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Abstract 

Background  Exploring the early stages of Alzheimer’s disease (AD) is crucial for timely intervention to help man-
age symptoms and set expectations for affected individuals and their families. However, the study of the early 
stages of AD involves analysing heterogeneous disease cohorts which may present challenges for some modelling 
techniques. This heterogeneity stems from the diverse nature of AD itself, as well as the inclusion of undiagnosed 
or ‘at-risk’ AD individuals or the presence of comorbidities which differentially affect AD biomarkers within the cohort. 
Normative modelling is an emerging technique for studying heterogeneous disorders that can quantify how brain 
imaging-based measures of individuals deviate from a healthy population. The normative model provides a statistical 
description of the ‘normal’ range that can be used at subject level to detect deviations, which may relate to pathologi-
cal effects.

Methods  In this work, we applied a deep learning-based normative model, pre-trained on MRI scans in the UK 
Biobank, to investigate ageing and identify abnormal age-related decline. We calculated deviations, relative 
to the healthy population, in multi-modal MRI data of non-demented individuals in the external EPAD (ep-ad.org) 
cohort and explored these deviations with the aim of determining whether normative modelling could detect AD-
relevant subtle differences between individuals.

Results  We found that aggregate measures of deviation based on the entire brain correlated with measures of cog-
nitive ability and biological phenotypes, indicating the effectiveness of a general deviation metric in identifying AD-
related differences among individuals. We then explored deviations in individual imaging features, stratified by cogni-
tive performance and genetic risk, across different brain regions and found that the brain regions showing deviations 
corresponded to those affected by AD such as the hippocampus. Finally, we found that ‘at-risk’ individuals in the EPAD 
cohort exhibited increasing deviation over time, with an approximately 6.4 times greater t-statistic in a pairwise t-test 
compared to a ‘super-healthy’ cohort.

Conclusion  This study highlights the capability of deep normative modelling approaches to detect subtle differ-
ences in brain morphology among individuals at risk of developing AD in a non-demented population. Our findings 
allude to the potential utility of normative deviation metrics in monitoring disease progression.
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Introduction
Alzheimer’s disease (AD) is the most common form of 
dementia, accounting for approximately 60–70% of all 
dementia cases [1]. Pathological changes related to AD 
can occur decades before symptom onset, but often go 
undiagnosed for years [2]. Early diagnosis of AD is cru-
cial due to the progressive and irreversible nature of the 
disease. Detecting AD at its initial stages allows for bet-
ter management of symptoms, setting expectations for 
affected individuals and their families, and will help in 
designing better clinical trials for potential treatments.

Research has led to a multitude of biomarkers and 
clinical factors used to detect, monitor, and understand 
the underlying pathology in AD. These include genetic 
and environmental risk factors [3], cognitive tests, age 
of onset, symptom profile [4], cerebrospinal fluid (CSF) 
readouts [5], blood-based markers [6], and neuroimag-
ing-based measures quantifying buildup of proteins [7] 
and neurodegeneration or atrophy profiles [8]. However, 
many research studies have found substantial differences 
in these factors between patients [4, 5, 9]. This hetero-
geneity may manifest as different subtypes with distinct 
cognitive trajectories and disease progression [10]. The 
case–control approach taken in many AD studies may 
oversimplify this heterogeneity by grouping individuals 
into broad categories, failing to capture the clinical and 
biological differences in AD. As such, a shift is needed 
towards modelling approaches that reflect patient het-
erogeneity in AD.

Neuroimaging is an invaluable tool for understanding 
the brain. Structural imaging, in particular, plays a fun-
damental role in unravelling the complexities of neuro-
degeneration. As such, several studies using structural 
T1-weighted MRI have identified both macrostructural 
changes (e.g., general atrophy) and specific brain regions 
which exhibit neurodegeneration (e.g., the amygdala 
and hippocampus) [11]. Diffusion tensor imaging (DTI) 
metrics, which can measure microstructural white-mat-
ter properties in the brain, offer additional, and possi-
bly earlier, biomarkers of neurodegeneration [12]. For 
example, Tranfa et al. [13] found that AD pathology was 
associated with white-matter integrity in several tracts. 
Nir et al. [14] also found that DTI Fractional Anisotropy 
(FA) and diffusivity measures were correlated with clini-
cal cognitive scores and identified several white-matter 
regions implicated in AD. However, bar a few commonly 
seen alterations, these neuroimaging markers show het-
erogeneous profiles in AD patients, exhibiting a high 
degree of variability between different patients and dis-
ease stages. For example, several atrophy subtypes been 
identified with distinct symptom profiles and expected 
trajectories of cognitive decline [15, 16]. Additionally, 
copathologies have been shown to differentially affect 

these white-matter markers [13]. With this in mind, we 
aim to design a study to account for this heterogeneity in 
neuroimaging features and explore differences in AD bio-
markers at an individual level.

