IDSCN using regional gray matter volume and applied K-means clustering analysis to 
identify MCI subtypes based on significantly altered covariance edges. Then, clinical features, brain structure, and 
gene expression profiles were evaluated for each subtype.

Results In the ADNI dataset, MCI patients exhibited significant alterations in structural covariance edges, mainly 
involving the hippocampus, parahippocampal gyrus, and amygdala. Two robust MCI subtypes were identified. 
Subtype 1 showed faster disease progression relative to subtype 2, which was validated in the independent OASIS-3 
dataset. Significant differences between two subtypes were found in clinical cognition and biomarkers, cerebral 
atrophy patterns, and enriched genes for metal ion transport and neuron projection development. Finally, correlation 
analysis and functional annotation further revealed that the affected edges were related to cognitive performance 
and implicated in memory and emotion terms.

Conclusions In summary, these findings offer new perspectives into understanding the heterogeneity of MCI and 
facilitate strategies for future precision medicine.

Keywords Mild cognitive impairment, Heterogeneity, Individual differential structural covariance network, Gray 
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Introduction
Mild cognitive impairment (MCI) is usually considered a 
transitional phase between normal aging and Alzheimer’s 
Disease (AD) and exhibits significant phenotypic hetero-
geneity in clinical symptoms, neuroimaging performance, 
and clinical progression [1–4]. MCI patients are at a high 
risk of progressing AD, with an annual conversion rate of 
approximately 10–15% [5]. While some individuals with 
MCI remain stable or even return to normal cognitive 
status after several years of follow-up [6, 7]. High level of 
heterogeneity in patient population can increase the dif-
ficulty of clinical trials and precision medicine. Therefore, 
exploring the heterogeneity of MCI is essential to reveal 
different phenotypes and further promote personalized 
prevention and treatment [8, 9].

To address this heterogeneity, clinicians often clas-
sify MCI patients according to clinical presentation and 
cognitive domain impairments, which can be divided 
into amnestic or non-amnestic types, and single-domain 
or multi-domain [10]. Although cognition-based sub-
typing has shown advantages in characterizing differ-
ent dimensions of cognitive performance in MCI [11, 
12], it still has several limitations, such as the neglect of 
neuroanatomical pathophysiological factors, indistinct 
boundaries, and restricted validity [13]. In recent years, 
more studies have adopted objective quantification such 
as magnetic resonance imaging (MRI) to resolve the het-
erogeneity of MCI [14–17], as MRI technology can accu-
rately detect the underlying pathological changes in the 
early stages of disease compared to clinical performance 
[18, 19]. For example, the brain atrophy patterns of MCI 
patients show sufficient heterogeneity, and individuals 
can be divided into biologically and clinically meaning-
ful subtypes [20]. In addition, data-driven methods have 
recently been applied to subtype studies of MCI based on 
structural MRI-derived biological features, such as gray 
matter morphometric characteristics [21, 22]. In contrast 
to manual subtyping by clinicians using conventional 
diagnostic guidelines, data-driven techniques focus on 
detecting the intrinsic stratified structure within unla-
beled data. Despite their complexity, these methods are 
more objective and capable of reproducibly identifying 
potential disease subtypes from high-dimensional neu-
roimaging features that are difficult to distinguish visu-
ally, thereby providing more comprehensive and accurate 
support for clinical diagnosis and treatment [23, 24].

Preceding MRI studies have indicated brain morpho-
logical alterations in MCI patients, particularly in the 
hippocampus and medial temporal lobe [25, 26]. Nev-
ertheless, these studies focused primarily on alterations 
in local anatomical regions and failed to consider the 
potential connections among distributed brain regions 
[27]. The structural covariance network (SCN) has been 
used to investigate the similarities and alterations of 

morphological features in different brain regions, thereby 
elucidating the patterns of structural interconnectivity 
among these regions [28, 29]. Severe SCN disruption has 
been found in both MCI and AD patients [30]. Many con-
ventional case-control studies have primarily detected 
differences at the group level; little is known about inter-
individual heterogeneity [31, 32]. To explore individual-
ized structural covariance differences, Liu et al. proposed 
a novel method to construct individual differential struc-
tural covariance network (IDSCN) [33]. IDSCN is con-
structed at the individual level and takes into account 
information from the control group, which can quantify 
the degree of deviation in structural covariance of each 
patient relative to the control group, providing a new per-
spective for parsing morphological heterogeneity [33]. 
Thus, employing a data-driven clustering analysis based 
on the IDSCN, we hypothesized that MCI patients could 
be classified into distinct subtypes with various patterns 
of cognitive performance, longitudinal progression, and 
brain morphology.

In this study, we aimed to investigate the heterogene-
ity of MCI based on the IDSCN analysis method. First, 
we constructed each patient’s IDSCN using regional 
gray matter volume (GMV). Second, significantly altered 
structural covariance edges were regarded as features to 
classify MCI individuals into different subtypes. Third, 
we compared differences in clinical performance, brain 
structure, and gene expression profiles between subtypes. 
Finally, we evaluated the association of significantly 
affected IDSCN edges with clinical cognition.

Methods
Participants
In this study, the discovery data were obtained from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) 1/
GO/2/3 datasets (http://adni.loni.usc.edu) and  i n d e p e 
n d e n t validation data from the Open Access Series of 
Imaging Studies-3 (OASIS-3) cohort ( h t t p  s : /  / w w w  . o  a s 
i s - b r a i n s . o r g /) [34]. All participants or their  a u t h o r i z e 
d representatives offered written informed consent. For 
the ADNI dataset, we first enrolled cognitively normal 
(CN) and MCI subjects based on the reported diagno-
sis and published criteria [35]. Then, we determined 
disease stage during the follow-up based on the Clinical 
Dementia Rating Scale Sum of Boxes (CDRSB) scores 
[36–38]: CDRSB scores = 0 for normal cognitive stage, 
CDRSB scores from 0.5 to 4 for MCI stage, and CDRSB 
scores ≥ 4.5 for dementia stage. For selected CN sub-
jects, their cognition remained normal at the first visit 
and follow-up (CDRSB = 0). The CDRSB scores of MCI 
patients ranged from 0.5 to 4 at inclusion. Based on 
changes in disease status during follow-up, the selected 
MCI patients were further divided into three subgroups: 
converters (MCI_C), who eventually progressed to AD 

