Skip to main content

Table 2 Performance of the amyloid β positivity classification models using L2-regularized logistic regression

From: Machine learning models for dementia screening to classify brain amyloid positivity on positron emission tomography using blood markers and demographic characteristics: a retrospective observational study

 

ROC AUC

Sensitivity

Specificity

PPV

NPV

Accuracy

Model 0a

0.67 (0.01)

0.64 (0.04)

0.62 (0.04)

0.52 (0.02)

0.74 (0.01)

0.63 (0.02)

Model 1b

0.70 (0.01)

0.68 (0.04)

0.60 (0.04)

0.52 (0.02)

0.75 (0.02)

0.63 (0.01)

Model 2c

0.70 (0.01)

0.60 (0.04)

0.68 (0.05)

0.56 (0.04)

0.74 (0.01)

0.66 (0.03)

Model 3d

0.73 (0.01)

0.62 (0.04)

0.69 (0.04)

0.57 (0.03)

0.75 (0.01)

0.66 (0.02)

Model 4e

0.76 (0.01)

0.64 (0.03)

0.75 (0.03)

0.62 (0.03)

0.77 (0.01)

0.70 (0.02)

  1. Data are mean (standard deviation)
  2. aModel 0: demographic characteristics (age, sex, body mass index, years of education)
  3. bModel 1: Model 0 plus all MMSE subscores
  4. cModel 2: Model 0 plus blood test results (excluding ApoE4 phenotype) and the other demographic characteristics (medical history, current alcohol consumption, smoking status)
  5. dModel 3: Model 2 plus all MMSE subscores
  6. eModel 4: Model 3 plus ApoE4 phenotype
  7. ApoE4 apolipoprotein E4, MMSE Mini Mental State Examination, NPV negative predictive value, PPV positive predictive value, ROC AUC receiver operating characteristic area under the curve