Normative modelling is a popular method for describ-
ing the ‘normal’ behaviour or expected trajectory of a 
healthy population which can be used at subject level 
to detect deviations relating to a disease. These models 
consider covariates such as age and sex such that we can 
assess the value of a biomedical feature in relation to the 
expected value for a healthy individual with a specific set 
of covariate values. Normative models assume disease 
cohorts sit at the tails of a healthy population distribution 
and quantify the distance of an individual from healthy 
brain patterns, i.e., a deviation value. As such, in the case 
of AD, we expect individuals with higher cognitive and 
functional decline to have higher deviation values, i.e., 
the value of a biomedical feature is substantially higher or 
lower than expected for a given age and sex. Traditional 
normative approaches involve learning one normative 
model per imaging derived feature by training a regres-
sion model, for example Gaussian Process Regression 
(GPR), to predict each biomedical feature from a set of 
clinical covariates. Such models have been widely used in 
various disciplines such as psychiatry, psychology, neu-
rology and neuroscience [17] to address and explore dis-
ease heterogeneity. The parameters of a normative model 
are learnt such that they characterise healthy brains from 
a control population and provide a statistical measure of 
normality. Thus, applying the normative model to a dis-
ease cohort allows for quantification of the deviation, 
given the demographic covariates, of subjects within this 
cohort from the norm [18]. However, these traditional 
approaches consider and derive a deviation measure for 
each biomarker independently and do not consider the 
interactions between features.

Recently, deep learning approaches to normative 
modelling have been proposed to model the interac-
tion across multiple brain imaging features or imaging 
modalities and derive an aggregate measure of devia-
tion from a multivariate normative distribution [19–21]. 
These approaches use autoencoders and either incorpo-
rate demographic covariates into the modelling frame-
work or adjust for them beforehand. Autoencoders are 
deep learning models consisting of an encoder network, 
which maps the input data to a lower-dimensional latent 
space, and a decoder network, which maps from the 
latent space back up to the feature space. Here, we use 
a multi-modal autoencoder [22, 23] as a deep normative 
model for measuring deviations across multiple features 
and modalities.

In this work, we explore the potential of such deep 
normative modelling approaches to offer useful insights 
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into cohorts at risk of developing AD. We applied this 
approach to T1 and diffusion MRI (dMRI) features 
from the European Prevention of Alzheimer’s Dementia 
(EPAD) cohort, comprising healthy individuals recruited 
as a ‘probability spectrum’population, covering the entire 
range of anticipated probabilities for Alzheimer’s demen-
tia development [24]. Although some participants are 
likely to develop AD in the future, at baseline, none of 
the individuals have an AD diagnosis. As such, the EPAD 
dataset presents an ideal opportunity for investigating 
the early stages of AD by exploring AD related biomark-
ers before any signs of cognitive decline become evident. 
In addition to the heterogeneity inherent to AD, as the 
EPAD dataset covers the full spectrum of disease risk, it 
is likely to be particularly diverse due to a mix of disease 
labels. As such normative modelling, which is disease 
agnostic, is particularly apt for modelling the EPAD data-
set. Specifically, we aimed to:

• Evaluate the degree to which general and AD-spe-
cific normative deviation metrics correlate with AD-
related biomarkers and cognitive performance within 
a non-demented at-risk cohort.
• Assess the extent of neuroanatomical variability 
between individuals based on patterns of outliers 
across different levels of cognitive performance and 
genetic risk.
• Assess whether deviation measures align with 
expectations over time in healthy and ‘at-risk’ 
cohorts.

Methods
Data processing
Here, we worked with two datasets; the UK Biobank to 
train our normative model on healthy brain variation, 
and the EPAD dataset as the external target dataset. To 
pre-train the model, we used 12,844 healthy subjects 
from the UK Biobank. Our cohort was smaller than 
the total number of subjects with imaging data due to 
the date of access (accessed 26/10/2019), restricting to 
healthy sex-matched controls, and selecting individu-
als for which both T1 and dMRI features were available. 
This research has been conducted using the UK Biobank 
Resource under Application Number 70047. Subjects 
were selected such that they had no neurological, psy-
chiatric disorders or head trauma according to available 
ICD9 and ICD10 codes. We used pre-processed (pro-
vided by the UK Biobank [25]) FreeSurfer grey-matter 
volumes for 66 cortical (Desikan-Killiany atlas) and 16 
subcortical brain regions, and Fractional Anisotropy (FA) 
and Mean Diffusivity (MD) measurements for 32 white 
matter tracts (John Hopkins University atlas) as the input 

features to the normative model. Demographic informa-
tion for the UK Biobank cohort is provided in Supple-
mentary Table S1.