http://adni.loni.usc.edu
https://www.oasis-brains.org/
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(CDRSB ≥ 4.5) during follow-up; stable MCI (MCI_S), 
who did not progress to dementia or revert to CN dur-
ing follow-up; reverters (MCI_R), who finally reverted to 
normal during follow-up. For the OASIS-3 dataset, we 
enrolled CN patients with normal cognition at all follow-
ups (CDR = 0) and MCI patients with a CDR of 0.5 at 
inclusion. After a series of quality control steps (see Sup-
plementary Fig. 1), the 309 CN and 596 MCI (including 
276 MCI_C, 279 MCI_S, and 41 MCI_R) in ADNI and 
117 CN and 122 MCI in OASIS-3 were finally recruited 
in the formal analyses. Several clinical measures were 
included in this study: the Alzheimer’s Disease Assess-
ment Scale-cognitive subscale (ADAS11 and ADAS13) 
[39], the CDRSB [36], the Mini-Mental State Examina-
tion (MMSE) [40], the Rey Auditory Verbal Learning Test 
(RAVLT, including immediate recall and learning) [41], 
cognitive domain composite scores (including memory, 
executive, language, and visuospatial ability), fludeoxy-
glucose (FDG), cerebrospinal fluid (CSF) amyloid-β (Aβ), 
CSF Tau, and CSF P-tau levels.

MRI data acquisition and preprocessing
The detailed structural MRI (sMRI) acquisition informa-
tion was available on the ADNI and OASIS websites:  h 
t t p  s : /  / a d n  i .  l o n  i . u  s c . e  d u  / d a  t a -  s a m p  l e  s / a  d n i  - d a t  a /  n e u r 
o i m a g i n g / m r i / and  h t t p  s : /  / w w w  . o  a s i s - b r a i n s . o r g /. All 
T1-weighted (T1W) sMRI data were processed using 
a standard voxel-based morphometry (VBM) pipeline 
described in Supplementary Method S1: anterior com-
missure alignment, segmentation, normalization, modu-
lation, and smooth. The Automated Anatomical Labeling 
(AAL) atlas was used to parcel the cerebrum into 90 cor-
tical and subcortical regions [42] (Supplementary Table 
3), and the average GMV of each cerebral region of each 
subject scan was extracted. Finally, the intracranial vol-
ume (ICV) was also calculated for the following analysis.

Constructing the IDSCN
We employed a recently proposed approach to build 
the IDSCN for each MCI patient according to regional 
GMV derived from the T1W image [33]. Prior to this, 
ComBat harmonization was applied to eliminate the site 
bias of gray matter maps with age and gender as covari-
ates [43] (Supplementary Method S2). The main steps 
for constructing the IDSCN are summarized as fol-
lows (see Fig.  1): (1) with age, gender, education, and 
ICV as covariates, the partial Pearson correlation (PCC) 
between regional GMV for each pair of brain regions was 
calculated to construct a reference SCN in the CN group 
(PCCn, n is the number of CN). (2) We added a patient 
k with MCI to the CN group to build a perturbed SCN 
in the same way as above (PCCn+1). (3) The difference 
between the perturbed SCN and the reference SCN was 
calculated (i.e., ∆ PCCn = PCCn+1 − PCCn). (4) The 

Z-scores of ΔPCCn were calculated according to the fol-
lowing formula:

 
Z = ∆PCCn

1−P CC2
n

n−1
 (1)

Edges with positive Z-scores in the patient’s IDSCN of 
edges indicated higher structural covariance strength 
than the reference CN group, and vice versa. The P-val-
ues of edges in the IDSCN were transformed from the 
Z-scores. Finally, edges that were significantly different 
from the reference network for each patient were deter-
mined by Bonferroni correction (P < 0.05, 90 × 89/2 = 4005 
edges).

Subtyping MCI using the IDSCN
As illustrated in Fig. 1, we divided MCI patients into sub-
types by performing K-means cluster analysis. First, the 
number of patients with significant alterations was calcu-
lated for each edge in the IDSCN (P < 0.05/4005, Bonfer-
roni correction). Then, all edges were ranked based on 
the number of patients with significant changes (from 
large to small), and we selected the top 40 edges as fea-
tures for cluster analysis, as these edges were altered in 
at least 6% of patients [33, 44, 45]. An automatic grid 
search strategy was employed to optimize the best hyper-
parameters for K-means clustering model [46, 47]. To 
consider both clustering distinguishability and repeat-
ability, the multiplication of the Calinski-Harabasz Index 
(CHI) and Adjusted Rand Index (ARI) is perceived as an 
index to determine the best clustering hyperparameters 
and number of clusters (highest CHI × ARI) (Supple-
mentary Method S3) [47]. We defined cluster numbers 
from 2 to 10 and replication number as 100 times. Finally, 
the best result for K-means is 2 clusters (highest CHI × 
ARI = 226.496, Supplementary Fig.  4B). To determine 
whether Z-scores on these top 40 edges of the IDSCN 
differed significantly between two subtypes, a two-sam-
ple t-test was performed with age, gender, education, and 
ICV as covariates (P < 0.05/40, Bonferroni correction).

Statistical analysis
Demographic data
A two-sample t-test was used to compare differences in 
continuous variables between the CN and MCI groups 
(P < 0.05). The chi-square test was used to compare dif-
ferences in categorical variables (P < 0.05). In addition, we 
also compared differences in demographic and clinical 
characteristics among three MCI subgroups using one-
way analysis of variance (ANOVA, P < 0.05). The demo-
graphic data were analyzed using SPSS version 26.0.

https://adni.loni.usc.edu/data-samples/adni-data/neuroimaging/mri/
https://adni.loni.usc.edu/data-samples/adni-data/neuroimaging/mri/
https://adni.loni.usc.edu/data-samples/adni-data/neuroimaging/mri/
https://www.oasis-brains.org/
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Fig. 1 A schematic summary of the study design. (1) The top part represents the workflow of constructing IDSCN. First, a reference structural covariance 
network was constructed across all controls, where the edges represented partial Pearson correlations between the GMV for each pair of regions (PCCn) 
with age, gender, education, and ICV as covariates. Then, the added MCI k and all controls formed a new group to construct a perturbed network (PCCn+1). 
Finally, the IDSCN of MCI k was the Z-score of the difference between the perturbed network and the reference network. (2) The middle part represents 
the clustering analysis of MCI patients using K-means. (3) The bottom part represents statistical analysis, including comparisons of characteristics between 
subtypes and analysis of covariance edges. Abbreviations: CN = cognitively normal; GMV = gray matter volume; ICV = intracranial volume; IDSCN = indi-
vidual differential structural covariance network; MCI = mild cognitive impairment; PCC = partial Pearson correlation

 



Page 5 of 17Wei et al. Alzheimer's Research & Therapy          (2025) 17:106 

Differences in clinical measures between subtypes
First, we compared cognitive scores, FDG, CSF Aβ, CSF 
Tau, and CSF P-tau measures across MCI subtypes and 
CN group using one-way ANOVA (P < 0.05/14, Bonfer-
roni correction). The subjects were divided into four 
subgroups in MCI subtypes and CN group: Aβ-&Tau-, 
Aβ-&Tau+, Aβ+&Tau-, and Aβ+&Tau+. According to 
previous studies [20, 48], Aβ + was defined as Aβ < 976.6 
pg/ml, and Tau + was defined as P-tau > 21.8 pg/ml. The 
chi-square test was applied to examine the statistical sig-
nificance of the ratio of four CSF biomarker levels. To 
further assess the potential impact of Aβ status, we per-
formed a two-way ANOVA to examine the interaction 
between group (subtype 1, subtype 2, CN) and Aβ status 
(Aβ + vs. Aβ-) on clinical cognition and brain structure 
(P < 0.05, Bonferroni correction) (Supplementary Method 
S4).

For each MCI subtype, a Kaplan-Meier survival curve 
was then computed based on follow-up visits to assess 
the probability of conversion to AD. In this survival 
analysis, end event was defined as the time when MCI 
patients were first diagnosed with AD during follow-up. 
A log-rank test was adopted to compare survival curves 
between MCI subtypes. In addition, to further investigate 
the patterns of cognitive progression in MCI subtypes, a 
linear mixed-effects (LME) model was used to delineate 
cognitive decline trajectories as a function of follow-up 
time. The LME model, incorporating both fixed and ran-
dom effects, is suitable for data with irregular follow-up 
intervals and missing time points [49]. Subject-specific 
random intercepts and slope terms as well as site-specific 
random intercepts were considered as random effects. 
Besides, age, sex, and education were regarded as fixed 
nuisance covariates. The linear time main effects and 
interaction effects were estimated separately using 
T-tests to obtain T-statistics and P-values (P < 0.05/10, 
Bonferroni correction). The LME model was performed 
using MATLAB 2020 (https://www.mathworks.com/). 
The model is described in Eq. (2):

 

Cognitions =
β1Sub1 + β2 (Sub1 ∗ Time)
+ β3Sub2 + β4 (Sub2 ∗ Time)
+ β5Age + β6Sex + β7Edu

+ (1 + Time|Subject) + (1|Site)

 (2)

Differences in cerebral atrophy pattern between subtypes 
and relationship with gene expression
To compare the GMV of 90 cerebral regions among two 
MCI subtypes and CN, a one-way ANOVA was per-
formed with age, gender, education, and ICV as covari-
ates (P < 0.05/90, Bonferroni correction). Then, to further 
identify cerebral subregions whose atrophic trajectories 

differed between MCI subtypes, we modeled the atro-
phic trajectories during follow-up time for MCI sub-
types and their interactions on the atrophic process. This 
model was similar to Eq.  (2), except that the dependent 
variable was GMV instead of Cognitions and ICV was 
added as a covariate (P < 0.05/90, Bonferroni correction, 
Eq. (3)). As apolipoprotein E (APOE) ε4 is the most influ-
ential genetic risk factor for AD [50], we used two-way 
ANOVA and the LME model to evaluate the influence of 
APOE genotype on the GMV of 90 cerebral regions and 
their longitudinal atrophic trajectories in MCI subtypes 
(Supplementary Method S5).

 

GMV =
β1Sub1 + β2 (Sub1 ∗ Time)
+ β3Sub2 + β4 (Sub2 ∗ Time)
+ β5Age + β6Sex + β7Edu + β8ICV

+ (1 + Time|Subject) + (1|Site)

 (3)

Additionally, we investigated the relationship between 
the differential map of cerebral longitudinal atrophy pat-
terns in MCI subtypes and regional gene expression. 
Gene expression data of six postmortem neurotypical 
adult brains with 3702 spatially distinct samples were 
obtained from the Allen Human Brain Atlas database 
(AHBA, http://human.brain-map.org) (Supplementary 
Table 4). We used the abagen toolkit ( h t t p  s : /  / g i t  h u  b . c  o 
m /  r m a r  k e  l l o / a b a g e n) to process gene expression data 
according to a newly proposed pipeline (Supplementary 
Method S6) [51]. A gene expression matrix (90 regions 
× 15,633 genes) with transcriptional level values was 
obtained. Then, a partial least squares (PLS) regression 
was performed to estimate the correlation between dif-
ferences in longitudinal atrophy of MCI subtypes (T-val-
ues for 90 regions) and gene expression of 15,633 genes 
[52]. The gene expression matrix (90 regions × 15,633 
genes) was used as predictor variables, and the T vector 
(90 regions × 1) was treated as response variables. The 
first component of the PLS (PLS1) was the linear com-
bination of weighted gene expression scores, which was 
most strongly correlated with the longitudinal cerebral 
atrophic differences map of MCI subtypes. We adopted 
a spatial autocorrelation-preserving permutation test to 
assess the significance of correlation and bootstrapping 
method to obtain gene weights [53–55] (Supplementary 
Method S7). Finally, gene enrichment analysis was per-
formed on the Metascape website ( h t t p  s : /  / m e t  a s  c a p  e . 
o  r g / g  p /  i n d e x . h t m l), including Gene Ontology (GO) of 
biological process, molecular function, cellular compo-
nent, and the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway [56]. All pathways were corrected 
by the false discovery rate (FDR) with significance at 
P < 0.05.