For model analysis we used the EPAD dataset with 
a total of 929 subjects. We split this dataset into two 
cohorts; a ‘super healthy’ cohort for fine-tuning and 
healthy holdout controls, and an ‘at-risk’ cohort for anal-
ysis purposes. For the ‘super healthy’ cohort, we identi-
fied individuals who were cognitively unimpaired using 
the Clinical Dementia Rating (CDR) and the Mini-Men-
tal State Examination (MMSE). The CDR score is based 
on a scale of 0–3; no dementia (CDR = 0), question-
able dementia (CDR = 0.5), mild cognitive impairment 
(CDR = 1), moderate cognitive impairment (CDR = 2), 
and severe cognitive impairment (CDR = 3) [26]. The 
MMSE score is based on a scale of 30–0; no dementia 
(MMSE = 30), questionable dementia (MMSE = 26–29), 
mild cognitive impairment (MMSE = 21–25), moder-
ate cognitive impairment (MMSE = 11–20), and severe 
cognitive impairment (MMSE = 0–10) [27]. The super 
healthy cohort comprised individuals with MMSE > 28 
and CDR = 0. We further restricted this cohort to indi-
viduals who did not carry an Apolipoprotein E (ApoE) 
ε4 allele, a major common genetic risk factor for AD. We 
randomly split the super healthy cohort into two sets: 
data from 169 individuals was used for fine-tuning and 
the remaining 168 individuals constituted the healthy 
holdout dataset. Where individuals had data from more 
than one visit, we used the data from the baseline visit. 
The ‘at-risk’ cohort consisted of the remaining 592 indi-
viduals. Demographic and AD biomarker information for 
the super healthy cohort and ‘at-risk’ cohort, for the lat-
est visit, is given in Table 1. The same T1 and dMRI fea-
tures as for the UK Biobank were extracted for the EPAD 
dataset, processed using the pipelines described by Lor-
enzini et  al. [28]. There are several differences in image 
acquisition and processing between the EPAD and UK 
Biobank datasets, including the scanners used, the choice 
of processing procedures, the software employed, and the 
FreeSurfer versions used to generate brain ROIs. As such, 
we fine-tune our normative model on a cohort of healthy 
controls from the EPAD dataset. AD CSF biomark-
ers used for statistical analysis included: phosphorated 
tau (p-tau) level, total tau (t-tau) level, amyloid-beta 42 
(abeta42) level, and p-tau/abeta42 ratio [29]. These bio-
markers were quantified using a harmonized pre-analyt-
ical protocol with analyses being performed with a fully 
automatized Roche cobas Elecsys System at the Clinical 
Neurochemistry Laboratory, Mölndal, Sweden [24]. Con-
centrations of abeta42 were determined using the manu-
facturer’s guidelines.

To adjust for confounding effects, we removed non-
linear age (using thin plate regression splines [30]) and 
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linear intracranial volume (ICV) and sex effects from the 
dMRI and T1 MRI features of both datasets separately. 
For the EPAD dataset, we used the fine-tuning set to 
train the regression model and applied the trained model 
to the holdout and test cohorts. Each brain ROI was nor-
malised by removing the mean and dividing by the stand-
ard deviation of the healthy control cohort brain regions 
effectively resulting in Z-scores.

Normative modelling framework
In this work, we use the disentangled multimodal VAE 
(DMVAE) autoencoder proposed by Lee and Pavlovic 
[23] implemented as part of the multi-view-AE Python 
package [31]. The DMVAE model consists of sepa-
rate encoder and decoder networks per modality with 
a shared latent space as well as private latent variables. 
A schematic of the DMVAE model is shown in Sup-
plementary Figure S1. To use DMVAE as a normative 
model, the encoder and decoder parameters are trained 
to characterise a healthy population cohort (i.e., UKB). 

Autoencoder-based normative models assume abnormal-
ity due to disease effects can be quantified by measuring 
deviations in the latent space [21] or in the feature space 
[32]. At test time, the clinical cohort is passed through 
the encoder and decoder networks. Deviations of test 
subjects from the multi-modal latent space of the healthy 
controls and data reconstruction errors are measured 
providing an aggregate measure of abnormity across 
brain regions and imaging modalities and per region 
abnormality measures, respectively. The model param-
eters are given in the Supplementary Material. A sche-
matic overview of the modelling process is given in Fig. 1.