https://www.mathworks.com/
http://human.brain-map.org
https://github.com/rmarkello/abagen
https://github.com/rmarkello/abagen
https://metascape.org/gp/index.html
https://metascape.org/gp/index.html
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Correlation analysis and functional annotation of altered 
structural covariance edges
Next, we introduced canonical correlation analysis 
(CCA) to test the relationships between the top 40 sig-
nificantly altered edges of the IDSCN and the ten clini-
cal cognitive measures in MCI patients (P < 0.05). To 
restrict the influence of underlying confounders on CCA 
results, we regressed age, gender, education, and ICV out 
of imaging data, and regressed age, gender, and educa-
tion out of cognitive data. Besides, functional annotation 
analysis was performed to explore the potential clinical 
implications of these significantly altered edges using the 
Brain Annotation Toolbox (BAT,  h t t p  s : /  / i s t  b i  . f u  d a n  . e d u  . 
c  n / l  n e n  / s o f  t w  a r e s / B A T _ V 1 . 1 . r a r). The BAT toolbox can 
provide voxel-level functional descriptions from the Neu-
rosynth database and determine the functions associated 
with the networks generated by a region-based approach 
[57]. The significance of these altered structural covari-
ance edges associated with functional terms was deter-
mined by a permutation test (10,000 times, P < 0.001, 
FDR correction).

Reproducibility analysis
To further validate the reproducibility of clustering 
results, we adopted the following strategies: (1) adopting 
other brain atlases, such as AAL2 (94 cerebral regions) 
[58], AAL3 (140 cerebral regions) [59], Brainnetome atlas 
(BN246, 246 cerebral regions) [60]; (2) using distinct 
numbers of top edges in the IDSCN, including top 102 
edges altered in at least 5% of patients and top 13 edges 
altered in at least 7% of patients; (3) without ComBat har-
monization. The ARI value was used as an index to evalu-
ate the robustness of subtyping results [61]; (4) validation 
on an independent OASIS-3 dataset using the same 
methods as described above.

Results
Demographics and clinical characteristics
For the ADNI dataset, the demographic and clinical 
characteristics of the CN and MCI groups are presented 
in Table 1. There were no significant differences between 
CN and MCI groups in age (t= -0.23, P = 0.820) and gen-
der (χ2 = 3.32, P = 0.068). The MCI patients had signifi-
cantly lower educational years (t = 3.33, P = 0.001), worse 
cognitive functions, lower FDG, lower CSF Aβ, higher 
CSF Tau and P-tau levels, and a higher ratio of APOE ε4 

Table 1 Main demographic and clinical characteristics of participants
Characteristic CN MCI Statistics P values
Demographics
Number of subjects 309 596 - -
Age (years) 74.09 ± 5.91 74.19 ± 7.10 t = -0.23 0.820
Gender (males/females) 164/145 354/242 χ2 = 3.32 0.068
Education (years) 16.60 ± 2.62 15.95 ± 2.82 t = 3.33 0.001
Clinical domains
MMSE 29.03 ± 1.19 27.45 ± 1.88 t = 15.44 < 0.001
ADAS11 5.73 ± 2.79 10.78 ± 4.63 t = -20.42 < 0.001
ADAS13 8.89 ± 4.25 17.39 ± 6.88 t = -22.84 < 0.001
RAVLT immediate 44.99 ± 9.85 32.86 ± 10.07 t = 17.31 < 0.001
RAVLT learning 6.05 ± 2.24 3.90 ± 2.58 t = 13.03 < 0.001
CDRSB 0.00 ± 0.00 1.58 ± 0.89 t = -43.33 < 0.001
Memory 0.98 ± 0.47 0.14 ± 0.53 t = 24.47 < 0.001
Executive 0.76 ± 0.49 0.28 ± 0.55 t = 13.52 < 0.001
Language 0.83 ± 0.50 0.33 ± 0.49 t = 14.18 < 0.001
Visuospatial 0.59 ± 0.44 0.37 ± 0.55 t = 6.59 < 0.001
Metabolic biomarkers
Number of subjects 161 424 - -
FDG 1.29 ± 0.11 1.20 ± 0.14 t = 7.77 < 0.001
CSF biomarkers
Number of subjects 154 391 - -
Aβ 1256.09 ± 442.30 889.99 ± 415.14 t = 8.85 < 0.001
Tau 222.67 ± 82.15 302.68 ± 130.20 t = -8.57 < 0.001
P-tau 20.19 ± 7.93 29.64 ± 14.71 t = -9.64 < 0.001
Genotype
APOE ε4 (carriers/noncarriers) a 82/218 315/281 χ2 = 52.66 < 0.001
Continuous variables are shown as “mean ± standard deviation”. P values in bold denote statistical significance. aAPOE ε4 carriers indicate participants having one or 
two copies of ε4 alleles. APOE ε4 genotype, FDG, and CSF biomarkers were not available for all participants

https://istbi.fudan.edu.cn/lnen/softwares/BAT_V1.1.rar
https://istbi.fudan.edu.cn/lnen/softwares/BAT_V1.1.rar
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carriers (all P < 0.001) than the CN group. Additionally, 
statistical differences in cognitive scores, FDG, CSF bio-
markers, and the ratio of APOE ε4 carriers were found 
among the MCI_C, MCI_S, and MCI_R subgroups 
(all P < 0.001), except for visuospatial ability (F = 2.61, 
P = 0.074) (Supplementary Table 1). For the OASIS-3 
dataset, the CN and MCI groups did not differ in age (t 
= -0.03, P = 0.976) and gender (χ2 = 0.67, P = 0.413), while 
MCI patients had significantly lower educational years 
(t = 2.98, P = 0.003) and MMSE scores (t = 8.04, P < 0.001) 
than the CN group (Supplementary Table 2).

Heterogeneity analysis of IDSCN
For each MCI patient, we constructed the IDSCN based 
on the AAL atlas consisting of 4005 edges. Each edge 
indicates how the covariance between two connected 
nodes of the patient deviates from the normative cova-
riance observed in the control group. Among all edges, 
3958 edges were significantly altered in at least one 
patient, and 3817 edges were significantly altered in at 
least two patients (Supplementary Fig.  2). In addition, 

the average IDSCN across all MCI indicated that the 
regions constituting the hippocampal-parahippocampal-
amygdala network were severely affected (Supplemen-
tary Fig.  3). To prioritize the significantly altered edges 
in most patients, the top 40 edges altered in at least 6% 
of MCI patients were selected as the classifying features, 
mainly including the connections associated with hippo-
campus, parahippocampal gyrus (PHG), amygdala, and 
temporal lobe (Fig. 2A-B). The degree of a node is defined 
as the number of edges directly connected to this node 
(or brain region) to assess the node’s importance in infor-
mation transmission and processing. We calculated the 
degrees of nodes involved in these 40 edges, the largest 
of which was the left amygdala, followed by the bilateral 
hippocampus (Fig. 2C).

Two distinct MCI subtypes identified by IDSCN
We utilized the Z-scores of the top 40 edges as fea-
tures for conducting K-means cluster analysis. The 
best hyperparameters for K-means included the dis-
tance metric “city block” and the method for selecting 

Fig. 2 Two MCI subtypes based on significantly altered covariance edges. (A) The brain map of the top 40 covariance edges significantly changed in at 
least 6% of patients. Red edges indicate Z-score > 0 and blue edges indicate Z-score < 0. The size of nodes is proportional to their degree. (B) The Z-score of 
the top 40 significantly altered covariance edges. (C) Degree of nodes involved in significantly altered covariance edges. (D) Group comparison results of 
the top 40 significantly altered covariance edges between two MCI subtypes using two-sample t-tests with age, gender, education, and ICV as covariates 
(subtype 1 vs. subtype 2). Asterisk (*) indicates structural covariance of significant differences between two subtypes (P < 0.05/40, Bonferroni correction). 
(E) The mean patterns of IDSCN for two MCI subtypes. The full names of the brain regions are shown in Supplementary Table 3. Abbreviations: CN = cog-
nitively normal; ICV = intracranial volume; IDSCN = individual differential structural covariance network; MCI = mild cognitive impairment
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initial cluster centroid positions “cluster”. The CHI × 
ARI index was maximum when the cluster was two 
(CHI × ARI = 226.496, Supplementary Fig.  4B). The 596 
MCI patients were clustered into two subtypes (subtype 

1, n = 134; subtype 2, n = 462). Two-sample t-tests illus-
trated that subtype 1 had significantly higher Z-scores 
than subtype 2 in these 40 structural covariance edges 
(P < 0.05/40, Bonferroni correction, Fig.  2D). Moreover, 

Fig. 3 (See legend on next page.)
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these two subtypes had distinct patterns of IDSCN pro-
file (Fig. 2E and Supplementary Fig. 5).

Differences in demographics and clinical measures 
between MCI subtypes
The ratio of three MCI subgroups was significantly dif-
ferent between the two subtypes (P < 0.001, Fig.  3A). 
Survival analysis revealed that subtype 1 showed faster 
progression to AD relative to subtype 2 (log-rank test: 
χ2 = 162.21, P < 0.001, Fig. 3B). One-way ANOVA and chi-
square test indicated statistical differences in education, 
cognitive scores, FDG, CSF biomarkers, and the propor-
tion of APOE ε4 carriers (all P < 0.001) among two MCI 
subtypes and CN group, but there were no significant dif-
ferences in age (F = 0.91, P = 0.405) and gender (χ2 = 3.34, 
P = 0.189) (Fig.  3C-E and Supplementary Table 5). Post 
hoc tests found that subtype 1 had worse cognitive func-
tions, lower FDG, lower CSF Aβ levels, and a higher ratio 
of APOE ε4 carriers than subtype 2. However, there were 
no significant differences in CSF Tau and P-tau levels 
between two MCI subtypes (P > 0.05). In addition, the 
proportion of Aβ+&Tau + in subtype 1 was higher than 
that in subtype 2, while the proportion of Aβ-&Tau- in 
subtype 1 was lower than that in subtype 2 (P < 0.05, 
Fig.  3E and Supplementary Table 6). Two-way ANOVA 
revealed the significant interaction between the three 
groups and two Aβ levels on ADAS13, CDRSB, mem-
ory scores, and GMV in the bilateral amygdala, bilat-
eral superior temporal pole, and right middle temporal 
pole (Supplementary Results S1, Supplementary Tables 
7–8 and Supplementary Fig. 6). After controlling for age, 
gender, and education, the LME models identified that 
subtype 1 had a faster rate of cognitive decline during fol-
low-up than subtype 2 (all P < 0.001), except in the areas 
of RAVLT learning and visuospatial ability (Fig.  3F and 
Supplementary Table 9).

Cerebral atrophy of MCI subtypes and gene expression 
profiling
Among the 90 cerebral subregions, significant differences 
in GMV were observed between the two subtypes, with 
subtype 1 showing more pronounced atrophy than sub-
type 2, particularly in the bilateral hippocampus, PHG, 
and amygdala (Supplementary Fig. 7). LME identified 35 
regions whose atrophic trajectories with follow-up time 

in subtype 1 were faster than subtype 2, including the 
bilateral superior temporal pole, middle temporal pole, 
hippocampus, and so on (P < 0.05/90, Fig.  4B, Supple-
mentary Fig. 8, and Supplementary Table 10). In addition, 
two-way ANOVA and LME model revealed the APOE ε4 
has a significant effect on brain atrophy in both MCI sub-
types, with APOE ε4 carriers exhibiting faster atrophic 
rates than noncarriers, particularly in the hippocampus, 
middle temporal gyrus, and inferior temporal gyrus (Sup-
plementary Results S2, Supplementary Tables 11–12 and 
Supplementary Fig. 9–11).