In this work, we used two different z-score measures of 
deviation: a single aggregate metric and regional devia-
tion metrics. Aggregate deviation metrics are useful for 
deriving a sensitive, single generic measure of abnormal-
ity which could be used to flag individuals which require 
closer inspection. In contrast, regional metrics can prove 
useful for a more fine-grained or disease-specific explo-
ration of deviations, for example to create maps which 

Table 1  EPAD demographics

Super healthy (baseline) ’at-risk’(baseline) ’at-risk’(latest visit)

N 337 592 592

Sex (M:F) 199:138 351:241 351:241

Mean ± sd Age (years) 64.0 ± 7.0 65.4 ± 7.6 65.6 ± 7.6

Mean ± sd ICV 1.50 ± 0.15 1.49 ± 0.16 1.49 ± 0.16

Mean ± sd p-tau pg/mL CSF 16.7 ± 7.32 20.3 ± 9.96 20.3 ± 9.34

Mean ± sd t-tau pg/mL CSF 198 ± 74.0 231 ± 94.3 231 ± 92.2

Mean ± sd abeta42 pg/mL CSF 1555 ± 797.1 1310 ± 692.2 1353 ± 717.1

Mean ± sd CDR global score 0 0.19 ± 0.25 0.19 ± 0.25

Mean ± sd MMSE total score 29.6 ± 0.48 28.1 ± 1.80 28.2 ± 1.77

ApoE (0 variants:1 variant:2 variants) 325:0:0 259:252:32 272:252:32

Fig. 1  Schematic overview highlighting which dataset cohorts are used in each stage of the modelling process. The left panel shows the training 
of the entire network using the UK Biobank healthy control cohort. The middle panel shows fine-tuning of the model weights using the EPAD super 
healthy fine-tuning control cohort in a transfer learning approach. The right panel shows the EPAD super healthy holdout and at-risk cohorts being 
passed through the network and the resultant latent vectors and data reconstructions being used to calculate individual-level deviations
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provide an interpretable image of which brain regions 
show abnormalities. In this work, the aggregate deviation 
metric, which we term Dml, measures the deviation from 
the multi-modal latent space of the autoencoder-based 
deep normative model. Here, “ml” refers to a multivariate 
latent space metric. Regional metrics, Duf, which measure 
deviation in each brain imaging ROI, are derived in the 
feature space by comparing the autoencoder reconstruc-
tion to the original input. Here, “uf” refers to a univariate 
feature space metric. The formulation of both metrics, 
previously introduced by Lawry Aguila, Chapman, and 
Altmann [19], is provided in the Supplementary Material.

Statistical analysis
To assess the extent to which general deviation metrics 
correlated with AD-related biomarkers and cognitive 
performance, we calculated Dml for the super healthy 
holdout cohort and the ‘at risk’ cohort. Where data from 
multiple visits was available for the ‘at risk’ set, we used 
the data from the most recent visit. To explore AD-spe-
cific deviations we extracted the Duf values for the left 
and right Hippocampus, two AD related brain regions 
previously identified in the literature [33]. For both Dml 
and Duf metrics, deviation values are calculated relative 
to the holdout control set to account for any deviation 
resulting from suboptimal model fit. Both types of met-
rics were correlated with the age-adjusted AD biomark-
ers and cognitive scores. The imaging and biomarker data 
were taken from the same visit. To adjust for age-related 
effects, we regressed out the effects of age, using regres-
sion coefficients learnt using the super healthy cohort, 
from each of the biomarkers.

To explore heterogeneity in cohorts stratified by cogni-
tive ability, we calculated, for each brain region, the pro-
portion of outliers in the ‘at-risk’ test cohort using Duf. 
For T1 and FA features we used an outlier cut-off of Duf < 
−1.96 (i.e., a 2.5% threshold) and for MD features we 
used a cut-off of Duf > 1.96 to reflect the expected direc-
tion of change in these features associated with AD. Duf 
values below, or above, these thresholds were considered 
outliers. We stratified the ‘at-risk’ test cohort by CDR and 
MMSE. For CDR stratified groups, we created outlier 
maps for CDR = 0 and CDR = 0.5. We also created outlier 
maps for the following MMSE subgroups; MMSE = 30 
(no dementia), MMSE = 28–29 (questionable demen-
tia), MMSE = 26–27 (questionable dementia), MMSE 
= 21–25 (MCI).