The PLS regression can evaluate the associations 
between regional gene expression patterns and the 
T-map of the longitudinal atrophic difference between 
two subtypes (Fig.  4B). The PLS1 explained 53% of the 
variance in longitudinal cerebral atrophic differences 
of MCI subtypes, significantly more than expected by 
chance (spin test, Pspin < 0.001). The distribution of the 
PLS1 scores represented an anterior-posterior gradi-
ent of gene expression (Fig. 4C). Notably, the PLS1 gene 
expression map was positively associated with the T-map 
of longitudinal atrophic difference between the two sub-
types (R = 0.73, Pspin < 0.001, Fig.  4A). As reported by 
prior research [55], we ranked the normalized weights 
of PLS1 based on each gene’ Z-score. Overall, 4010 
genes were recognized as making significant contribu-
tions to PLS1 (P < 0.05, FDR correction). Among them, 
1795 genes exhibited positive normalized PLS1 weights 
(PLS1+, Z > 4), and 2215 genes exhibited negative nor-
malized PLS1 weights (PLS1-, Z < -4). These positive 
correlations indicated that PLS1 + genes were overex-
pressed in regions with increased T values (e.g., NCOA3), 
while negative correlations indicated that PLS1- genes 
were overexpressed in regions with decreased T values 
(e.g., IFT22 and APOE) (Fig.  4D-E). After correcting 
for enrichment analysis (P < 0.05, FDR correction), the 
PLS1 + gene set was mainly enriched for several signifi-
cant GO pathways, such as “phosphorylation” and “metal 
ion transport” and KEGG pathways including “Path-
ways in cancer” (Fig. 4F). The PLS1- gene list was mainly 
enriched in GO pathways including “neuron projection 
development”, “presynapse”, and “axon” (Fig. 4G).

(See figure on previous page.)
Fig. 3 Comparisons of clinical characteristics between two MCI subtypes. (A) The pie chart on the left shows the number of subjects in subtype 1 and 
subtype 2. The two pie charts on the right show the number of clinical subgroups in subtype 1 and subtype 2, respectively. (B) Kaplan-Meier curves depict 
the probability of non-conversion to AD in subtype 1 (red) and subtype 2 (blue). Comparisons of demographics (C), cognitive characteristics (D), FDG val-
ues, and CSF biomarker levels (E) among the subtype 1, subtype 2, and CN. (F) Longitudinal changes in cognitive characteristics. Solid red (subtype 1) and 
blue (subtype 2) lines represent the fitted cognitive change as a function of follow-up time. * P < 0.05, ** P < 0.01, *** P < 0.001. Abbreviations: ADAS11 = Al-
zheimer’s Disease Assessment Scale Cognitive-11; ADAS13 = Alzheimer’s Disease Assessment Scale Cognitive-13; Aβ = amyloid-β; CDRSB = Clinical De-
mentia Rating Scale Sum of Boxes; CN = cognitively normal; CSF = cerebrospinal fluid; FDG = fludeoxyglucose; MCI_C/MCI_S/MCI_R = mild cognitive 
impairment converters/stable/reverters; MMSE = Mini-Mental State Examination; P-tau = phosphorylated tau; RAVLT = Rey Auditory Verbal Learning Test; 
Sub = subtype; y = year
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Correlation analysis and functional annotation of altered 
edges in IDSCN
According to CCA, we clarified the association between 
the top 40 edges that were significantly altered in MCI 
patients and clinical cognition. We found a significant 
positive correlation between the first canonical vari-
able of the 40 covariance edges and that of 10 clinical 

cognitive items (R = 0.55, P < 0.001, Fig. 5A). Furthermore, 
the covariance edges with left PHG-right amygdala were 
the principal contributors to the first canonical variable 
(loading value: v = -0.83, Fig.  5B). The memory item of 
cognitive domain composite primarily contributed to 
the first canonical variable of clinical cognition (loading 
value: u = -0.56, Fig. 5C). To further verify the underlying 

Fig. 4 Gene expression profiles related to the longitudinal cerebral atrophic differences of two MCI subtypes. (A) The correlation between regional PLS1 
scores (weighted sum of 15,633 gene expression scores) and the T values of differences in longitudinal cerebral atrophy between two MCI subtypes. (B) 
The cortical maps of the subtype differences in cerebral atrophy as a function of follow-up time (subtype 1 vs. subtype 2). The color bar represents the T 
values without a threshold. (C) The cortical maps of regional PLS1 scores. The color bar represents the PLS1 scores without a threshold. (D-E) Genes posi-
tively weighted on PLS1 (e.g., NCOA3) are positively correlated with T values of subtype differences in longitudinal cerebral atrophy (r = 0.60, Pspin < 0.001), 
whereas genes negatively weighted on PLS1 (e.g., IFT22 and APOE) are negatively correlated with T values of subtype differences in longitudinal cerebral 
atrophy (r = -0.58 and r = -0.42, Pspin < 0.001). Bubble plots show the top 10 GO and KEGG pathways for the PLS1 + genes (F) and PLS1- genes (G), respec-
tively. The bubble size represents the number of overlapped genes between the PLS1+ (or PLS1-) gene list and each GO term or KEGG pathway (y-axis). 
The x-axis represents the ratio of overlapped genes. The color bar represents the -log10(P) values (FDR correction). Abbreviations: APOE = apolipoprotein 
E; FDR = false discovery rate; GO = Gene Ontology; KEGG = Kyoto Encyclopedia of Genes and Genomes; PLS = partial least squares
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functional implications of these 40 covariance edges, we 
performed a functional annotation analysis based on 
BAT. We found that 30 functional terms were signifi-
cantly related to various functions such as memory and 
emotion (P < 0.001, FDR correction) (Fig. 5D and Supple-
mentary Table 13).

Results of reproducibility analysis
Subtyping results showed robust consistency for various 
subtyping strategies. MCI patients were optimally classi-
fied into two subtypes with different brain atlases (AAL2, 
AAL3, BN246), number of top edges (top 102 or 13 edges 
significantly altered in at least 5% or 7% of patients), and 
without ComBat harmonization (Supplementary Fig.  4 