We then explored grey matter heterogeneity in 
MMSE subgroups at a network level. Following a simi-
lar approach to Segal et al. [34], we assigned each corti-
cal region to one of seven functional cortical networks 
using the Yeo network parcellation [35]. The subcortical 
regions were assigned to the following groups; medial 

temporal lobe (Amygdala and Hippocampus), Thala-
mus or Basal Ganglia (Nucleus Accumbens, Pallidum, 
Putamen and Caudate nucleus). For each network, we 
calculated the proportion of individuals within each sub-
group where Duf surpassed the specified threshold in at 
least one region assigned to that network. To quantify 
the significance of these outlier proportions, we con-
ducted group-wise permutation tests to obtain p-values 
for each network. The purpose of the permutation tests is 
to quantify the significance of the proportion of outliers 
relative to the healthy holdout data. For each subgroup, 
we permuted the group labels (cases and controls) and 
repeated the process 10,000 times to derive an empiri-
cal distribution of outlier maps under the null hypothesis 
of random group assignment. Using the Duf calculated 
outlier proportions, we can obtain p-values from the 
proportion of null values that exceeded the observed out-
lier proportion for each brain region. Statistically signifi-
cant effects were identified using an FDR-corrected [36] 
threshold of p < 0.05.

To explore differences in subgroups stratified by 
genetic risk, we computed Dml and Duf using imaging 
data from the baseline visit for the ‘at-risk’ test cohort, 
where all participants were deemed cognitively normal. 
We stratified Duf by these cohorts of genetic risk and cal-
culated Cohen’s d effect sizes for each region between the 
healthy holdout cohort and each subgroup. Positive effect 
size values correspond to subgroups having a higher Duf 
compared to controls, while negative effect size corre-
spond to subgroups having lower values relative to con-
trols. The genetic subgroups consisted of individuals 
with; wild-type ApoE (ε3/ε3), one ε4 allele (ε3/ε4) and ε4 
homozygous (ε4/ε4).

To explore how general measures of deviation changed 
over time, for a sub-group of the ‘super healthy’ and ‘at-
risk’ cohorts for which we have the required data, we 
calculated Dml from the baseline and 12-month imaging 
data. To assess the separation between groups for each 
cohort, we conducted paired t-tests.

Results
Adjusting for confounding effects
Example UMAP plots of the imaging features before and 
after adjusting for confound effects are given in Supple-
mentary Figures S2 and S3. The association between the 
UMAP vectors and confound variable was tested using 
linear regression. We see some residual age effect for the 
holdout and test cohort, likely due to a combination of 
disease effect and scans from multiple visits being pre-
sent in the data. The residual age effects for the holdout 
and test cohort are further decreased for the Duf values 
(see Supplementary Figure S4).
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Relationship between deviation metrics and AD 
biomarkers and cognitive measures
Table 2 shows the Pearson correlation coefficients, and 
corresponding p-values, between Dml for the at-risk 
cohort and age-adjusted AD biomarkers and cognitive 
tests results. We see statistically significant associa-
tions (Bonferroni adjusted p-value threshold = 0.0083) 
for CDR global score, MMSE total score, abeta42, and 
p-tau/abeta42 ratio. Next, we looked at the correla-
tions between Duf and age-adjusted AD biomarkers 
and cognitive scores for the left and right Hippocam-
pus (Table 3). In these regions, we generally see higher 
correlation between deviation metrics and AD metrics 
than observed for the general deviation metric, Dml. We 
additionally provide correlations between hippocampal 
volume features and AD biomarkers in the Supplemen-
tary Table S5. Compared to age, sex and ICV adjusted 
hippocampal volume, Duf of the hippocampus shows 

stronger correlations with CSF tau biomarkers as well 
as cognition (CDR, MMSE).

Stratifying deviations by cognitive ability
We created proportion of outlier maps, using the Dul 
deviation thresholds discussed in the statistical analysis 
section, stratified by CDR and MMSE. Figure 2 shows the 
proportion of outliers for the healthy holdout cohort, and 
individuals with a CDR global score of 0 or 0.5. We see 
little difference between the holdout and CDR = 0 outlier 
maps. However, we see a higher proportion of outliers 
for the CDR = 0.5 cohort, in line with the observation of 
higher Dml with increasing CDR score (refer to Fig. 3a). 
Figure  3d further illustrates the difference in the pro-
portion of outliers between the CDR = 0 and CDR = 0.5 
cohorts, with the red dotted line indicating an overall 
higher proportion of outliers for CDR = 0.5.