Fig. 5 Analysis of covariance edges. (A) The correlation between the first canonical variable of the top 40 covariance edges and that of 10 clinical cog-
nitive items. (B) The canonical loadings of these top 40 covariance edges. (C) The canonical loadings of 10 clinical cognitive items. (D) The word cloud 
represents keywords for 30 significant functional terms obtained by functional annotation of these top 40 covariance edges (P < 0.001, FDR correction). 
The larger text indicates a higher frequency of keywords. These 30 functional terms are shown in Supplementary Table 13. (E) The ARI values between 
clustering results based on different brain atlases and numbers of top edges. For example, AAL_5 represented clustering results using the AAL atlas 
and the top edges that were changed in at least 5% of MCI patients. The full names of the brain regions are shown in Supplementary Table 3. Abbrevia-
tions: AAL = Automated Anatomical Labeling; ADAS11 = Alzheimer’s Disease Assessment Scale Cognitive-11; ADAS13 = Alzheimer’s Disease Assessment 
Scale Cognitive-13; ARI = Adjusted Rand Index; BN = Brainnetome atlas; CDRSB = Clinical Dementia Rating Scale Sum of Boxes; FDR = false discovery rate; 
MMSE = Mini-Mental State Examination; RAVLT = Rey Auditory Verbal Learning Test
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and Supplementary Fig. 12–14). Besides, the ARI values 
were calculated to examine the consistency of subtyp-
ing results (Fig. 5E). The ARI between the main reported 
subtyping results (AAL_6) and those of 5% of patients 
(AAL_5) was 0.86, reflecting a good consistency. More-
over, the ARI between subtyping results using AAL2 atlas 
(AAL2_6) and top edges altered in at least 7% of patients 
(AAL_7) was 0.87. In the OASIS-3 dataset, using the 
same top 40 edges as features, MCI patients also were 
divided into two subtypes (Supplementary Fig. 15). Simi-
lar to the discovery data, subtype 1 had lower MMSE 
scores and faster decline than subtype 2. Survival analy-
sis indicated a significant difference in progression to 
AD between two subtypes (log-rank test: χ2 = 25.62, 
P < 0.001), with subtype 1 exhibiting more accelerated 
progression over time than subtype 2 (Supplementary 
Fig. 16).

Discussion
In the present study, a principal aim was to explore the 
heterogeneity of MCI patients by constructing IDSCN. 
First, we identified IDSCN for each patient relying on 
regional GMV. Individual patients exhibited notable dif-
ferences in their IDSCNs at the network level. Despite 
this whole-brain heterogeneity, altered covariance edges 
involving the hippocampus, PHG, amygdala, and tem-
poral lobe were often observed in most patients. Then, a 
data-driven approach was applied to identify two distinct 
subtypes of MCI, and we also demonstrated the clinical 
and biological validity of the two subtypes. Specifically, 
subtype 1 showed faster disease progression relative to 
subtype 2. The two subtypes showed distinct patterns in 
cognitive impairment, biomarker characteristics, cerebral 
atrophy, and regional gene expression. These results may 
provide a new perspective for understanding the hetero-
geneity of MCI.

It is well established that the brain is a complex net-
work where neural activity is processed and integrated 
among different regions [62]. Large-scale structural cova-
riance networks can capture the coordinated volumes 
between pairwise brain regions to reflect their synchro-
nized maturation or atrophy, mutually trophic reinforce-
ment, and common experience-driven plasticity [29, 63]. 
Previous studies reported abnormal structural covari-
ance networks in MCI patients, including the limbic and 
medial temporal networks [31, 32, 64]. These outcomes 
suggested structural covariance aberrance at the popu-
lation level while ignoring inter-individual differences. 
Recently, a novel method by constructing IDSCN has 
been used to address the individual heterogeneity of 
neuropsychiatric disorders, such as schizophrenia [33], 
depression [65], autism spectrum disorder [44], and AD 
[45], providing a new viewpoint for adopting individual-
ized analysis methods in further neuroimaging studies. 

As the prodromal stage of AD, MCI represents a criti-
cal window for clinical intervention, and its heterogene-
ity is particularly pronounced. To some extent, our study 
reinforces the awareness of individual differences in mor-
phological networks of MCI, which is conducive to deter-
mining precision medicine strategies and personalized 
treatment plans.

In this research, we analyzed individual-level differ-
ential structural covariance networks in MCI patients, 
with edges representing the degree of deviation of each 
patient’s structural covariance pattern from that of the 
healthy control group. In line with previous studies, we 
found low similarity of IDSCNs between patients and a 
reduced overlap of significantly altered edges with each 
other, indicating higher structural heterogeneity in MCI 
[3, 20]. Despite the observed heterogeneity, structural 
covariance connections between the hippocampus, PHG, 
amygdala, and temporal lobe were significantly affected 
in most patients, which may be a potential neural sub-
strate for memory loss and cognitive impairment. Many 
studies have reported that MCI patients suffer severe 
gray matter atrophy and white matter fiber disruption in 
these regions, and these disruption affects the integrity 
of the stable network structure, thereby contributing to 
cognitive decline [66–68]. In the CCA examining rela-
tions between affected covariance edges and cognitive 
data, two canonical variates pairs were significant. The 
connectivity pattern most strongly associated with cog-
nitive dimensions included the negative loading of edges 
within the left PHG and right amygdala. Furthermore, 
functional annotation demonstrated that these edges of 
IDSCN were mainly associated with memory, emotion, 
etc. In light of these outcomes, we assumed that altera-
tions in structural covariance within these core regions 
may underlie cognitive dysfunction in MCI, particularly 
affecting processes such as memory formation and emo-
tional regulation.

Extensive evidence manifests that individuals with 
MCI may be classified into distinct subtypes, such as 
cognition-based classifications (e.g., amnestic and non-
amnestic) [4, 10, 69], risk stratification (e.g., high and 
low risk) [70, 71], and atrophy pattern comparisons (e.g., 
CN and AD-like atrophy) [20, 21]. These studies pro-
vide valuable insights into the clinical and pathologi-
cal diversity of MCI, but do not appear to capture the 
neurodegeneration patterns at the individual level [72]. 
Our approach utilized IDSCN constructed from T1W 
images to detect patient-specific structural variations and 
offered a detailed classification framework. MCI patients 
were subdivided into two robust subtypes with various 
patterns of covariance edges (higher degree of deviation 
in subtype 1 than in subtype 2), while these individual 
differences may be overlooked in group-level analyses. 
In terms of clinical presentation, subtype 1 had worse 
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cognitive function and a faster rate of cognitive decline 
than subtype 2. Pathological differences in FDG and CSF 
Aβ levels were also found between two subtypes, which 
may reflect underlying variations in brain metabolic 
activity and Aβ accumulation. The higher proportion of 
abnormal CSF Aβ (Aβ+) and P-tau (Tau+) in subtype 1 
indicated a significant role of amyloid and tau pathology, 
potentially driving more severe neurodegeneration and a 
higher risk of progression to AD [73, 74].

Subtype 1 included mainly MCI_C patients, while 
subtype 2 included mainly MCI_S and MCI_R patients. 
However, similar to the results of several subtype stud-
ies [20, 21], the identified two neurobiological subtypes 
do not completely overlap with traditional clinical sub-
groups, which may be due to multiple factors influencing 
the progression of MCI. Thus, we can only speculate that 
subtype 1 had a higher risk of progression to AD than 
subtype 2, which was also supported by differences in 
AD conversion rates between subtypes. The robustness 
of MCI subtypes was demonstrated by the repeatability 
of clustering subtypes in various parcellation schemes, 
edge selection, and the independent dataset. Interest-
ingly, Zheng et al. [45] identified two distinct AD sub-
types based on IDSCN analysis, including slow and rapid 
progression types, which is similar to our findings. These 
results suggest that there may be similar pathological fea-
tures and potential links between MCI and AD subtypes, 
which need to be further verified.

We further demonstrated whether the two subtypes 
differed in their underlying patterns of brain morphologi-
cal alterations. The results showed subtype 1 exhibited 
more severe and faster gray matter atrophy than subtype 
2 during disease progression, particularly in the superior 
temporal pole, middle temporal pole, and hippocampus. 
These findings are in agreement with previous neuroana-
tomical studies, where MCI patients with faster GMV 
reduction have a relatively poor prognosis and a higher 
risk of progressing to AD [66]. These two distinct sub-
types exhibited different atrophic patterns with under-
lying neurobiological significance. It is well-known that 
AD is impacted by multiple genetic risk factors, including 
the APOE ε4 gene [75]. Consistent with previous studies, 
APOE ε4 carriers showed faster atrophic rates than non-
carriers in both MCI subtypes, particularly in the hippo-
campus and temporal lobes, suggesting that the APOE 
gene may play an important regulatory role in the brain 
atrophy of MCI [76, 77].

Recently, genome-imaging association analysis has 
become an effective tactic for exploring the molecular 
foundations of brain structural organization [54, 55]. 
Using multivariate PLS regression, we discovered that 
the map of longitudinal cerebral atrophic differences 
between two MCI subtypes showed spatial correla-
tion with the gene expression map, and further detected 

significantly weighted genes in the PLS1 that may be 
involved in the pathogenesis of MCI. The PLS1 + genes 
were generally overexpressed in occipital and parietal 
cortical areas of increased T values. Conversely, the 
PLS1- genes were generally overexpressed in frontal and 
temporal cortical areas of decreased T values. Gene set 
enrichment analysis revealed that the observed pathways 
were primarily implicated in metal ion transport, neuron 
projection development, and presynapse. Abnormalities 
or dysregulations of these pathways are associated with 
AD. An imbalance of metal ions can lead to oxidative 
stress, which in turn causes the phosphorylation of tau 
protein in neurons, deposition of Aβ amyloid, and dam-
age to neuronal cells, which is closely associated with the 
onset of AD [78]. Loss of synapses and neuronal impair-
ment have been reported to be important pathological 
factors in AD [79]. Besides, the trans-synaptic neuron-
to-neuron disconnection syndrome within the central 
nervous system is a key mechanism in the pathology of 
MCI, and neurodegeneration-driven cognitive decline is 
a final common pathway in the dementia process [80]. In 
this study, MCI subtypes exhibited similar gene pathways 
as those in AD. These results elucidated the role of gene 
expression in modulating the brain structure of MCI.

The potential clinical implications of these findings 
included: (1) The IDSCN could capture individual-spe-
cific structural changes, and IDSCN-derived subtypes 
could further deepen our understanding of the bio-
logical heterogeneity of MCI. Compared to the cogni-
tive subtypes, brain structural subtypes were relatively 
stable and sensitive than clinical symptoms in the early 
stages of disease, and may more closely reflect biologi-
cal heterogeneity [72]. (2) Brain structural subtypes may 
help individualized diagnosis by resolving the inter-
individual heterogeneities. It has been reported that the 
subtyping frameworks incorporating neuroanatomical 
features could improve the diagnostic accuracy of MCI 
patients [17]. Despite the challenges of implementing 
this approach in clinical practice, future research will be 
devoted to developing computer-aided diagnostic tools 
to facilitate its clinical application and serve as a valuable 
complement to other classification frameworks, such as 
visual rating scales [81, 82]. (3) Brain structural subtypes 
may help predict disease progression. This study found 
two subtypes: one with relatively rapid progression and 
the other with relatively slow progression. At present, 
early clinical intervention can effectively delay disease 
progression (e.g., cognitive training therapy, pharmaco-
therapy) [83]. The distinct MCI subtypes may require dif-
ferent treatment approaches and intervention strategies, 
which should be validated in the future [84].

Our studies have some limitations. First, our study 
was based on the ADNI and OASIS-3 databases. Vali-
dating the applicability of this subtyping framework in 
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larger populations is a critical step for future work. Sec-
ond, due to the limitation of data acquisition, the disease 
state was determined based on reported diagnosis and 
CDRSB scores. Future studies should incorporate Aβ and 
tau measurements to more accurately confirm the dis-
ease state. Third, because gray matter loss is frequently 
detected in the MCI stage, we constructed the IDSCN 
using only GMV. Future studies should integrate clini-
cal symptoms, multimodal neuroimaging and pathology 
data to systematically uncover MCI heterogeneity, and 
explore the relationship between structural subtypes and 
other modal subtypes (e.g., cognitive, functional, PET-
derived subtypes) for cross-study comparisons. Finally, 
MCI may progress to other non-AD types of dementia, 
more detailed subtype analyses in future larger cohorts 
are essential.

Conclusion
Based on IDSCN analysis, this study emphasizes the indi-
vidual heterogeneity of brain structure in MCI patients. 
According to individual heterogeneity, two MCI sub-
types with different clinical features, patterns of brain 
structure, and gene expression profiles were determined. 
Overall, these findings offer an important viewpoint into 
the morphological heterogeneity of MCI from the per-
spective of individual differences. This study also lays a 
solid foundation for the development of personalized 
therapies based on the IDSCN stratification and the 
advancement of precision medicine.
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