Figure  4 shows the proportion of outliers for the 
MMSE subgroups. We see increasing proportion of out-
liers with decreasing MMSE score, again in the T1 tem-
poral regions and several MD features. Conversely, fewer 
FA regions show much difference in the proportions of 
outliers across MMSE subgroups.

Mapping neural heterogeneity at a network level
The network level -log10p-values are given in Fig. 5. The 
participant groups with the strongest cognitive impair-
ment also exhibited the strongest associations on net-
work level. With decreasing cognitive performance, we 
see increasingly significant p-values obtained from the 
permutation tests. Moreover, the medial temporal lobe 
is implicated for the MMSE = 21–25 and MMSE = 26–27 
subgroups. In addition, for these two subgroups the 
limbic network is also implicated. Overall, over half the 
network regions are implicated (puncorrected < 0.05) in the 
MMSE = 28–29 subgroup, however, the p-values fail to 
withstand FDR correction.

 Deep Normative model identifies genetic risk
We investigated whether the deep normative model 
could discern differences among cohorts with varying 
genetic risks for AD. Figure 3b shows Dml for the EPAD 
cohorts stratified by genetic risk. We found no statisti-
cally significance differences in Dml between the holdout 
cohort (individuals with ε3/ε3 among other restrictions), 
individuals with ε3/ε3, ε3/ε4 and ε4/ε4.

Figure 6 shows the Cohen’s d effect sizes for each region 
between the healthy holdout cohort and each subgroup. 
Notably, the ε4/ε4 subgroup displays the most substantial 
negative effect sizes, particularly in the right Hippocam-
pus (d = −0.897), left Hippocampus (d = −0.860), left 
(d = −0.709), and right Entorhinal cortex (d = −0.690). 
The direction of effect corresponds to more negative Duf 

Table 2  Correlation results for Dml for the EPAD test cohort

Pearson correlation coefficient and p-value between AD biomarkers or cognitive 
scores and Dml for the EPAD test cohort. Bold font indicates statistically 
significant results

Dml N Correlation P-value

p-tau 378 0.099 0.054

t-tau 378 0.074 0.150

abeta42 378  −0.145 4.72e-03
p-tau/abeta42 378 0.203 6.93e-05
CDR global score 587 0.177 1.58e-05
MMSE total score 445  −0.128 6.71e-03

Table 3  Correlation results for Duf for the left Hippocampus and 
right Hippocampus

Pearson correlation coefficient and p-value between AD biomarkers or cognitive 
scores and Duf for the left Hippocampus and right Hippocampus. Note that the 
direction of correlation is reversed compared to Dml as here a more negative Duf 
indicates a greater deviation. Sample sizes are listed in Table 2

Duf Hippocampus Correlation P-value

Left p-tau  −0.192 1.73e-04

t-tau  −0.187 2.57e-04

abeta42 0.170 8.80e-04

p-tau/abeta42  −0.260 3.02e-07

CDR global score  −0.216 1.31e-07

MMSE total score 0.197 2.83e-05

Right p-tau  −0.202 7.59e-05

t-tau  −0.193 1.55e-04

abeta42 0.104 0.043

p-tau/abeta42  −0.235 3.70e-06

CDR global score  −0.203 6.96e-07

MMSE total score 0.189 6.04e-05
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relative to healthy controls. There are large effect sizes for 
a number of other grey and white matter regions, namely; 
right Postcentral (d = 0.735), right FX/ST FA value (d 
= 0.717), and left Postcentral (d = 0.608).

 Latent deviation reflects longitudinal change
For both the test cohort and the healthy holdout cohort, 
we identified individuals for which we had imaging data 
for a baseline and follow up visit after 12 months. Paired 
t-tests of Dml for baseline and 12-month visits showed 
statistically significantly higher deviations at the follow 
up visit for the test cohort but not the healthy holdout 
cohort (Fig. 7).

Discussion
In this work we applied a deep normative model, trained 
on the UK Biobank dataset, to the external EPAD data-
set with the aim of detecting subtle differences in brain 
morphology among ‘at-risk’ individuals. We found that 
single aggregate deviations (Dml), which summarize the 
deviation in whole brain pattern from a healthy norma-
tive population, correlated significantly with AD bio-
markers and cognitive scores. It is promising that the 
general metric Dml can already detect subtle differences 
in AD-specific biomarkers in non-demented individu-
als. This implies that, without incorporating additional 
prior knowledge of AD, such as concentrating solely on 
brain regions associated with AD, the deviation metric 

Fig. 2  Proportion of regional outliers for the holdout cohort and CDR score subgroups. The colour bar reflects the proportion of outliers from 0.025 
to 0.3. Regions in grey indicate that the proportion of outliers for that region was less than 0.025
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effectively identifies dementia-related differences among 
individuals. This suggests that generic, disease-agnostic 
normative models together with such deviation metrics 
can detect subtle morphological changes already occur-
ring in ‘at-risk’ individuals, which could be informative 
for early diagnosis of AD and other neurodegenerative 
disorders. Next, we explored the correlations for AD-spe-
cific deviation metrics by focusing on the bilateral hip-
pocampi and generally saw much stronger correlations 
between the deviation metrics and AD biomarkers than 
observed for general deviation metrics. This highlights 
the ability of the deep normative model, which had been 
trained on healthy subjects, to exhibit increased sensitiv-
ity when focusing on brain regions that are susceptible to 
disease effects. These results allude to the potential for 
first using aggregate deviation metrics to flag outlying 
individuals before exploring disease specific deviations.

To provide insights into the normative model, we 
explored feature space deviations and derived outlier 
maps stratified by cognitive scores. We sought to iden-
tify whether the brain regions highlighted by the norma-
tive model as abnormal were specific to AD. We found 
that generally the proportion of outliers per brain region 
increased with decreased cognitive performance as we 
would expect for people at risk of developing AD. More-
over, once severity of the cognitive decline increased, 
the brain regions typically associated with AD pathology 

featured the most outliers. For instance, when stratify-
ing the test cohort by CDR score, we saw little difference 
between the holdout and CDR = 0 outlier maps, aligning 
with expectations since a CDR score of 0 is considered 
cognitively normal, and thus any abnormality poten-
tially present is minimal at this point and challenging to 
detect using T1w MRI or DTI (Fig. 2b). However, we see 
a higher proportion of outliers for the CDR = 0.5 cohort, 
particularly in the temporal region, consistent with find-
ings from previous AD studies (Fig.  2c) [37]. This sug-
gests that the deep normative model effectively detects 
subtle differences between these cohorts. For the MMSE 
stratified groups, we saw an increasing proportion of out-
liers with decreasing MMSE score particularly in the T1 
temporal regions and several MD features. Fewer FA fea-
tures showed pronounced difference in the proportion of 
outliers across the MMSE subgroups, a finding consistent 
with previous studies suggesting that FA is less sensitive 
to group differences in AD [14]. In general, regions with 
the highest outlier counts corresponded to those high-
lighted in previous AD studies, and results were generally 
in line with previous AD normative analysis [37].

Exploring the grey matter deviations at a network 
level, permutation tests found statistically significant 
p-values for the questionable dementia and MCI MMSE 
subgroups in network regions associated with the early 
stages of AD, namely the medial temporal lobe and 

Fig. 3  Dml for the holdout cohort and test cohort stratified by (a) CDR score (holdout; N = 160, CDR = 0; N = 384, CDR = 0.5; N = 215), (b) number 
of ApoE variants and (holdout; N = 160, ε3/ε3; N = 224, ε3/ε4; N = 252, ε4/ε4; N = 32), (c) MMSE score (holdout; N = 160, MMSE = 30; N = 119, MMSE 
= 28–29; N = 208, MMSE = 26–27; N = 88, MMSE = 21–25; N = 29). The statistical annotations were generated using Welch’s t-tests between groups; 
ns: 0.05 < p < = 1, *: 0.01 < p < = 0.05, **: 0.001 < p < = 0.01, ***: 0.0001 < p < = 0.001, ****:p < = 0.0001. (d) Each dot represents one imaging derived 
brain phenotype and its proportion of outliers in the CDR = 0 subset (x-axis) and CDR = 0.5 subset (y-axis). The red-dotted line marks a linear 
regression between the two cohorts, where a gradient greater than 1 (dotted green line) indicates that the proportion of outliers for CDR = 0.5 
is generally greater than the proportion of outliers for CDR = 0
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limbic region. The medial temporal lobe is home to the 
amygdala and hippocampus, previously linked to AD 
[11]. It is well known that the limbic system is involved 
with AD and atrophy in these brain regions is one of the 
earliest hallmarks of the disease [38].

Previous analyses focused on cognitive decline. How-
ever, we also investigated deviations stratified by AD 

genetic risk, particularly the ApoE ε4 allele. For the 
general measure of deviation (Dml) there were no sta-
tistically significance differences between the holdout 
cohort, individuals with ApoE ε3/ε3, one ε4 allele and ε4/
ε4. This lack of significance is not entirely unexpected, 
since our focus was solely on genetic risk which does not 
have to definitively indicate abnormality. Furthermore, 

Fig. 4  Proportion of regional outliers for the MMSE score subgroups. The questionable dementia subgroup was split into a further two subgroups 
of MMSE = 26–27 and MMSE = 28–29. The cognitively impaired subgroup ranged from MMSE = 21–25. The colour bar reflects the proportion 
of outliers from 0.025 to 0.3. Regions in grey indicate that the proportion of outliers for that region was less than 0.025



Page 10 of 13Lawry Aguila et al. Alzheimer’s Research & Therapy          (2025) 17:107 

considering we used the baseline measurements, any 
potential abnormalities in the imaging data may be too 
subtle and narrowly distributed across regions to be 

detected by a general measure of abnormality. By con-
trast, for the regional level deviations, we found that ε4 
homozygous individuals exhibited shrinkage relative to 

Fig. 5  The network level -log10p-values associated with the proportion of outliers for each MMSE subgroup under group-based permutation 
testing. MMSE = 30: N = 119; MMSE = 28–29: N = 208; MMSE = 26–27: N = 88; MMSE = 21–25: N = 29. ** corresponds to pFDR < 0.05 and * corresponds 
to puncorrected < 0.05. L = limbic, DM = default mode, SAL/VA = salience–ventral attention, F = frontoparietal, SM = somatomotor, DA = dorsal 
attention, Vis = visual, Tha = thalamus, Bas = basal ganglia, MeTe = medial temporal lobe

Fig. 6  Cohen’s d effect sizes between healthy holdout and subgroups of genetic risk using Duf. Regions in grey indicate an effect size of −0.2 < d < 
0.2
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healthy controls in some temporal regions. It is particu-
larly interesting that we can observe these differences at 
baseline, where all individuals are considered cognitively 
normal, precluding any clinical diagnosis of AD. Interest-
ingly, in this analysis we also observed several grey and 
white matter regions which appear to show growth.

Lastly, we examined how latent deviations evolved 
over time for our ‘at-risk’ test cohort and healthy hold-
out cohort. We found there was a statistically significant 
increase in latent deviation between the baseline and 
12-month visits for the test cohort, a trend not observed 
in the healthy holdout cohort. This is promising as it sug-
gests that the deviation in our healthy holdout cohort 
remains stable across visits, with no deterioration in 
grey or white matter regions. Conversely, the increasing 
deviation in the test cohort aligns with expectations for 
a group with either genetic risk or borderline cognitive 
scores. This suggests an increase in abnormality in the 
‘at-risk’ cohort, possibly associated with early-stage AD. 
It is promising that we observe differences in Dml in such 
a short timeframe.

This study has several limitations. Firstly, it should be 
noted that we did not exclude ε4 carriers from the UK 
Biobank training cohort. As such, preclinical neuro-
degeneration from genetic risk may be present as part 
of the normative model. Secondly, subgroups within 
the EPAD dataset varied in size and the availability 
of longitudinal samples with all the required imag-
ing and biomarker data was limited, which may limit 
the robustness of the results. To address this, future 
research efforts should prioritise the application of 
deep normative modelling approaches to large longi-
tudinal cohorts focusing on ageing and the early stages 
of AD. Furthermore, AD biomarkers were not used to 
define the super healthy cohort and so some subjects 

may already have amyloid deposition. Another limita-
tion is that the longitudinal analysis was limited to just 
two visits. Further work could involve comparing the 
longitudinal trajectories observed here to other AD 
datasets with a larger number of timepoints, such as 
the ADNI dataset [39]. This could offer a clearer under-
standing of how deviation measures can effectively 
monitor cognitive decline over time. Finally, the EPAD 
data was collected from multiple centres, which could 
introduce site-related effects as potential confounders. 
However, the data acquisition followed a standardized 
scanning protocol designed to minimize between-site 
differences while accounting for variations in scanner 
hardware and software limitations [28]. Additionally, 
any remaining site effects could be mitigated using har-
monization methods such as NeuroComBat [40].

In conclusion, in this work, we have showcased the 
ability of deep normative modelling approaches to 
detect subtle differences in brain morphology in indi-
viduals at risk of developing AD in the EPAD dataset. 
The findings presented here, which align with previous 
AD research, highlight the potential of deep norma-
tive modelling for individual-level analysis of the early 
stages of AD. Furthermore, as the normative model 
is not specifically trained for AD, there is potential to 
adapt the model to other neurodegenerative diseases.
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